Recap
AH with $g_{2}(u, v)=\frac{u \cdot \bar{v}}{y^{2}}\left(\longleftrightarrow d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}\right)$ geodesics are portions of

$\mathrm{PSL}_{2} \mathbb{R} \subset \operatorname{lom}(\mathrm{HH})$
(ln fact:
Thu (Poincare) $\quad 1 \operatorname{som} H t=P S L_{2} R$)
Today :

- Classification of motions

Recall: \quad loom $\mathbb{R}^{2}=S O(2) \propto \mathbb{R}^{2}$
Any $\varphi 6$ is either a rotation or a translation or the iolentizy

- Metic space properties
of $\left(A, d s^{2}\right)$
- Fuchrian groups

Cerrificetion of mohous

$$
\begin{aligned}
& G=P \delta L_{2} \mathbb{R} \quad \text { cowtanus } \\
& N=\left\{n_{x}=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right): x \in \mathbb{R}\right\}\{ \pm 1\} \\
& z \mapsto z+x \\
& A=\left\{a_{y}=\left(\begin{array}{cc}
\sqrt{y} & 0 \\
0 & 1 / \sqrt{y}
\end{array}\right): y \in \mathbb{R}_{>0}\right\}\{ \pm 1\} \\
& z \mapsto y \cdot z
\end{aligned}
$$

Real:

$$
\begin{aligned}
& N A(i)=A 1 \\
& K=\left\{k_{\theta}=\left(\begin{array}{cc}
\cos \theta / 2 & -\sin \theta / 2 \\
\sin \theta / 2 & \cos \theta / 2
\end{array}\right): \theta \in \mathbb{R} / 2 \pi Q\right.
\end{aligned}
$$

Check:

$$
\begin{gathered}
\operatorname{stab}_{G}(i)=\{g \in G: \quad g(i)=i\} \\
=K
\end{gathered}
$$

Thm: Each $g \in G, g \neq \pm I$, is either...

hypenbolic $|\operatorname{tr} A|>2$ \qquad $\longleftrightarrow g 刃 \bar{A}$ has two fixed fots $\longleftrightarrow \begin{aligned} & \text { g coryhgate } \\ & \text { to sone }\end{aligned}$ (hoth in $\partial \mathrm{H}$) $\quad a \in A$

Proof: $\quad A z=z \longleftrightarrow a z+b=c z^{2}+d z \quad c z^{2}+(d-a) z-b=0$ with discriminant $S=(a+d)^{2}-4$
if A is empric \mid WA $\mid<4 \leftrightarrow \Delta<0$ and $A z=z$ has solution

$$
\frac{a-d \pm i \sqrt{|\Delta|}}{2 c} \text { only one } \Delta \text { in } \mathrm{HH}
$$

There is $g \in G$ sir. $\left.g_{i}\right)=z$

Metric properties of AI for each $z_{1}, z_{2} \in H$

$$
d_{H}\left(z_{1}, z_{2}\right)=\inf _{\gamma} L(\gamma)
$$

Some explicit formulas $z_{1,2} 26$
(*) $\cosh d_{H-1}\left(z_{1}, z_{2}\right)=1+\frac{\left|z_{1}-z_{2}\right|^{2}}{2 y_{1} y_{2}}$ $z_{1}, z_{2} \in D$
$\tanh \frac{1}{2} d_{D}\left(z_{1}, z_{2}\right)=\frac{\left|z_{1}-z_{2}\right|^{2}}{\left|1-z_{1} \bar{z}_{2}\right|}$
Rates:

1. Check that both sides of (x) are inerrant undu PSZ2R
u_{r} to sonetry, take $z_{1}=i a$

$$
z_{2}=i b
$$

and cheat (x).
2. Can equip SLR wiTh the matter roo. niduced by

$$
\begin{aligned}
& \|A\|^{2}=a^{2}+b^{2}+c^{2}+d^{2} \\
& A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2} \mathbb{R} \text {. } \\
& \text { Check: }\|A\|^{2}=2 \cosh d_{H}(i, A j) \\
& \text { Prep: }\left(H-d_{H}\right) \text { are complete } \\
& \text { mete space (and }\left(D, d_{D}\right)
\end{aligned}
$$

Roof: It miffices to pore this for $(D, d \infty)$
Let $\left(z_{n}\right) \subset \mathbb{D}$ Cauchy. ort d_{D}

Then $\left(z_{n}\right)$ abo laucly nit $d C$

$$
\begin{array}{ll}
& (\forall \varepsilon>0 \Rightarrow N>0 \text { ar } \\
& \forall m, n \neq N \\
\text { smes } & \left|z_{n}-z_{m}\right|<\varepsilon \\
\left|z_{n}-z_{m}\right| \leqslant & 2 \tanh \frac{1}{2} d_{D}\left(z_{m}, z_{n}\right)
\end{array}
$$

$$
\text { Hence } \mathrm{zn} \longrightarrow z_{\in \mathbb{D}} \text { wh } d \in
$$

Similaly, $z_{n} \rightarrow z$ wit d_{D} using the abere formila

Thin (Hopf-Rinow)
(M,g) couneded Piem. mfid. then the folloung are equvelent:

1. $\left(M, d_{M}\right)$ is a cauplete mehic ynace
2. M is geodericelly complete (i.e., every geodesic can be exterded ífunitely)
3. Closed bomded mbeh of M are conpaet.

Ruchtions groups
def: $\Gamma<S L_{2} \mathbb{R}$ is Fuchsion if it is didvere urt the induced matux topology $\binom{\longleftrightarrow \forall c>0 \quad\{\gamma \in \Gamma:\|\gamma\|<c\}}{$ is at nort funte }

Fuchsicun grps. are naved after Fuchs. Poincavé was shidying has work on certain second arder limeer $D E$, and cane to the folloung
fask: Find $F: H \rightarrow C$
holomorphic and Γ-inveriant for sore $\Gamma<8 l_{2} R$ actirg on Al by Mölans transform.

Factsheet of equivalent characterizations in this context:

1. F is Fuchrian
2. [D Ht has diderete orbits : no arbit Tz has accumulation p^{t}. in H
3. ToH is mopery discont: $\forall K \subset A-1$ compact

$$
k \cap \gamma K=\phi
$$

excert for at noدt fin- many $\gamma \in \Gamma$
4. Γ D H is wandenng: $\forall z \in H \quad \exists U$ nohd of z s.t.
$u \cap \gamma u \neq \phi \Rightarrow \gamma \in \operatorname{stab} \boldsymbol{\neq}(z)$ and stabr (z) is finite
w reshict to actions with shavete orbits.

If $T z$ has an acc. pt, then there is a nohd-contarining co many $w \in T z$
On each one, $f(w)=F(z)$
If F is holo $\Rightarrow F \equiv F(z)$
Constant

Prep: X is a Hausderft, loo. copt. space, $\Gamma \curvearrowright X$ pop.didcont Then TVX is taus dorty. If the action is moreover free, then
 $(\gamma x=x \Rightarrow \gamma=e)$ is a covering projection.
covering profechen
$p \underset{y}{x} \frac{\text { covens porojechou }}{\text { if } p \text { cont., sur. }}$
and for each $y \in Y, \exists a$ note u of y set.

Proof: cert $x \in X$. Since
Tox freely A prop-dix.,
there is a unbid $u \rightarrow x$
that is disjorit from any other pt. in $T x$
Hence, given the projected map $p: X \rightarrow \sigma \lambda X$

$$
u \approx p(u)
$$

Excmph :

f is a deck transformation if $f \in$ Homeo (X) and pof $=p$ and the ret of all deck transformation of a group. D
If X is connected, then $D \gg$ prop discount,
If X is simply corrected, then $D \cong \bar{n}_{1}(Y, y)$
and

$$
\left.V=\pi_{1}\left(Y_{1, y}\right)\right\rangle X
$$

$\begin{array}{ll}\text { Example: ore disc. } A \text { free } \\ \mathbb{R}^{2} & \mathbb{R}^{2} \\ \pi^{2} & \left.\pi^{2}=\mathbb{R}^{2}\right)=\mathbb{R}^{2} / \mathbb{R}^{2}\end{array}$

Gren $\Gamma \wedge A^{\prime}$ free + nop-ohse, one can transpust the smooth/Rriemamian / hyperbolic struchre of Al to $T \backslash A \mid$ (p is a local isometry) $M=\Gamma|A|$ is a C^{∞} sunface t a hygurbolic suface
Actially: all hyperbolie smfaces arise this way
M hge omface admith a unvezal loner

$$
\begin{aligned}
& \tilde{M} \\
& t \\
& \left.M=\pi_{1}(M)\right\rangle \tilde{M} \\
& \pi_{1}(M) \text { ® } \tilde{n} \text { dy ison. }
\end{aligned}
$$

Horf:
ur to isonetry and "glokal sescaling", the anly $C^{c o}$ complete smiply connected sanfaces of constart curratione are

$$
\begin{array}{ll}
\mathbb{R}^{2} & (K=0) \\
\mathbb{S}^{2} & (K=1) \\
H^{2} & (K=-1)
\end{array}
$$

