Selberg's insight
spectral spectral theory of Δ ecus theory of on $L^{2}(M)$
M compact hyperbolic surface
Plan

- Review of integral operators
- Selberg's point-parir invariants
- spherical functíaus (maybe)

An integral operator is a linear operator of the following form

X loci. opt. space with a pos. Bored measure

$$
\begin{aligned}
& T_{K}: L^{2}(x) \longrightarrow L^{2}(x) \\
& T_{K} f(x)=\int_{x} K(x, y) f(y) d y
\end{aligned}
$$

K is called a kernel,

$$
K \in L^{2}(X \times X)
$$

Romes:

- $\left\|T_{K} f\right\|_{2} \leqslant\|K\|_{2}\|f\|_{2}$

$$
\hat{c} l^{2} \text {-norm }
$$

- Set $K^{*}(x, y)=\overline{K(y, x)}$

Then $\left\langle T_{k} f, g\right\rangle=\left\langle f_{1} T_{k^{*}} g\right\rangle$
for any fig $\in l^{2}(X)$
def: H separable Hilbert space Let $\left\{e_{i}\right\}_{i \geqslant 1}$ be an ONB for \mathcal{H} The Hibsent-Schmidt norm of a linear operator $T: \mathcal{H} \rightarrow \mathcal{H}$

$$
\|T\|_{H S}^{2}:=\sum_{i \geqslant 1}\left\|T e_{i}\right\|_{H}^{2}
$$

Roes:

A linear operator T with
$\| T H_{H S}<\infty$ is called a Hilbent-Schmidt operator
Thu (Hilbert - Schmidt)
Every HS operator is compact (ie. ever bold set is mapped into a compact set).
The: (spectral the. for compact operators)
H a separable Hilbert space,
$T: H \rightarrow F$ linear compact sulf-adjoüt or normal operator. Then \exists a complete $O N B\left\{\varphi_{j}\right\}_{j \geqslant 1}$ of H composed of T-eigenvector

$$
T \varphi_{j}=\lambda_{j} \varphi_{j}
$$

and $\lambda_{j} \xrightarrow[j \rightarrow \infty]{ } 0$

- def. is indep. of chore $\left\{e_{i}\right\}$
- Extends usual def. of Frobemis norm
$-\left\|T_{K}\right\|_{H S}=\|K\| L^{2}$
Last statement says that each ergenspace E_{λ} is frite-chimentional $\frac{\text { Proof of this last statement }}{\text { suppose } \exists \text { a mbrequerce }\left\{\varphi_{j}\right\}}$ saith $T \varphi_{j}=\lambda_{j} \varphi_{j}$. sit. $\left|\lambda_{j}\right|>\varepsilon$
H separable $\rightarrow K \subset H$ compact if seq, compact.
Hence T compact implies that since $\left\{\varphi_{j}\right\}$ are bounded, there is a subseq. (TY \quad) that converges.

$$
\left\|T \varphi_{j}-T \varphi_{k}\right\|^{2}=\left\|\lambda_{j} \varphi_{j}-\lambda_{k} \varphi_{u}\right\|^{2}
$$

def: A point-pair inveriant is a function $k: H \times H \longrightarrow \mathbb{C}$

$$
\text { sit. } \begin{aligned}
& k(g z, g w)=k(z, w) \\
& \forall z, w \in H, g \in \operatorname{Iom}(H)
\end{aligned}
$$

In particular, k depreneb only of $d_{H-1}(z, w)$. We obtain a point-pair inveriant as

$$
k(z, w):=k\left(d_{H}(z, w)\right)
$$

with k "nice".
For the moment,
"nice" $=k: \mathbb{R} \rightarrow \mathbb{R} C_{c}^{\infty}$, even $k(x)=k(-x)$

$$
\begin{aligned}
T_{k}: L^{2}(M) & \rightarrow L^{2}(H) \\
T_{k} f(z) & =\int_{H} k(z, w) f(w) d \mu(w)
\end{aligned}
$$

$=\left|\lambda_{j}\right|^{2}+\left|\lambda_{u}\right|^{2}>2 \varepsilon^{2}$
$\hat{\text { untrs}}$ shat $\varphi_{\hat{j}}$ are ortheromel This is a contradict a

Again: $\left\|T_{k} f\right\|_{2} \leqslant\|k\|_{2}\|f\|_{2}$

$$
k^{*}(x, y)=\overline{k(y, x)}=k(x, y)
$$

Rok: if k is complex-valued, then T_{k} is normal If k is real-valued, then $T_{l e}$ is selfadjourt.
\leadsto we have a spectral them. for T_{k}
def: automorphic kemel
Let k be a "wince" point-pair invariant. Set

$$
K(z, w)=\sum_{\gamma_{\in \Gamma}} k\left(z, \gamma_{w}\right)
$$

with I Fuchsin group
Leaung convergence issues aside for the moment, remark:

- K bi-T-invariaut

$$
K\left(\gamma_{1}, z, \gamma_{2} w\right)=K(z, w) \quad \forall \gamma_{1}, \gamma_{2} \in \Gamma
$$

(we hare $d_{H-1}\left(z, \gamma_{w}\right)=d_{H 1}\left(\gamma^{-1}, w\right)$)

- K is symmetric:

$$
\begin{gathered}
K(z, w)=K(w, z) \\
\left.T_{K} f(z)=\int_{M=\Gamma \mid H \text { with f:dom. } F} K(z, w) f(w) d \mu \mid w\right)
\end{gathered}
$$

if $K \in l^{2}(M \times M)$, then
T_{k} is compact and self adjoint.

- $T_{K} f(z)=\int_{F} K(z, w) f(w) d \mu(w)$

$$
=\int_{F} \sum_{\gamma \in \Gamma} k(d(z, \gamma w)) f(w) d \mu(w)
$$

$\stackrel{\text { ahem }}{=} \sum_{\gamma \in \Gamma} \int_{\gamma F} k(d(z, w)) f\left(\gamma_{w}^{-1}\right) d_{\mu}\left(\gamma_{w}^{-1}\right)$
$f(w) d \mu(w)$
$=\int_{H-1} k(z, w) f(w) d \mu(w)$
$=T_{k} f(z)$
"folohing/unfolding"
pop: $\Delta=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$

$$
\Delta T_{k}=T_{k} \Delta
$$

Remark: This miples $\Delta T_{K}=T_{K} \Delta$

$$
=\int_{\mathbb{H}-1} \Delta_{w} k(z, w) f(w) d_{\mu}(w)
$$

This amounts to check that

$$
\Delta_{z} k(z, w)=\Delta_{w} k(z, w)
$$

If we fix $w \in \mathbb{A}$, then we can think of $k(z, w)$ as a function that is radially symmetric about w.

Recant:

$$
\begin{aligned}
& \cosh d(z, w) \\
& \begin{array}{l}
z=x+i y \\
w=u+i v
\end{array} \\
& w+\frac{|z-w|^{2}}{2 y v} \\
& 2 t
\end{aligned}
$$

\triangle in polar coorchnetes

$$
\Delta=\frac{(x, y) \sim(r, \theta)}{\partial r^{2}}+\frac{1}{\tanh (r)} \frac{\partial}{\partial r}+\frac{1}{(2 \sinh r)^{2}} \frac{\partial}{\partial \theta}
$$

in polar coordinate about we we have

$$
\begin{aligned}
& \begin{aligned}
& \Delta=t(t+1) \frac{\partial^{2}}{\partial t^{2}}+(2 t+1) \frac{\partial}{\partial t} \\
&+\frac{1}{16 t(t+1)} \frac{\partial^{2}}{\partial \theta^{2}} \\
& \Delta_{z} k(z, w) \\
&= \Delta k(t)=t(t+1) k^{\prime \prime}(t) \\
&+(2 t+1) k^{\prime}(t)=\Delta_{w} k(z, w)
\end{aligned}
\end{aligned}
$$

The: \exists an $O N B\left\{\varphi_{j} j_{j \geqslant 0}\right.$ in $L^{2}(M)$ of eigenfunction of Δ. when M is a compact hypenvolic surface.

Let's come hack to the question of Convergence for

$$
k(z, w)=\sum_{\gamma G \Gamma} k(z, \gamma w)
$$

Recall: we are assuming that k is a nice point-pair invariant
$\rightarrow \quad k \in C_{c}^{\infty}(\mathbb{R})$ even

$$
k(z, w)=k(d(z, w))
$$

$$
\Gamma=S L_{2} \mathbb{Z}
$$

$$
\underbrace{\sum_{\gamma \in \Gamma} k\left(z, \gamma_{w}\right)}_{\substack{z=x+i y \\ w=u+i v}}
$$

$$
\begin{aligned}
& \begin{array}{l}
\cosh (d(z, w))=1+\frac{|z-w|^{2}}{2 y v} \\
=\frac{(x-u)^{2}}{2 y v}+\underbrace{\frac{y}{2 v}+\frac{v}{2 y}}_{\text {in } 5 \text { if } y=v}
\end{array} \\
& \text { if both } z, w \rightarrow \infty \rightarrow 0 \text { in }
\end{aligned}
$$ roughly the same pace, then $d(z, w)$ stang very small, and within the support of k.

$$
\begin{aligned}
& \sum_{\gamma_{\in} \Gamma} k\left(z, \gamma_{w}\right) \geqslant \sum_{m \in \mathbb{Z}} k(z, w+m)=\sum_{m \in \mathbb{Z}} U\left(\frac{(x-u-m)^{2}}{2 y^{2}}+\frac{y}{2 v}+\frac{v}{2 y}\right) \\
& \Gamma=S L_{2} \mathbb{Q} \supset\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)=\operatorname{stab}_{\Gamma}(\infty) \\
& \left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right) \cdot z=z+n \\
& \text { Poison } \quad U(m)=U \text { (what's above) } \\
& \underset{\text { summainen }}{=} \sum_{m \in \mathbb{Z}} \hat{U}(m) \stackrel{\text { exercise }}{=} \hat{X}(0)+O\left((y v)^{-N}\right) \quad \forall N>1
\end{aligned}
$$

and $\hat{u}(0) \sim \sqrt{y v}$ for

$$
\frac{1}{C} v \leqslant y \leqslant C v
$$

Morn : If M is compact,
this issue does not arise and

$$
K(z, w)=\sum_{\gamma_{\in} \Gamma} k\left(z, \gamma_{n}\right) \text { is in } L^{2}(M \times M)
$$

The: \exists an $O N B, \varphi_{j} j_{j \geqslant 0}$ in $L^{2}(M)$ of eigenfunction s of \triangle when M is a compact hypenvalic surface

Proof: set
$\sum=$ \{arthonormal mbsets of $L^{2}(M)$ composed of Δ-eigenfunction $\}$ ordered by inclusion.
zorn's lemma: $\exists S \in \sum \max$
Set $V=\overline{\operatorname{span}(S)} \subset \underset{\operatorname{sinspace}}{C L^{2}(M)}$
Let Th be an invariant integral operator for a nice pourt-pair invondent k.

We know that $T_{k} \Delta=\Delta T_{k}$

Δ is well def	In particular, V is both
on $C^{\infty}(M)$	mranant under Δ and
(dense isp.	
of $L^{2}(M)$)	TK, and the same must

We want to shew that

$$
V^{+}=\{0\}
$$

Since V^{-}is T_{k}-iorrerant, the restriction of T_{k} to V^{\perp} is again a linear compact selfadjoint operator By the spectral thin,
(大). - where Δ is self-adjont.
There exit a selfadj. extension of Δ to $L^{2}(M)$.
This is whet the thu- applies
to
$V^{\perp}=\Theta E_{\lambda}$ where
E_{λ} are finite-dim. eigendpaces
of T.

