2, we H, T a Fuchentau gp,
$$M = T | H$$

 $N_R^2 \# \{ \frac{1}{2} \in T_2 : d(w_1, \frac{1}{2}) < R \}$
 $= \sum I_R(d(w_1, \frac{1}{2}))$
 $g \in T$
"=" $\sum h_R(r_j) \Psi_j(\varepsilon) \overline{\Psi_j(w)}$
 $j \ge 0$
 $= \frac{area}{area} \frac{1}{p_1} \sum h_R(r_j) \Psi_j(w) \Psi_j(w)$
 $= \frac{area}{area} \frac{1}{p_1} \sum h_R(r_j) \Psi_j(w) \Psi_j(w)$
As usual:
• area B_R ~ e^R (R-9 ω)
• $I_R(t) = \begin{cases} 1 & \Psi_1 < R \\ 0 & t > R \end{cases}$
• $J_j = \frac{1}{4} + r_j^2$ (with $r_j \in C$)
• h_R the Setherg transform of I_R

1 21/4 $k_{j} \in [0, 1/4]$ • rjeR • $r_i \in \begin{bmatrix} -i & i \\ 2 & i \\ 2 \end{bmatrix}$. There can $|\mathcal{O}_{k+1}| \leq |\mathcal{V}_{k+2}|$ ou's be futely many 1 = [0, 1/4) Chy discreteness. $\frac{1}{2} = |r_0| > |r_1| > |r_2|$ $\gamma_{1},\gamma_{1}[r_{k}] > 0$ Computing the hr for ARY $R(\frac{1}{2}+|r_{j}|)$ $N_{R} = \frac{\operatorname{area}(B_{R})}{\operatorname{area}(M)} + \sum_{\substack{\lambda, c(D_{1}/4) \\ \lambda \in (D_{1}/4)}} e^{\frac{1}{2}}$ + $O\left(\sum_{\substack{j=1\\j\neq j}} \frac{1}{2} e^{R/2}\right) + O(e^{R/2})$

as R-200 example shows that we lf Z<00, then 1) $N_R \sim \frac{area(B_R)}{area(M)}$ would like to have $\lambda_1 > 1/4$ and if x < 1/4, then $\mathcal{K}\left(-\frac{1}{2}+|r_1|\right)$ 2) $\frac{M_R}{area(B_R)} = \frac{1}{area(M)} \ll e^{1}$ Ruch: $\lambda_1 = \lambda_1 - \lambda_0$ is called the spectral gap. and of instead X, 721/4 Ideally, there would be a 3) [.... [& C unform spectral gap for all Andraw gyps. However we'll show This shows that Thm: VE70 Ja compact λ_1 (at least if $\lambda_1 < 0$) has hyperbolic moferer M 5.7. some geometric significance $\lambda_{(M)} < \varepsilon$. tor comparison, Lo «> area(M)

However Diverer $\sum_{\lambda_{j} \gg 1/4} \frac{1}{|r_{j}|^{3/2}} = \sum_{\lambda_{j} \sim 1/4} \frac{1}{|\lambda_{j} - 1/4|^{3/4}}$ $\sum_{\substack{1\\4\leq\lambda_{j}<\tau}\frac{1}{\lambda_{j}^{3}} > \tau^{-3/4} (\sum_{\substack{1\\4\leq\lambda_{j}<\tau}\frac{1}{\lambda_{j}}) \frac{1}{\beta} \tau^{-1} (\sum_{\substack{1\\4\leq\lambda_{j}<\tau}\frac{1}{\lambda_{j}}) \frac{1}{\beta} co$ In practice, one replaces AR by a smooth approximation to obstan better estimates for the Selberg Fransform.

If we do that we eventually recover (1) and (2), but it comes at the cost of a weather error term (oujecture: the expected rate e R(E-1/2) (for any small (200)

Pop: let M be a compact
hyperbolic onface. Then

$$\lambda_1(M) = \inf \int \frac{S_M |\nabla f|}{S_M |f|^2}$$

is over all functions
 $f \in Dom(\Delta) \cap (C \Lambda)^1$.
Rule: $L^2(M) = C \Lambda \oplus (C \Lambda)^1$
Exercise; Shew that
 $(C \Lambda)^2 = \lambda f : S_M f = 0$?
Then
 $\langle \Delta f, f \rangle = \lambda_1 ||f||^2$
 $M = \int |\nabla f|^2$
 $M = \int |\nabla f|^2$

Proof: Let
$$f \in Dom(A) \cap (C1)^{\perp}$$

In penhicular f admits the
spectral expansion
 $f(z) = \sum_{j>1} \langle f_i \langle j \rangle \langle j \rangle \langle z \rangle$
 $j^{2}!$
We can check that
 $\int_{M} |f_i^{T} = \sum_{j>1} |\langle f_i \langle j \rangle|^2$
and
 $\int [\nabla f|^2 = \sum_{j>1} \lambda_j |\langle f_i \langle j \rangle|^2 = \int_{J} |f_i^{T}|^2$
 $\pi \lambda_j \sum_{j>1} |\langle \langle f_i \langle j \rangle|^2 = \int_{M} |f_i^{T}|^2$
Take now
 f to be an eigenfunction for λ_j
 $\Delta f = \lambda_j f$

Thun:
$$4670 \ \exists a \ opt. hyperbolic
surface $M = t$. $\lambda_1(M) < \epsilon$.
Stretch of proof # (lafter Cheeger)
let M be a compact hyperbolic
surface. Choose a closed geodesic
 $\Im m M \ s.t M \ \Im \ is \ shill
Convocted. Recall:
 $\lambda_1(M_1) = \inf \frac{\int_M |\nabla f|^2}{\int_M (f_1)^2}$
Choose on each M_1 a function
 $f_1 = \int_{-1}^{1} \int_M B$
linear on small
transition p_1^{spes} in π
Observe $\int_{M_1} f_1 = 0$$$$

Cheeger constant

$$h(M) = \inf_{M} \frac{\operatorname{area}(\partial D)}{\operatorname{area}(D)}$$
where \inf_{M} is taken over all
bdd. regular elemane $D \subset M$
s.t. $\operatorname{area}(D) \leq \frac{1}{2} \operatorname{area}(M)$.
Cheegers holds more generally
pr any compact Riemannian
manifold.

$$\frac{h(M)^{2}}{4} \leq \frac{1}{2}(M) \leq C(h(M))$$
where $\int_{M} \int_{M} \int_{M}$

Idea of proof #2, after Selberg
Let M be a compact hyperbolic
surface. We conside the
following modified spectral
problem: find solutions to

$$\int \Delta f = \lambda f$$

 $\int I f I^2 < \infty$
 $\int (X_2) = X(\delta) f(z)$ $f(z)$ $f(z)$
homomorphism.
Fix $\Theta \in T^{2\delta}$, and consider the
associated cheracter $X \Theta$.
We we going to use the

Aside: The set of all cheracters i.e. honorphism from T to S' form a group $F = Hom(\Gamma, S')$ = Hom $(\Gamma/T_{\Gamma}, \Gamma], S')$ [[, []=]abab : 1a, 66 [] \cong Hom (H(M), S') \cong Hom (\mathbb{Z}^{2g}, S^{l}) where of is the genus of M \cong Hom $(2^{2}3, T) \cong T^{2}3$ $\left(\begin{array}{c} t\\ 0\\ 2 \\ R \\ \end{array}\right)$

following facts:
A) The spectral mobiles for X@
advib a complete resolution

$$0 \le \lambda_0(\Theta) \le \lambda_1(\Theta) \le \cdots$$

2) $\lambda_0(\Theta) \le \lambda_1(\Theta) \le \cdots$
2) $\lambda_0(\Theta) = 0$ is continuous in Θ
This means for any ≤ 0 , ± 50
S.E. $(\Theta(\le S, \lambda_0(\Theta) < \Xi)$
3) $\lambda_0(\Theta) = 0$ iff $\Theta = 0$
Pf: \ll if $\Theta = 0$, $X_0 = 1$ (the
provid character) and we
recover one usual spectrual
problem whereby the bottom
of the spectrum is $\lambda_0 = 0$.

bottom line:
$$T^{20}$$
 perametrizes
the characters on T

$$\Rightarrow \lambda_{0}(\Theta) = inf \frac{\int_{M} |\nabla f|^{2}}{\int |f|^{2}} = 0$$

$$T \int |f|^{2}$$

$$= 0$$

$$T \int |f|^{2}$$

$$= 0$$

$$M feDon(A)$$

$$\Rightarrow \exists an eigenft. for $\lambda_{0}(\Theta)$

$$= f = constant$$

$$\int |\nabla f| = 0 \Rightarrow f = constant$$

$$for any f \in T$$

$$= f(X) f(Z)$$

$$= f(X) = f(Z)$$

$$= f(X) = f(Z)$$

$$= f(X) = f(Z)$$$$

Fix E70 Choose
$$\Theta \in \mathbb{T}^{29}$$

A.t. FI Θ [<8 and $\Theta \in (\mathbb{Q}/2)^{5}$
Taking the corresponding character
 $X_{\Theta}: \Gamma \rightarrow S^{1}$ has finite
image discrict: (comme
youndives that the mage lies
 $M \leq N -$ the M^{th} rooks of
 $M = M -$ the $M -$ the M^{th} rooks of
 $M = M -$ the $M -$ the $M -$ the $M -$ rooks of
 $M = M -$ the $M -$ the $M -$ rooks of
 $M = M -$ the $M -$