Point-pair invanaut
$k: H \times H \rightarrow \mathbb{C}, k(g z, g w)=k(z, w)$ for all $g \in \operatorname{bom}(H-1)$
$M=\Gamma \backslash H$ COMPACT hyperbolic surface $K(z, w)=\sum_{\gamma \in \Gamma} k\left(z, \gamma_{\omega}\right)$ conv absolutely if $k \in \mathcal{C}^{\infty}$. Horcover - si- Γ-mivalia
$T_{k}: L^{2}(M) \longrightarrow L^{2}(M)$ given by

$$
T_{k} f(z)=\int_{F} k(z, w) f(w) d \mu(w) .
$$

is

- self-adjoint $\left(i f k^{*}=k\right)+$ compact
- $T_{k} \Delta=\Delta T_{k}$

Spectral thim. for compact operators: H sepanable tilbent opace,
$T: H \rightarrow H$ lnear relfadiout compact, Then \exists a complete $O N B \quad\left\{\varphi_{k}\right\}_{k r o}$ s.t. $T \varphi_{k}=\lambda_{k} \varphi_{k}$ with $\lambda_{k} \xrightarrow{k \rightarrow \infty} 0$

Thm (A) M cpt. hyp sinface. Э a complete ONB $\left\{\varphi_{k}\right\}_{k} \geqslant 0$ in $L^{2}(M)$ compored of Δ-eigenfunctions.
def: A sum. space is a connected Riemaunian mfid. for which geoderic invessor at any point is a global isometry.
Rume: Syrumetic spaces of covestant curathre are $\mathbb{R}^{n}, \mathbb{S}^{n}, H^{n}$

Poof of (*): we are left to prove that
Claim: If H is a reparable Hilbert mace, $T: H \rightarrow H$ compact, selfoadjont, and commutes with D, then M contains a rector that is an eigenvector of both operators. if of claim:
Dry the spectral then for cpr. operators,

$$
\Lambda t=\Theta E_{\lambda}
$$

with $E_{\lambda} T$-eigenspaces that are finite dimensional.
Each E_{λ} is imvenant under both T and \triangle :

$$
\begin{aligned}
& v \in E_{\lambda} \Rightarrow T v=T\left(\sum a_{i} v_{i}\right) \\
& =\lambda \sum a_{i} v_{i} \in E_{\lambda} \quad T_{- \text {elgar }} \\
& \lambda \Delta v=\lambda \Delta\left(\sum a_{i} v_{i}\right) \\
& =\lambda \sum a_{i} \Delta v_{i} \\
& =\sum a_{i} \Delta T v_{i} \\
& =\sum a_{i} T \Delta v_{i}=T \Delta v \\
& \\
& \Rightarrow \Delta v \in E_{\lambda} .
\end{aligned}
$$

The restriction of Δ to E_{λ} is well defied. A linear operator on a finite chmericial linear space has a montero eigenvector.
$k(z, w)$, a poil-par mrarant, with $w \in M$ fixed, then $z \mapsto k(z, w)$ is radially symmetric about w. mfact, the shidy of poirt-pair mrarant comcides with the stindy of radial functions on H.
Radializing (symmeboing
$f: H-\mathbb{C}$, about WE H
Let's assurne first $w=i$

$$
\left.\begin{array}{c}
f_{i}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(k_{\theta} z\right) d \theta \\
K=\left(k_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right): \theta \in R / 2 \pi \alpha\right) \\
=\operatorname{stab}_{G}(i) \quad G=P S L_{2} \mathbb{R}
\end{array}\right)
$$

Obocre:
$\forall k \in K$, $f_{i}(k z)=f_{i}(z)$

$$
f_{i}(i)=f(i)
$$

More generally, $w=g \cdot i$ for some $g \in P S L_{2} \mathbb{R}$.

$$
\begin{aligned}
& \delta_{G}(w)=\{h \in G: h \cdot w=w\} \\
& g^{-1} h g \cdot i=i \\
&=g K g^{-1} \\
& f_{w}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(g k_{\theta} g^{-1} z\right) d \Theta
\end{aligned}
$$

Agañ:

- fw is KKg^{-1}-invenent - $f_{w}(w)=f(w)$
def: $f: H \rightarrow \mathbb{C}$ spherical if it is radial about $w \in H H$ and an eigenfuetron of Δ

Prop: The space of spherical functions about point weI and eigenvalue λ of Δ is 1 -dimensional.

In fact, $\exists!\omega_{\lambda}(z ; w)$ sit.

$$
\begin{aligned}
& \Delta_{z} \omega_{\lambda}(z ; w)=\lambda \omega_{\lambda}(z ; w) \\
& \omega_{\lambda}(w ; w)=1
\end{aligned}
$$

conclude that $b=0$ and $a=f(w)$.

Proof sketch:-
Let f be a spherien $f t$. in our space; $\Delta f=\lambda f$. expressed in polar coosdinates about w :

$$
\begin{aligned}
\cosh (d(z, w))= & 1+2 u \\
(\Delta-\lambda) f(u)= & u(u+1) f^{\prime \prime}(u) \\
& +(2 u+1) f^{\prime}(u)-\lambda f(n)=0
\end{aligned}
$$

\leadsto has 2 linearly independent (expluar) solutions $F_{\lambda}(a), G_{\lambda}(n)$
Fact: As $u \rightarrow 0 \quad\binom{$ (correspends }{$z \rightarrow w}$ then $F_{\lambda}(n) \rightarrow 1$

$$
\begin{gathered}
G_{\lambda}(u) \rightarrow \infty \\
f(n)=a F_{\lambda}(n)+b G_{\lambda}(n)
\end{gathered}
$$

since $f(0)=f(w)$, we

Thu: $f: \mathbb{H} \rightarrow \mathbb{C} \quad \Delta f=\lambda f$, k "nice" point-pair invariant, then $T_{k} f(z)=\hat{k}(\lambda) f(z)$ win

$$
\hat{k}(\lambda)=\int_{H-1} k\left(z_{0}, w\right) \omega_{\lambda}\left(w ; z_{0}\right) d \psi \mu(w)
$$

(independent of z_{0}). called the
Proof
We racialize f about $z_{0} \in H$. ie. we replace f by $f_{z_{0}}$
observe $\Delta f_{z_{0}}=\lambda f_{z_{0}}$.
By preceding proposition,

$$
f_{z_{0}}(z)=a \cdot \omega_{\lambda}\left(z ; z_{0}\right)
$$

Using $f_{z_{0}}\left(z_{0}\right)=f\left(z_{0}\right)=a \cdot \omega_{\lambda}\left(z_{0} ; z_{0}\right)$

$$
=T_{k} f(z)
$$

$$
\begin{aligned}
& \Rightarrow T_{k} f(z)=\int_{H-1} k(z, w) \underbrace{f_{z}(w)}_{z} d \mu(w) \\
& \quad=\underbrace{f(z) \omega_{\lambda}(w ; z)}_{H} \\
& \text { depend on z check that this doe i not } \\
& \int_{\|}(w ; z) d \mu(w) \\
& f(z)
\end{aligned}
$$

$$
\begin{aligned}
& \left.T_{k} f_{z}(z)=\int_{A-12 \pi} k(z, w) f_{z}(w) d \mu \mid w\right) \\
& =\int_{\mid H 1}^{1} k(z, \omega) \frac{1}{2 \pi} \int_{9} f\left(g k_{A} g^{-1} w\right) d \theta d u(w) \\
& \left.=\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{H} k\left(z, g^{-1} k \cdot \theta w\right) f(w) d n / n\right) d \theta \\
& k(\underbrace{g k_{\theta} g^{-t}}_{\in \operatorname{stab}(z)} z, w)=k(z, w)
\end{aligned}
$$

Question: If we know that

$$
T_{k} f=\mu f \text {, can we }
$$ recover what k is?

Rome: For each eigenvalue λ of \triangle, we wite

$$
\lambda=s(1-s)=\frac{1}{4}+r^{2} \quad(r \in \mathbb{C}) .
$$

We min often mite

$$
\hat{k}(r)=\hat{k}(\lambda)
$$

goop

$$
\begin{aligned}
& \text { gop: } \hat{k}(r)=\int_{-\infty}^{\infty} g(u) e^{i r u} d u \\
& g(u)=\sqrt{2} \int_{|u|}^{\infty} \frac{k(t) \sinh (t)}{\sqrt{\cosh t-\cosh u}} d t \\
& k(t)=-\frac{1}{\pi \sqrt{2}} \int_{t \sqrt{\cosh u-\cosh t}}^{\infty} \frac{g^{\prime}(u) d u}{\infty}
\end{aligned}
$$

(wo moot).
Application: solung the heat equation on M
We want to find

$$
u: M \times \mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}
$$

sit.

$$
\begin{aligned}
& \left(\frac{\partial}{\partial t}+\Delta\right) u(z, t)=\bigcirc \\
& u(z, 0)=f(z)
\end{aligned}
$$

for sene $f: M \rightarrow R$ continues

We will try to find a solution of the form

$$
u: H \times \mathbb{R}_{200} \rightarrow \mathbb{R}
$$

we mil directly assure
that $\Delta f=\lambda f$.
By previous theorem

$$
u(z, t)=\hat{p}_{t}(\lambda) f(z)
$$

If u is a solution of (HE)
then $\frac{\partial u}{\partial t}=\frac{\partial \hat{p}_{t}}{\partial t}: f$
$=-\Delta u=-\hat{p}_{t} \cdot \Delta f$
$=-\hat{p}_{t} \cdot \lambda \cdot f$
$\leadsto \frac{\partial \hat{p}_{t}}{\partial t}=-\lambda \cdot \hat{p}_{t}$ $\sim \hat{p}_{t}(\lambda)=C \cdot e^{-\lambda t}$

$$
\begin{aligned}
u(z, t)= & \int_{H t} \underbrace{p_{t}(z, w)}_{\text {with her a mice (?) }} f(w) d \mu(w) \\
& \text { point pair invariant }
\end{aligned}
$$

Using new the initial condition

$$
\begin{aligned}
u(z, 0) & =f(z) \Rightarrow \hat{p}_{0}(\lambda)=1 \\
\Rightarrow C & =1
\end{aligned}
$$

Using the previous set of formulas, one can come up with an expresnen for $p_{t}\left(z_{\imath} w\right)$
Fact: The function

$$
p_{t}(z, w)=\frac{\sqrt{2}}{(4 \pi t)^{3 / 2}} e^{-t / 4} \int_{d(z, w)}^{\infty} \frac{u e^{-u^{2} / 4 t}}{\sqrt{\cosh u-\cosh d(z, \omega)}} d u
$$

lemma: The series

$$
P_{t}(z, w)=\sum_{\gamma \in \Gamma} p_{t}(z, \gamma w)
$$

converges absolutely.
Proof

$$
\begin{aligned}
& \text { Proof: } \\
& \left|P_{t}(z, w)\right| \leqslant \frac{\Phi}{t} \sum_{\gamma \in T} e^{-d\left(z, \gamma_{w}\right)^{2} / 8 t} \\
& =\frac{C}{t} \sum_{n \geqslant 0} H\left\{\gamma \in \Gamma: n \leqslant d\left(z_{1} \gamma_{w}\right)<n+1\right] . \\
& e^{-n^{2} / 8 t}
\end{aligned}
$$

What we need A sene control on the growth

$$
\begin{aligned}
& \text { 解 }\{\gamma \in T: d(z, \gamma w)<T\} \\
& =\#\left\{z^{\prime} \in T w: d\left(z, z^{\prime}\right)<T\right\}
\end{aligned}
$$

$$
=O\left(\frac{e^{-d\left(z_{1} w\right)^{2} / 8 t}}{t}\right)
$$

and provides a dol. of (HE) in the form $u(z, t)$.

hyp. dish of radius T

Pw is a discrete orbit in HI (because Γ is fuchnan) This is the hyperbole combterpant of the abele problem

$$
\mathbb{Z}^{2}
$$

Count

Gauss:

$$
\#\left(\mathbb{Z}^{2} \wedge B_{k}\right) \sim \pi R^{2}
$$

Compere the area made out of uni squares centered at $\mathbb{R}^{2}-$ point with area of B_{R}.

