

N > 3Why: -Ie SL2 2 $\notin \Gamma(N)$ if N>3

Note S, T & T(2) So X2 the edger) (by ghing La sphere More generally, (mops) X looles, like "hedgehog shaped

$$\frac{\text{Coro}: \text{Keeping the notation as}}{\text{in the previous prop, we have}}$$

$$\frac{\text{area}(F') = [F:F'] \cdot \text{erea}(F)$$

$$\frac{\text{Proof: Exercise}}{\text{Proof: Exercise}}$$

$$\frac{\text{Pop: [SL2: F(N)]}{\text{SL2R}} = |SL2R_N|$$

$$= N(N^2-1),$$

$$\frac{\text{Proof: SL2[Z_p] = \text{Ker}(\text{def: GL2}_p \rightarrow \mathbb{Z}_p^*)}{\text{SL2[Z_p] = Ker}(\text{def: GL2}_p \rightarrow \mathbb{Z}_p^*)}$$

$$|SL_2R_p| = \frac{1}{P^{-1}}$$

$$|G_{12}Z_{p}| = \# 2 \text{ ordered bases for}$$

the rector space $Z_{p} \oplus Z_{p}$
ores $Z_{p} = (p^{2}-1)(p^{2}-1-(p-1))$
 $= (p^{2}-1)p(p-1)$
In porticular,
 $area(X_{p}) = \frac{p(p^{2}-1)}{2} \cdot \frac{\pi}{3}$
 $\sim \frac{\pi}{6}p^{3}(p-2\infty)$
which you can compare to
the examples we constructed

area (Mi) = 21. avea (M

last week

2) Recall:
The spectrum
$$\epsilon$$
 of $\Delta |_{L^2(\mathbb{R}^n)}$
is $\epsilon = [0, \infty)$
For $\Delta |_{L^2(\mathbb{T}^n)}$
 $\epsilon = \{0 = loc \ l_1 \leq l_2 \leq \dots \}$
In the hyperbolic context,
 $\Delta |_{L^2(\mathbb{H})}$ $m \in [\frac{1}{4}, \infty)$
If $M = r \setminus \mathbb{H}$ is a compact
hyperbolic surface
 $\Delta |_{L^2(\mathbb{M})}$ $m \in [\frac{1}{2} \otimes -l_0 \leq l_1 \leq \dots]$

If now M is noncompact
then the spectrum of

$$\Delta l_{12}(n)$$
 is cuspidal
 $\sigma = 203020 < \lambda_1 \leq l_2 \leq \dots$ J
 $U [\frac{1}{4}, \infty)$
there is a confecture of
Phillips - Sarnak that says
that for "generic" hypebolic
sw faces, the cuspidal spectrum
is empty

3
defillet
$$X = (V, E)$$
 be a
finite $(|V| < \infty)$ graph. Its
cheeger constant
 $h(X) = inf \frac{|OD|}{|D|}$
where $D = V$ s.t. $0 < |D| \le \frac{|V|}{2}$
and ∂D is the set of edges
that connect D to $V = D$

def: let
$$(X_m)_{m21}$$
 be a
family of finite connected
 x -regular graphs s.t.
 $|V_m| \rightarrow \infty$ as $m \gg \infty$
We say that (X_m) is
 $family of expanders if$
 $\exists \varepsilon > 0$ sit. $h(X_m) > \varepsilon$
for each $m > 1$

 $\overline{}$

Rink:
S symmetric
$$(a)$$
 Cayley graph
is undirected
Examples:
 $G = Z_6$, $S = \lfloor 1, 5 \rbrace$
 $S(G, S) = C_6$
 $G = Z_6$, $S = \lfloor 3 \rfloor$
 $S = \lfloor 3 \rfloor$

Ò

O⁽

$$G = SL_2(Z_2) \qquad S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

$$(a \text{ though } Z_6 \neq S(z(Z_2))$$

$$h(C_6) = \frac{2}{3}$$

$$h(C_6) = \frac{2}{3} \approx \frac{4}{h}$$

7

Thu: Let
$$\Gamma$$
 be a finitely
generated Fundation group,
let $S \subset \Gamma$ s.t. $S = S^{-1}$, $|S| \subset \infty$
and $\langle S \rangle = \Gamma$. Let $\frac{1}{2}\Gamma_i$ be
a family of normal functionade
sym of Γ . Then
 $G_i = G(\overline{\Gamma}/\overline{\Gamma_i}, S)$
is a family of expanders
of and only Γ_i $\exists z > 0$
sit. $\Lambda_1(\Gamma_i \setminus H) > \varepsilon$
for each $i > 1$

4) what distinguishes the examples from today T/T(M) XN $\cong PSL_2(\mathbb{Z}_N)$ $\chi_{1} = S_{12} \chi_{H}$ from the examples from last week f/f_{O} $= R_{m}$ H2 う L/H

the Galors group F/F D TiNH (by isometres) T/H A difference between the two frite groups Zu end PSL2(RN) is well Mustrated in the language of representation theory Any non-mined lineer representation of PSZ(Zp) has dimension > $\frac{p-1}{2}$