

There is a bijection blue.

$$\begin{cases} F - orbits of \\ ettiptic fixed \\ on f (H) \\ f roubits of T \\ ettiptic fixed \\ f and \\ ettiptic fixed \\ ettiptic fixed \\ f and \\ ettiptic \\ probits of T \\ ettiptic fixed \\ f and \\ ettiptic \\ ettiptic \\ probits of T \\ ettiptic \\ ettip$$

We show that any closed
geodesic is obtained in Mus
may. Choose a lift
$$\tilde{\mathcal{S}}$$
 of
this geodesic in H . This
is a hyperbolic line.
 $G = PSL_2R$
 $Stab_G(\tilde{\mathcal{S}}) = ige G:$
 $g(\tilde{\mathcal{S}}) = \tilde{\mathcal{S}}g(\tilde{\mathcal{S}}) = \tilde{\mathcal{S}}g(\tilde{\mathcal{S}})$

Let
$$\Im \in \Gamma$$
 be its generator:
Staby $(\Im) = \langle \Im \rangle$
Note: \Im is hyperbolic (conjugate
to a diagonal element)
What happens if we choose
a different lift \Im ?
Then \Im can be witten
as $\Im \Im$ for some $\Im \in \Gamma$;
so that
Stab_r $(\Im) = [\Im \in \Gamma: (\Im \Im \Im) = \Im$
 $= \langle \Im^{-1} \Im \Im \rangle$

魁

 \sim

Example: T=SLZZ All vertices $A(\infty) = |$ $T' = [\Gamma, \Gamma]$ the commutator at co A(-1) = Osubgroup of the moduler (meaning all group verties of $= \left\{ \left[\gamma_{1}, \gamma_{2} \right] = \left[\gamma_{1}, \gamma_{2}, \gamma_{1}, \gamma_{2} \right] = \left[\gamma_{1}, \gamma_{2}, \gamma_{1}, \gamma_{2} \right] \right\}$ the fund dom. Jon 241) is generated by are in the $A = \begin{pmatrix} 1 \\ 2 \end{pmatrix} = and \qquad B = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$ same Forbit Ex: show **A** Mus punchive is a cusp that this is a on ce fund. domai punctured torus for T 1. - 0 1

Second observation from these few examples: one can read the generators of T 0 ff the fundamental domain. Prop: Let F be a fundamental domain for T. Then $S = 1 \Im \in \Gamma : \Im F \cap F \neq \emptyset$ generates T Proof: Let ZEHT WO BRET ST. VZEF Suppose ZVZV in [s.t. V'z e F Then V'z e F n V'V'F #\$ $\Rightarrow \gamma \gamma' \epsilon \tau = \langle s \rangle$

So: $\Gamma^* \gamma' = \Gamma^* \gamma$ and we have a function $\Phi: \mathcal{H} \longrightarrow \Gamma^* \backslash \Gamma$ $z \mapsto \Gamma^* \gamma$ We want to show that De is constant. It is enough to check that Φ is loc. constant since His connected. Let K be a compact n/bhd. of zeAl. KCUS; Fmith ief Ifuike We can take K to be sufficiently small s.t. ZED: F for each i EI

let z'zz, z'eK =) z'e ØjF Example: C ls there a Fuchsian and for je I $\overline{\Phi}(z) = \Gamma^* \partial_j = \overline{\Phi}(z)$ AB group with this $\sum T = 1$ fundamental domain , $\alpha = \frac{\pi}{a} \qquad \beta = \frac{\pi}{b} \qquad \gamma = \frac{\pi}{c}$ with $25a, b, c < \infty$ Fuchsian groups that anse in this way are called triangle groups. Up to conjugation, each one can be seen as an element of Kmles: 1. There is a classical thim. SO(2) M $\mathcal{O}_{\mathcal{A}}$, $\mathcal{O}_{\mathcal{B}}$, $\mathcal{O}_{\mathcal{C}} \in PSL_{\mathcal{R}}$ of Poinceré (1880s) tor To AI to be properly that formulates under discontinuous, we need which conditions a «, ß, & of the form

Spectral problem for

$$\underline{M} = \Gamma \setminus H \quad compact$$

Find $\Psi: H \rightarrow \mathbb{C}$ that
satisfy $\Delta = -g^2 \left(\frac{d}{dx} + \frac{d}{dy^2}\right)^2$
 $\Delta \Psi = \lambda \Psi$
 $\Psi (\Im E) = \Psi (E) \quad \forall \Im E \Gamma$
 $\int_{M} |\Psi(E)|^2 d\mu(E) = \int |\Psi(E)|^2 \frac{dxdy}{y^2}$

Embs
Runks
 $H_2 \quad H_2 \quad H_2 = \int |\Psi(E)|^2 \frac{dxdy}{y^2}$
Embs
 $H_2 \quad H_2 \quad H_2 \quad H_2 = \int U(E) \int_{T} \frac{dxdy}{y^2}$
Embs
 $H_2 \quad H_2 \quad$

ø

Goad: Find a
complete ONB 24k Juzo
of
$$\Delta$$
-eigenfunctions
sit. any $f \in C^{\infty}(M)$ has a "spectral expansion"
 $f(z) = \sum_{k \ge 0} \langle f_{k} | \Psi_{k} \rangle \Psi_{k}(z)$