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④ what distinguishes the the Galois group
examples from today

1=1,gN Tillett (by isometries
Fain Xn
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X
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= shawl
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from the examples from

A- difference between the
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two finite groups 2m
11+1T④ and Phelan) is well

2Elton f ,
illustrated in the language

£2m of representation theory

pµH Any nontrivial lmeer representation
of P82z(Zp ) has dimension

→ 1¥



/ while any nontrivial rep - of

2m is one - dimensional

This is what motivates the assertion of Brooks
.


