spectral spectral theory of A zwa Certain Selberg's insight on L²(M) Hilbert-Schwidt operators M compact hypebolic ourface Plan: · Review of integral operators · Selberg's point-part inveriants • spherical functions (maybe) An integral operator is a linear operator of the following form: X loc. cpst. space with a pos- Borel measure $T_{K}: \mathcal{L}(X) \longrightarrow \mathcal{L}(X)$ $T_{K}f(x) = \int K(x,y) f(y) dy$

K is called a hernel, KEL (XXX) Rmles; • $1 \frac{1}{2} \frac{1}{2}$ C L²-norm • Set $K^{*}(x,y) = K(y,x)$ Then $\langle T_k f, g \rangle = \langle f, T_k * g \rangle$ for any figel (X) def: At separable Hilbert space Let reijizi be an ONB for A The Hilbert-Schmidt norm of a linear operator T:H->H $\|T\|_{HS}^{2} := \sum_{i \neq i} \|Te_{i}\|_{H}^{2}$ $\frac{Rmls_{i}}{i \neq i}$

A linear operator T with 11 Thinks < 00 is called a Hilbert-Schmidt operator. Thm: (Hilbert - Schnidt) Every HS operator is compact (i.e. every bodd set is mapped nto a compact set). Thm: (Spectral thm. for compact operators) A a separable Hilbert space, T: H-> H (mear compact) sulf-adjout or normal operator. Then I a complete ONB 24, 3, 3, 21 of A composed of T-eigenvectos $\mathcal{T} \mathcal{P}_{j} = \lambda_{j} \mathcal{P}_{j}$ and $\lambda_j \longrightarrow O$

· def, is indep. of droite ? e; } · Extends usual def. of trobentus • $\|T_{K}\|_{HS} = \|K\|_{L^{2}}$ Last statement says that each lignopace El is finite-dimensional Proof of Hus last statement Suppose 3 a morequerce / 4;3 $uxith T(f) = \lambda_j \varphi_j$ s.t. 12/128. A separable - > K < H compact iff seg. compact. Hence T compact implies that since { 4; 3 are bounded, there is a subseq. (This) that converges $\left\| T \varphi_j - T \varphi_k \right\|^2 = \left\| \left(\lambda_j \varphi_j - \lambda_k \varphi_k \right) \right\|^2$

$$\frac{def}{def} \stackrel{(A)}{\to} point-pair invariant is$$
a function $k: H \times H \longrightarrow C$

s-t. $k(g_{2i}g_{W}) = k(z_{iW})$

 $\forall z_{iW} \in H, g \in Ison(H)$

In particular, k depends only

of $d_{H}(z_{iW})$. We obtain a

point-pair invariant as

 $k(z_{iW}) := k(d_{H}(z_{iW}))$

with k "mice".

For the moment,

mice" = $k: R \rightarrow R$ C_{c}^{∞} , even

 $k(x) = k(x)$

 $T_{k}: L^{2}(M) \rightarrow L^{2}(H)$

 $T_{k} f(z) = \int_{H} k(z_{iW}) f(w) d\mu(w)$

=
$$|\lambda_j|^2 + |\lambda_u|^2 > 2\varepsilon^2$$

 λ_{ms} shat ℓ_j are orthonormal
 τ_{ms} is a contradiction (5)

Again:
$$\|T_k f\| \leq \|k\|_2 \|f\|_2$$

 $k^*(x,y) = k(y,x) = k(x,y)$
Rmk: M k is complex -valued,
tuen T_k is normal.
 M k is real-valued, then T_k
is selfadjoint.
 M we have a spectral them.
for T_k

def: automorphie kenel let k be a "nice" point-pair invariant. Set $K(z,w) = \sum_{\gamma \in \Gamma} k(z, \forall w)$ with I Fuchson group. beaving convergence issues assèle for the moment, remark: K bi - - invariant $K(\mathcal{X}_{2},\mathcal{Y}_{2},\mathcal{W}) = K(\mathcal{Z}_{1},\mathcal{W}) \quad \forall \mathcal{Y}_{1},\mathcal{Y}_{2}\in\Gamma$ (we have d_H(Z, Sw) = d_H((2, w)) • K is symmetric: K(z,w) = K(w,z)• $T_k f(z) = \int K(z_1w) f(w) d\mu lw$ $M = \Gamma I H$ with fidom. F

if KEC(M×M), then Tk is compact and self adjoint. • $T_{K}f(z) = \int_{F} K(z_{1}w)f(w)d\mu(w)$ $= \int_{F} \sum_{V \in \Gamma} k(d(z, Vw)) f(w) d\mu(w)$ $= \int k(z,w) f(w) d(w)$ $= T_k f(z)$ "folding/unfolding"

The
$$\exists$$
 an ONB $[\forall f_i]_{j \geq 0}$ in
 $L^2(M) \circ f$ eigenfunctions of Δ .
When M is a compact hyperbolic
 $\exists ref :$ come hack to the question
of convergence for
 $k(z,w) = \sum_{k \in C_{c}} k(z, \forall w)$.
Recall: we are assuming that
 k is a mice point-pair inversant
 $k(z,w) = k(d(z,w))$
 $k(z,w) = k(d(z,w))$
 $k(z,w) = k(d(z,w))$
 $k(z,w) = k(d(z,w))$
 $k(z,w) = k(d(z,w))$

R.

·η

$$\sum_{d \in \Gamma} k(z, \Im w) = \sum_{m \in \mathbb{Z}} k(z, w+m) = \sum_{m \in \mathbb{Z}} U\left(\frac{(x-u-m)}{2y^{v}} + \frac{y}{2v} + \frac{y}{2y}\right)$$

$$F SL_2 \mathbb{Z} \supset \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = Stab_{\Gamma}(\omega)$$

$$\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} = Z + n$$

$$\mathcal{U}(m) = \mathcal{U}((\cosh(d(z_1w)))) = k(z_1w)$$

$$\mathcal{U}(m) = \mathcal{U}(what's above)$$

$$\mathcal{U}(m) = \mathcal{U}(m) = \mathcal{U}(m)$$

$$\mathcal{U}(m) = \mathcal{U}(m) = \mathcal{U}(m)$$

$$\mathcal{U}(m) = \mathcal{U}(m)$$

$$\mathcal{U$$

Thm: I an ONB {\{Y_i\}_{j>0}} in
L²(M) of eigenfunctions of Δ.
when M is a compact hyperbolic
surface.
Proof: Set

$$\Sigma = 2$$
 orthonormal subsets of L²(M)
composed of Δ-eigenfunctions J
ordered by Inclusion.
Born's lemma: I SE Σ max.
Set V = span(S) C L²(M)
subspace
et T_k be an invariant integral
operador for a nice point-pair
inventent k.
We know that T_k Δ = Δ T_k

In particular, V is both
minimum under
$$\Delta$$
 and
 T_{K} , and the same must
be true of V¹ (the
orthogonal complement).
We want to show that
 $V^{+} = 103$.
Since V¹ is Trioremant,
the restriction of T_{K} to
 V^{\perp} is again a linear
compact selfadjoint operator.
By the spectral thum,
 Θ where Δ is self-adjoint.
There exist and self-adjoint.
The short the them applies

 $V^{\perp} = \bigoplus E_{\lambda}$ where Es are finite-dim. ersenspaces