$z, w \in H, T$ a Fuchorian $g p, M=\Gamma|H|$
$N_{R^{2}} \#\left\{z^{\prime} \in \Gamma ; \quad d(w(z)<R\}\right.$

$$
=\sum_{\gamma \in T} 1_{R}\left(d\left(w_{1} \gamma_{z}\right)\right)
$$

$$
={ }^{\prime \prime} \sum_{j=0} h_{R}\left(r_{j}\right) \varphi_{j}(z) \overline{\varphi_{j}(w)}
$$

$$
=\frac{\operatorname{area} B_{n}}{\operatorname{aren} M}+\sum_{j=1} h_{R}\left(r_{j}\right) \varphi_{j}(m) \overline{\varphi_{j}(m)}
$$

As usual:

- ven $B_{r} \sim e^{R} \quad(R \rightarrow \infty)$
- $1_{R}(t)= \begin{cases}1 & \text { if } t<R \\ 0 & t \geqslant R\end{cases}$
- $\lambda_{j}=\frac{1}{4}+r_{j}^{2} \quad$ (with $\left.r_{j} \in \mathbb{C}\right)$
- h_{R} the Selikerg transform of $1 R$

$$
\begin{array}{ll}
x_{j} \in[0,1 / 4) & \lambda_{j} \geqslant 1 / 4 \\
\cdot r_{j} \in\left[-\frac{i}{2}, \frac{i}{2}\right] & r_{j} \in \mathbb{R}
\end{array}
$$

- There can only be finitely

$$
\text { - } \sigma_{\leqslant}\left|r_{k+1}\right| \leq\left|r_{k+2}\right|
$$ many $\lambda_{j} \in[0,1 / 4)$

Cry discreteness.

$$
\text { - } \frac{1}{2}=\left|r_{0}\right|>\left|r_{1}\right| \geqslant\left|r_{2}\right|
$$

$$
\geqslant \ldots \geqslant\left|r_{k}\right|>0
$$

Computing the h_{R} for 1_{R},

If $\sum<\infty$, then
$N_{R} \sim \frac{\operatorname{area}\left(B_{R}\right)}{\operatorname{area}(M)}$ as $R \rightarrow \infty$ and if $\lambda_{1}<1 / 4$, then

$$
\left|\frac{N_{R}}{\operatorname{arca}\left(B_{R}\right)}-\frac{1}{\operatorname{arca}(M)}\right| \ll e^{R\left(-\frac{1}{2}+\left(r_{1}\right)\right)}
$$

$$
\text { and if instead } \lambda_{1} \geqslant 1 / 4
$$

$$
\left[\ldots e^{-R / 2}\right.
$$

This shews that
λ_{1} (at lear if $\lambda_{(}<0$) has some geometric significance
For comparison, $\lambda_{0} \longleftrightarrow \operatorname{area}(M)$
on the other hand, this example shows that we would line to have

$$
\lambda_{1} \geqslant 1 / 4
$$

Rah: $\lambda_{1}=\lambda_{1}-\lambda_{0}$ is called the spectral gap
Ideally, there would be a uniform spectral gap for all fuchsian gaps. However weill show
The: $\forall \varepsilon>0 \rightarrow$ a compact hyperbolic nufact M st.

$$
\lambda_{1}(M)<\varepsilon
$$

However

In practice, one replaces $1 R$ by a smooth approximation to obtain better estimates for the Selbeng frawform.

If we do that, we eventually recover and , but it comes at the cost of a weaker error term for , namely

$$
|\ldots| \ll e^{-R / 3}
$$

Conjecture: the expected rate $e^{R(\varepsilon-1 / 2)}$ (for any

Prop: let μ be a compact hypabdic enface. Then

$$
\lambda_{1}(M)=\inf \frac{S_{M}|\nabla f|}{S_{M}|f|^{2}}
$$

is over all functions

$$
f_{\in} \operatorname{Dom}(\Delta) \cap(\mathbb{C} 1)^{\perp}
$$

Rok: $L^{2}(\mu)=\mathbb{C} 1 \oplus(\mathbb{C} 1)$
Exercise: show that

$$
\left.(\mathbb{C} 1)^{2}=4 f: \int_{m} f=0\right\}
$$

Then

$$
\begin{aligned}
\langle\Delta f, f\rangle & =\lambda_{1}\|f\|^{2} \\
& \stackrel{B}{=} \\
& \int_{M}|\sigma f|^{2}
\end{aligned}
$$

Proof: Let $f \in \operatorname{Dom}(\Delta) \cap(\pi, \cdots$ in penticulers f adurib the spectral expacion

$$
f(z)=\sum_{j \geqslant}<f_{i} \varphi_{j}>\varphi_{j}(z)
$$

We can check that

$$
S_{M}\left|f^{2}\right|=\left.\sum_{j \geqslant 1}\left|<f_{1} \varphi_{j}\right\rangle\right|^{2}
$$

and

$$
\begin{aligned}
& \text { and } \\
& \begin{aligned}
\int_{M}|\nabla f|^{2} & =\sum_{j \geqslant 1} \lambda_{j}\left|\left\langle f_{i} \varphi_{j}\right\rangle\right|^{2} \\
& \geqslant \lambda_{1} \sum_{j \geqslant 1}\left|\left\langle f_{i} \varphi_{j}\right\rangle\right|^{2}=\int_{M}|f|^{2} .
\end{aligned}
\end{aligned}
$$

Take now
f to be an eigenfunction for λ_{1}

$$
\Delta f=\lambda, f
$$

Thun: $\forall \varepsilon>0 \geqslant$ a opt. Hyperbolic surface M st. $\lambda_{l}(M)<\varepsilon$.
sketch of proof $\# 1$ (after Cheeger) Let M be a compact hyperbolic surface. Choose a closed geodesic γ on M s.t $M \backslash \gamma$ is still connected. Recall

Choose on each M_{i} a function f_{i}

$$
f_{i}=\left\{\begin{array}{cc}
1 & \text { on } \\
\text { sit. } & A \\
-1 & \text { on } \\
\text { linear } & \text { gu small } \\
\text { transition } & \text { pipes in }
\end{array}\right. \text { unbid of }
$$

Shove

$$
\int_{M_{i}} f_{i}=0
$$

$$
\begin{aligned}
& \int_{M_{i}}\left|\nabla f_{i}\right|^{2} b d d \\
& \int_{M_{i}}\left|f_{i}\right|^{2} \approx \operatorname{area}\left(M_{i}\right) \\
& \approx L_{i}-\operatorname{area}(M)
\end{aligned}
$$

This shows that

$$
\lambda_{1}\left(M_{i}\right) \longrightarrow 0 \text { as } i \rightarrow \infty
$$

Morally:
 $\lambda_{1} \geqslant 1 / 4 \lll \lll a^{\prime}$

On the contraing, to obtain the example above, we constructed a sequence of compact hin. Surface that is every tome longer and thinner.

Cheeper constant

$$
h(M)=\inf \frac{\operatorname{area}(\partial D)}{\operatorname{arca}(D)}
$$

where inf is taken over all lode. regular elenans $D \subset M$ sit. $\operatorname{area}(D) \leq \frac{1}{2} \operatorname{arca}(M)$.
Rok: Definition holds mare generally for any compact Riemaumian unanifold.

Idea of proof \#2, after Seiberg
Let M be a compact hypenbohi. surface. We consider the following modified spectral problem' find solutions to

$$
\left\{\begin{array}{l}
\Delta f=\lambda f \\
\int_{M}|f|^{2}<\infty \\
f\left(\gamma_{z}\right)=\chi(\gamma) f(z)
\end{array}\right.
$$

$\forall \gamma \in \Gamma$ $M=r \mid H$
where $X: \Gamma \rightarrow S$
hamamarphism.
Fix $\Theta \in \pi^{2 y}$, and consider the associated cheracter X_{Θ}

We we going to use the

Aside: The set of all cheractus ie. homomorphism free T to S^{\prime}, farm a group

$$
\begin{align*}
& \hat{r}=\operatorname{Ham}\left(\Gamma, S^{\prime}\right) \\
&=\operatorname{Hom}\left(\Gamma /[r, \Gamma], S^{\prime}\right) \\
& {[T, \Gamma]=\left\{a b a^{-1} b^{-1}: a, b \in \Gamma\right\} } \\
&\left.\cong \operatorname{Ham}(H, M), S^{\prime}\right) \tag{2}\\
& \cong \operatorname{Hom}\left(\mathbb{Z}^{2 g}, S^{\prime}\right)
\end{align*}
$$

where of is the genus of M

$$
\cong \operatorname{Hom}\left(4^{2} s, \pi\right) \cong \pi^{2 g}
$$

$$
\left(\bigotimes_{e^{2 m t}} \frac{t}{R 1^{2}}\right)
$$

following facts:

1) The spectral problen for X_{Θ} admits a complete resolution

$$
0 \leqslant \lambda_{0}(\Theta) \leqslant \lambda_{1}(\Theta) \leqslant
$$

2) $\lambda_{0}(\Theta)$ is continuous in Θ

This means for any $\varepsilon>0, \forall \delta>0$ sit. $|\Theta|<\delta, \lambda_{0}(\Theta)<\varepsilon$
3) $\lambda_{0}(\Theta)=0$ iff $\Theta=0$

If: \Leftarrow if $\Theta=0, x_{0} \equiv 1$ (the trivial cheractu) and we recover on/ usual spectral problem whereby the bottom of the spectrum is $\lambda_{0}=0$.

Bottom line: π^{23} parametrizes the characters on Γ

$$
\Rightarrow
$$

$$
\Rightarrow \lambda_{0}(\Theta)=\inf _{\text {over }} \frac{\int_{M}|\sigma f|^{2}}{\int_{M}|f|^{2}}=0
$$

all $f \in \operatorname{Don}(A)$
$\Rightarrow \exists$ an ligenft. for $\lambda_{0}(\Theta)$

$$
\operatorname{sith}|\nabla f|=0 \Rightarrow f=\text { constant }
$$

Since $\quad f(\gamma z)=\underset{\Theta}{x}(\gamma) f(z)$
for any $o f \in T$,
fix $\varepsilon>0$. Choose $\Theta \in \pi^{2 g}$
s.t $; \neq|\Theta|<\delta$ and $\Theta \in(\mathbb{Q} / \mathbb{\Delta})^{2 g}$

Taking the corresponding character $X_{0}: r \rightarrow S^{\prime}$ has finite image Exercise: Convince yourselves that the mage lies in S_{N} - the Nth rook of

Define frise

$$
\Gamma_{\Theta}=\operatorname{ker}\left(X_{\Theta}\right) \underset{\text { index }}{e} \Gamma
$$

If f is a solution of the modified spectral problem for $\left.\lambda_{0}(G)\right)$

Geometrically
$r_{\theta} \backslash H \mid$

$$
\Gamma|H|
$$

navel $\Delta f=\lambda_{0}(\Theta) f$

$$
f(\gamma z)=x_{\Theta}(\gamma) f(z)
$$

$$
G
$$

then
f is Γ_{Θ}-imaret $\Rightarrow \lambda_{0}(\Theta)<\varepsilon$ is an eigenvalue for the standard spechal problem on $T \Theta 1 H T$

