$$
\left.\begin{aligned}
& \Gamma(N)=\operatorname{ker}\left(S L_{2} \mathbb{Q} \rightarrow S L_{2} Z_{N}\right) \\
& 2_{N}=d / N \mathbb{Z}
\end{aligned} \begin{aligned}
& \text { principle } \\
& \text { congnunce } \\
& \text { groups }
\end{aligned} \right\rvert\,
$$

Selberg's eigenvalue conjecture (1965) $\lambda_{1}\left(X_{N}\right) \geqslant 1 / 4$ for each
$N \geqslant 1$
principle
Congruence
groups

- Selloerg proved in the save 1965 article that

$$
\lambda_{1}\left(x_{N}\right) \geqslant 3 / 6
$$

- Booker - 8roümbupran (2007) verified the conjecture up to $N<857$.
Plan: Describe
(1) What X_{N} look like
(20) what the spectre of a noncourpact hyperbolic surface looks like;
(3) relation with expander graphs;
(4) Brooks' assertion: X_{N}
(4) Brooks assertion: X_{N} are short, fat, and have
(1) Prop: Let $\Gamma c S l_{2} \mathbb{R}$ be a Fuclusian group, with fundorutal domain 5 . Let $\Gamma^{\prime}<\Gamma$ be a sop of frise index. Then

$$
F^{\prime}=L \bar{\gamma}_{i} F
$$

is a fundanewtal domain for
r^{\prime}, where $\Gamma=U \Gamma^{\prime} \gamma_{i}$
$\bar{\gamma}_{i}$ is the image of γ, under the standard projection

$$
S L_{2} \mathbb{R} \rightarrow P \delta L \mathbb{R}=S L_{2} \mathbb{R} \mid f_{I}
$$

Roy: exercise.
F : the std. find. don. for Recall that $\otimes_{2} \mathbb{Q}$ is generated by $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
interesting symmetries.
Rule:
The mien in © is ${ }^{a}$ union
of $\left[\bar{\Gamma}: \bar{\Gamma}^{1}\right]$ copies of \bar{F}.
$\bar{F} \bar{F}^{\prime}$ are the marges of
T and $T^{\prime}(r e s p-)$ under the std. $M \theta$. $S L_{2} R \rightarrow B L_{2} R$.
Here one needs to be a Git careful as it is not always true that

$$
\begin{aligned}
& {[\Gamma: T 1] \neq\left[\Gamma: \bar{\Gamma}^{\prime}\right]} \\
& \dot{E}=g, \quad \Gamma=S L_{2} \mathbb{Z}, \quad \Gamma^{\prime}=\Gamma(N) \\
& \left.\quad\left|S L_{2} \mathbb{Z}\right| T(N)|=2| P S L_{2} Q|\widetilde{\Gamma N}|\right]
\end{aligned}
$$

if $N \geqslant 3$
whey $-I \in \delta L_{2} 2$

$$
\notin \Gamma(N) \text { if } N \geqslant 3
$$

so X_{2} (by ghing the edger)

More generally, X_{N} boles like

"hedgehog shaped"

Core: Keeping the notation as in the previous prep, we have $\operatorname{area}\left(F^{\prime}\right)=\left[\bar{\Gamma} \cdot \bar{\Gamma}^{\prime}\right] \cdot \operatorname{area}(F)$
Proof: Exeruse.
Pop: $\left[S L_{2} a: \Gamma(N)\right]=\left|\delta l_{2} a_{N}\right|$

$$
=N\left(N^{2}-1\right)
$$

if $N=p$ prime.
Proof:

$$
\begin{aligned}
& s L_{2}\left(\mathbb{Z}_{p}\right)=\operatorname{ker}\left(\operatorname{det}: G l_{2} \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}^{*}\right) \\
& \left|s L_{2} \mathbb{D}_{p}\right|=\frac{\left|G L_{2} \mathbb{Z}_{p}\right|}{p-1}
\end{aligned}
$$

$\left|G Z_{2} Z_{p}\right|=\# i$ arclered bares for the vector space $Z_{p} \oplus Z_{p}$
over $\left.\mathbb{Z}_{p}\right\}=\left(p^{2}-1\right)\left(p^{2}-1-(p-1)\right)$

$$
=\left(p^{2}-1\right) p(p-1)
$$

In particular,

$$
\begin{aligned}
\operatorname{arca}\left(X_{p}\right) & =\frac{p\left(p^{2}-1\right)}{2} \cdot \frac{\pi}{3} \\
& \sim \frac{\pi}{6} p^{3} \quad(p \rightarrow \infty)
\end{aligned}
$$

which you can compare to the examples we constructed last week

$$
\operatorname{area}\left(M_{i}\right)=2 i \cdot \operatorname{area}(M)
$$

(2) Recall:

The spectrum σ of $\Delta I_{L^{2}\left(\mathbb{R}^{n}\right)}$ is $\sigma=[0, \infty)$

For $\Delta l_{l^{2}\left(\pi^{n}\right)}$ '

$$
\sigma=\left\{0=\lambda_{0} c \lambda_{1} \leq \lambda_{2} \leq \ldots\right\}
$$

In the hyperbolic context,

$$
\left.\Delta\right|_{L^{2}(H)} \leadsto s \quad \sigma=\left[\frac{1}{4}, \infty\right)
$$

If $M=\Gamma \backslash H$ is a compact hyperbolic surface $\left.\left.\Delta\right|_{L^{2}(M)} \leadsto \sigma=\left\{\theta=\lambda_{0}<\lambda_{1}, S \ldots\right\}\right\}$

It now M is noucompact then the spectrum of

$$
\begin{gathered}
\Delta l_{l^{2}}(m) \text { is cuspidal } \overbrace{\text { spectrum }}^{\text {Gum }} \\
G\{0\} \cup\left\{0<\lambda_{1} \leq \lambda_{2} \leq \ldots\right\} \\
\cup\left[\frac{1}{4}, \infty\right)
\end{gathered}
$$

There is a confective of Phillips - Sarnak that says that for "generic" hypubchi surfaces, the curpidal spoctorm is empty

It's a theorem of fellers that the conpridal spectrum is nonempty for X_{N}.
(3)
deft Let $X=(U, E)$ be a finite ($|V|<\infty)$ graph. Its Cheeger constant

$$
h(X)=\inf \frac{|\partial D|}{|D|}
$$

where $D \subset V$ sit. $0<|D| \leqslant \frac{|V|}{2}$
and ∂D is the set of edges that connect D to $V \backslash D$
"short and fat"
$\leftrightarrow{ }^{n}|D|$ small , $|O D|$ large
\longleftrightarrow "sparse and highly connected"
This is the colloquial definition of an expander graph
def: Let $\left(X_{m}\right)_{m \geqslant 1}$ be a
family of finite connected $d^{(*)}$
k-regular ${ }^{(* * *)}$ graphs sit.
$\left|V_{m}\right| \rightarrow \infty$ as $m \rightarrow \infty$.
We say that $\left(X_{m}\right)_{m \geqslant 1}$ is
a funnily of expanders if $\exists \varepsilon>0$ sit. $h\left(X_{m}\right)>\varepsilon$ for each $m \geqslant 1$
(*) For each pair of vertices, there is an edgepath
(*-*) Each vertex is cruneded to k other vertices
def: Let G be a group. Let sCG be a nonempty finite syurnetric subset $\left(S=S^{-5}\right)$ of G. The Gayle graph $\theta(G, S)$ is the graph with vertex set

$$
V=G
$$

and edge set

$$
\begin{array}{r}
\text { iff } \exists s \in S \\
g=s h
\end{array}
$$

$\frac{\operatorname{Rin} u}{S}$

$$
G=S L_{2}\left(\mathbb{Z}_{2}\right) \quad S=\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0
\end{array}\right)\right\}
$$ is undirected

Examples

$$
G=\mathbb{Z}_{6}, S=\{1,5\}
$$

$$
G=2_{6}, \quad S=\{3\}
$$

$$
\begin{aligned}
& h\left(C_{6}\right)=\frac{2}{3} \\
& h\left(C_{n}\right)=\frac{2}{\left\lfloor\frac{n}{2}\right\rfloor} \approx \frac{4}{n}
\end{aligned}
$$

Thu: Let I be a finitely genvated Fuchision group,
let $S \subset T \quad s \cdot t . S=S^{-1},|\delta|<\infty$ and $\langle S\rangle=T$. Let $\left\{\Gamma_{i}\right\}$ be
a family of normal furte-ondex syr of Γ. Then

$$
\zeta_{i}=\zeta\left(\bar{\Gamma} / \bar{\Gamma}_{i}, S\right)
$$

is a family of expenders
if and only if $\exists \varepsilon>0$
sit. $\lambda_{1}\left(r_{i} \backslash H\right)>\varepsilon$
for each $i \geqslant 1$

Coco: The graphs

$$
\left(\zeta\left(\Gamma / \Gamma(N),\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1
\end{array}\right) \delta \Gamma(N)\right)\right)\right.
$$

forms a family
of expendus.
proof: Follows from the
the en the left and Selberg's $3 / 16$ - theorem

The building block behind this theorem is covering theory and the shady of the action of
(4) What disinguis hes the excmples frem today

$$
\begin{aligned}
& F / F(M) \\
\cong P S L_{2}\left(\mathbb{D}_{N}\right) & \downarrow \\
& X_{1}=\Omega_{2} 2 \backslash H
\end{aligned}
$$

from the examples from laot week

$$
\bar{\Gamma} / \bar{\tau}_{\infty} \quad \Gamma_{0} \quad d
$$

$$
\Gamma^{H}
$$

the Galos growp $\bar{\Gamma} \Gamma_{\Gamma_{i}} \curvearrowright \Gamma_{i} \backslash H$ (by isomehres)

A difference between the two frite gnougr \mathbb{Z}_{n} and $P L_{2}\left(\mathbb{Z}_{N}\right)$ is well
Uustrated in the laugrage of reposentation therny Any nouthiwal lineer regresestche of $\operatorname{DSL} L_{2}\left(\mathbb{R}_{P}\right)$ has chimensron
white any nontruial rep-of \mathbb{Z}_{m} is one - diruecricnal Ths is what mohvates the assertion of Brooles.

