SCH connected ret is a fundowertal domain for the action of a Fuchsian gp. Γ on H if

* $H=\bigcup_{\gamma \in \Gamma} \gamma \bar{F}$
* $\gamma_{1} \frac{\circ}{f} \cap \gamma_{2} \stackrel{\circ}{f}=\phi$ except if $\gamma_{1}=\gamma_{2}$

Examples

$$
\begin{aligned}
& \Gamma=\left\langle k_{\theta}\right\rangle, \theta=\frac{\pi}{n} \quad i \quad,{ }^{\prime}, \theta \\
& \left.\Gamma=\left\langle n_{x}\right\rangle, x\right\rangle 0 \\
& n_{x}=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \\
& \Gamma=S L_{2} \mathbb{Z} \\
& \text { generated by } \\
& S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \text { and } \\
& T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad-1 / 2 \quad 1 / 2
\end{aligned}
$$

Observations

1. Recall that each $g \in P S C_{2} \mathbb{R}$ $(g \nsubseteq \pm I)$ is either elliptic/ perabolic/hyperbolic.
Each comes with specific geometric features

There is a bijection btw.

$$
\begin{aligned}
& \left\{\begin{array}{cc}
T \text {-orbits of } \\
\text { elliptic } \\
\text { fixed } \\
\text { points of } T
\end{array}\right\} \text { and }\left\{\begin{array}{l}
\text { conical } \\
\text { singularities } \\
\text { on } \Gamma \backslash H
\end{array}\right\} \\
& \left\{\begin{array}{c}
\text { roulit of } \\
\text { parabolic fixed } \\
p \text { p. of } \Gamma
\end{array}\right\} \text { and }\left\{\begin{array}{l}
\text { usps } \\
\text { on } \\
\Gamma \mid H M
\end{array}\right\}
\end{aligned}
$$

Cora:- $\backslash \backslash H$ is compact if and only if I contains no parabolic elements.
Prop: There is a bijection lota.

If $\gamma_{1}, \gamma_{2} \in \Gamma$ hyperbolic, them they are in the same r-conj. class if $\exists \gamma \in \Gamma \gamma_{1}=\gamma^{-1} \gamma_{2} \gamma$

Proof:
Let $\gamma \in r$ be a hyperbolic element wa γ has two fixed pts on ∂H

Recall: $\exists g \in P S L_{2} \mathbb{R}$
the unique geodesic that join these pts. is called the axis of γ

$\gamma(\mathbb{R})$ projected to sIM H is a closed geodenc

We shew that any closed geoderic is obtamed in this way. Choose a lift $\tilde{\gamma}$ of this geodes in H. This is a nypubolic line

$$
G=P \delta L_{2} \mathbb{R}
$$

$$
\operatorname{stab}_{G}(\tilde{\gamma})=\{g \in G:
$$

$$
g(\tilde{\gamma})=\tilde{\gamma}\}
$$

$$
\begin{aligned}
\Rightarrow \operatorname{stab}_{G}(\tilde{\gamma}) & \cong \mathbb{R} \begin{array}{r}
\text { eluatinzing } \\
\text { eliagonal are }
\end{array} \\
\operatorname{stab}_{\Gamma}(\tilde{\gamma}) & =\Gamma \cap \operatorname{stab}_{G}(\tilde{\gamma}) \\
& \cong \mathbb{Z}
\end{aligned}
$$

Let $\gamma \in T$ be its generator

$$
\operatorname{stab}(\tilde{\gamma})=\langle\gamma\rangle
$$

Note: γ is hyperbolic (conjugate to a diagonal element)
what happens if we choose a different lift $\hat{\gamma}$? Then $\hat{\gamma}$ can be mitten as $\gamma_{0} \tilde{\gamma}$ for some $\gamma_{0} \in \Gamma$, so that

$$
\begin{aligned}
\operatorname{Stab} \Gamma^{(\hat{\gamma})} & =\left\{\gamma \in \Gamma:\left(\gamma_{\theta}^{-1} \gamma \gamma_{0}\right) \tilde{\gamma}=\tilde{\gamma}\right\} \\
& =\left\langle\gamma_{0}^{-1} \gamma \gamma_{0}\right\rangle
\end{aligned}
$$

Example: $\quad \Gamma=S L_{2} \mathbb{Z}$
$T^{\prime}=[\Gamma, \Gamma]$ the commutator subgroup of the modeler group

$$
=\left\{\left[\gamma_{1}, \gamma_{2}\right]=\gamma_{1} \gamma_{2} \gamma_{1}^{-1} \gamma_{2}^{-1}: \gamma_{1}, \gamma_{2} \in \Gamma\right\}
$$

is generated by

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)_{\infty} \text { and } B=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)
$$

$$
\left.\begin{array}{l}
A(\infty)=1 \\
A(-1)=0 \\
B(\infty)=-1 \\
B(1)=0
\end{array}\right\} \begin{aligned}
& \text { All vertices } \\
& \text { at co } \\
& \text { (meaning all } \\
& \text { vertices of } \\
& \text { the fund. dom. } \\
& \text { on oH } 1) \\
& \text { are in the } \\
& \text { same Trorbit }
\end{aligned}
$$

Ex: Show that this is a fund. oncedomain punctured
this puncture is a cusp torus

Second observation from
these few examples: one can read the gewirators of r off the fundamental domain.
Prep: Let F be a fundamental domain for Γ. Then

$$
S=\{\gamma \in \Gamma: \quad \gamma \bar{F} \cap \bar{F} \neq \phi\}
$$

generates T
Proof:
Let $z \in H$ w $\exists \gamma \in T$ sit. $\gamma_{z} \in \bar{F}$ Suppose $\exists \gamma^{\prime} \neq \gamma$ in T sat. $\gamma_{z}^{\prime} \in \bar{F}$

$$
\Rightarrow \gamma^{\prime} \gamma^{-1} \epsilon \Gamma^{*}=\langle S\rangle
$$

So: $\Gamma^{*} \gamma^{\prime}=\Gamma^{*} \gamma$ and we have a function

$$
\Phi: H \longrightarrow \Gamma^{*} \backslash \Gamma
$$

$$
z \longmapsto \Gamma^{*} \gamma
$$

We want to show that Φ is constant. It is enough to check that Φ is foe. constant since H is connected.
Let K be a compact nlond. of $z \in H$.

$$
K \subset \bigcup_{i \in I} \gamma_{i} \bar{F}_{I} \text { with }
$$

We can take K to be sufficiently small s.t. $z \in \gamma_{i} \bar{F}$ for each $\hat{i} \in I$

Example:

Is there a Fuchsian group with this fundervental domain?

$$
\begin{aligned}
& \alpha=\frac{\pi}{a} \quad \beta=\frac{\pi}{b}, \gamma=\frac{\pi}{c} \\
& \text { with } \alpha \leqslant a, b, c \leqslant \infty
\end{aligned}
$$

fuchsian groups that arse in this way are called triangle groups
Rumbles:

1. There is a classical them. of Poinceré (188 Os) that formulates under which condihous a
fundamental domain with a prescribed side pairing gives rise to a fuchioian group
2. $\mathrm{SL}_{2} \mathbb{Z}$ is a triangle group, but most triangle groups are not arithmetic. In fact, there is a classification theorem of Taheuchi (1977) that tells ks that up to conjugacy there are only finitely many arithmetic triangle groups

Spectral problem for $M=\Gamma \backslash H \mid$ compact

Find $\varphi: H \rightarrow \mathbb{C}$ that sakis fy $\Delta=-y^{2}\left(\frac{d^{2}}{d x^{2}}+\frac{d^{2}}{d y^{2}}\right)$ $\Delta \varphi=\lambda \varphi$

$$
\varphi\left(\gamma_{z}\right)=\varphi(z) \quad \forall \gamma_{\epsilon} \Gamma
$$

$$
\begin{aligned}
\int_{M}|\varphi(z)|^{2} d \mu(z)= & \int_{F}|\varphi(z)|^{2} \frac{d x d y}{y^{2}} \\
& \hat{L} \text { a fundam. } \\
& \text { domain for }
\end{aligned}
$$

- Ply the elliptic T regularity theorem, any eigenft. of Δ is automatically smooth. \rightarrow adits a countable

Goal: Find a $\mid L^{2}(M)$ is a L separable complete ONB $\left\{\varphi_{k}\right\}_{k \geqslant d}$ Hilbert space writ $\left\langle f_{2} g\right\rangle=\int_{M} f(z) \overline{g(z)} d, d$ of Δ-eigenfunctious
sit. any $f \in C^{\infty}(M)$ has a "spectral expansion"

$$
f(z)=\sum_{k \geqslant 0}\left\langle f_{1} \varphi_{k}\right\rangle \varphi_{k}(z)
$$

Difficulties:

- No explicit colutions to the spectral problem
- Δ is an unbounded operator

