
Summary

Groups acting on trees

June 5, 2021

This summary is not the complete content of the class, statements are less detailed than in
the notes, and the proofs of some results are just as important as the statements themselves. So
please use this only as a guide! The numbering of the sections follows that of the lectures, and
some results from the exercise sets are incorporated.

1 Graphs and automorphisms of trees

Definition 1.1. A graph is a pair X = (X0, X1) where X0 is the set of vertices and X1 is the set
of edges. This comes with functions α, ω : X1 → X0 giving the source and target of an edge, and a
fixpoint-free involution · : X1 → X1 giving the reverse edge. An orientation is a subset X1

+ ⊂ X1

where we choose one of e or e for every edge.

Definition 1.2. A path is a finite sequence of consecutive edges, i.e, the target of an edge is
the source of the next edge. It is reduced if an edge is never followed by its reverse. A graph is
connected if any two vertices can be joined by a path. The distance between two vertices is the
minimal length of a path joining them.

Definition 1.3. A tree is a connected graph containing no circuits, i.e., no reduced path starting
and ending at the same vertex.

Remark. In a tree, any reduced path achieves the distance between its two endpoints.

Definition 1.4. An automorphism of a graph X is an invertible map τ sending vertices to vertices
and edges to edges, which preserves the structure (namely the maps α, ω, ·). It acts without
inversion if τ(e) 6= e for every edge.

From now on, we assume that all automorphisms act without inversion. For the rest of this
section, X is a tree and τ ∈ Aut(X).

Definition 1.5. Define |τ | to be the minimum of d(v, τ(v)) over all vertices. This is called the
translation length. If |τ | = 0, we call it a rotation; else a translation.

Theorem 1.6. Suppose that τ is a rotation, and let
◦
τ be the set of vertices and edges which are

fixed by τ . Then
◦
τ is a (non-empty) tree.

Suppose that τ is a translation. Then the vertices where the minimum is attained lie on a
bi-infinite line

→
τ where τ acts as a translation by |τ |.

Applying this theorem and a few more things, we get:

Corollary 1.7. Any finite group of tree automorphisms has a global fixpoint.
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2 Letting groups act on graphs

Definition 2.1. An action of a group G on a graph X is a homomorphism G → Aut(X); we
denote the action simply by x 7→ gx or g · x. The stabilizer of x ∈ X0 ∪ X1 is denoted by Gx:
note that the stabilizer of an edge is contained in the stabilizer of its two endpoints. The action
is free if all stabilizer are trivial. The action is without inversion if each of the corresponding
automorphisms is.

Remark. An action on X can be made without inversion by passing to the barycentric subdivision.
So we will always assume that this is the case.

Finitely generated groups always have meaningful actions on graphs.

Definition 2.2. Let G be a group with a finite generating set S. The corresponding Cayley
graph is the graph Γ(G,S) with vertex set G and positively oriented edges of the form g → gs for
g ∈ G, s ∈ S. It is connected and G acts on it freely and without inversion.

Definition 2.3. Given an action of G on a graph X, we can form the quotient G\X, which is the
quotient graph given by identifying orbits of vertices and edges. This comes equipped with the
natural projection p : X → G\X.

Proposition 2.4. If T ⊂ G\X is a tree, then it admits a lift, i.e., there exists a tree T̃ ⊂ X such
that p maps T̃ isomorphically onto T .

3 Elementary properties of free groups and presentations

Definition 3.1. A group F is free with basis X ⊂ F if any element of F can be written uniquely
as a reduced product of elements in X tX−1 (i.e., x is never followed by x−1). We denote F also
by F (X).

Proposition 3.2. F (X) has the following properties (for |X| > 1):

1. It is determined up to isomorphism by |X|, which is called the rank of F (X);

2. Its Cayley graph with respect to X is a tree (this even characterizes F (X));

3. It is torsion-free;

4. It has trivial center;

5. It contains free subgroups of finite index and arbitrarily large finite rank;

6. Its abelianization is the free abelian group Z[X].

The fundamental property of free groups is the following:

Theorem 3.3. F (X) has the following universal property: for every group G, any map X → G
extends uniquely to a homomorphism F (X)→ G.

Corollary 3.4. Any group is isomorphic to a quotient of a free group.
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Explicitly, if G is generated by S ⊂ G, and X is an abstract set in bijection with S, the map
X ∼= S ⊂ G extends to a surjective homomorphism F (X)→ G. Let N be the kernel of this map,
so that G ∼= F (X)/N .

Definition 3.5. If R ⊂ N is a normal generator of N (namely, N is the smallest normal subgroup
of F (X) containing R, or the subgroup generated by R and all of its conjugates in F (X)), then
we write G = 〈X | R〉 or 〈X | R = 1〉 and call this a presentation of G. It determines G up to
isomorphism.

Example 3.6. Here are some presentations:

1. F (X) = 〈X |〉.

2. Z/nZ = 〈x | xn = 1〉.

3. Z[X] = 〈X | [x, y] = 1 : x, y ∈ X〉.

4. G×H = 〈G,H | [g, h] = 1 : g ∈ G, h ∈ H〉.

5. Goϕ H = 〈G,H | hgh−1 = ϕ(h)(g) : g ∈ G, h ∈ H〉.
In the last two presentation, the notation 〈groups | relations〉 means that we take the gener-

ators of the groups to be disjoint sets, and are omitting from the notation the relations defining
the groups. Note also that we wrote g ∈ G, h ∈ H, but including these relations only for a set
of generators is enough. In particular, ifG,H are finitely presented, so is their (semi)direct product.

Presentations make it easy to define homomorphisms:

Theorem 3.7. Let G = 〈X | R〉, and consider a group H and a map X → H. If the corresponding
homomorphism F (X)→ H sends R to 1, then it induces a unique homomorphism G→ H.

4 Free groups and graphs

Definition 4.1. Let X be a connected graph and x ∈ X0. Two paths are homotopic if they
coincide after reduction (i.e., deleting consecutive occurrences of e and e). The fundamental group
π1(X, x) is the group of homotopy classes of paths starting and ending at x, with multiplication
given by concatenation.

Theorem 4.2. The fundamental group of a graph is free.

An explicit basis can be given, which depends on the choice of a spanning tree, i.e., a tree
T ⊂ X such that T 0 = X0. Developing on this, we obtain:

Theorem 4.3. Let G be a group acting freely and without inversion on a tree. Then G is free.

The converse also holds since a free group acts freely and without inversion on its Cayley graph,
which is a tree.

Corollary 4.4 (Nielsen–Schreier). Every subgroup of a free group is free. If G is free of finite rank
and H ≤ G is of finite index, then

[G : H] =
rk(H)− 1

rk(G)− 1
.

The formula in the previous corollary comes from the more precise versions of the previous
theorems.
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5 Free products and playing ping-pong

Definition 5.1. Let A and B be two groups. Their free product is the group A ∗ B = 〈A,B |〉.
Every element can be written uniquely as an alternating product of elements of A and of B: such
an expression is called a normal form.

Theorem 5.2. The existence and uniqueness of normal forms characterizes the free product.
Namely if G contains two subgroups A,B such that every element of G can be written uniquely as
an alternating product of elements of A and of B, then G ∼= A ∗B.

There will be versions of this theorem later on for other constructions, and we will omit the
explanation of what ”characterizes” means.

Proposition 5.3. A ∗B has the following properties (for |A|, |B| > 1):

1. All its torsion is conjugate to an element of A or B;

2. It has trivial center;

3. It cannot be written as a non-trivial direct product;

4. The kernel of the natural homomorphism A ∗B → A×B is free.

Here is the main tool for proving that a group is a free product (or a free group):

Lemma 5.4 (Ping-pong lemma). Let G be a group acting on a set X, A,B ≤ G and XA, XB ⊂ X
with XB * XA. Suppose that g(XB) ⊂ XA for all 1 6= g ∈ A, and that g(XA) ⊂ XB for all
1 6= g ∈ B. Then A and B generate a group isomorphic to A ∗B.

This can be used to prove the following:

Theorem 5.5. PSL2(Z) ∼= Z/2Z ∗ Z/3Z

Proposition 5.6. The matrices

x =

(
1 2
0 1

)
; y =

(
1 0
2 1

)
generated a free finite-index subgroup of SL2(Z).

6 Amalgamated products

This is the first of two fundamental constructions in Bass–Serre theory.

Definition 6.1. Let G,H be two groups, A ≤ G,B ≤ H subgroups and ϕ : A → B an isomor-
phism. The free product of G and H amalgamated over A is the group G ∗A H = 〈G,H | a =
ϕ(a) : a ∈ A〉.

It suffices to add the relation for a set of generators of A, so if G,H are finitely presented and
A is finitely generated, then G ∗A H is finitely presented. The free product is the special case
A = {1}.
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Definition 6.2. Let TA be a system of representatives of right cosets A\G, and TB of B\H, both
containing 1. An A-normal form for an element x ∈ G ∗A H is a decomposition x = x0x1 · · ·xn
where x0 ∈ A, and the successive xi are an alternating product of elements of TA \ {1} and TB \ {1}.
One can analogously define a B-normal form.

See Exercise set 3 to practice normal forms on the torus knot groups.

Theorem 6.3. Every element of G ∗A H can be written uniquely in A-normal form. Moreover,
the existence and uniqueness of A-normal forms characterizes G ∗A H.

Corollary 6.4. G and H embed naturally as subgroups of G ∗A H and their intersection is A.

The first version of the Fundamental Theorem of Bass–Serre Theory describes amalgamated
free products as groups acting on trees such that the quotient is a segment (i.e., a graph with two
vertices and two edges).

Theorem 6.5. Define a graph X as follows: vertices X0 := (G ∗A H/G) t (G ∗A H/H), edges
X1

+ := (G ∗A H)/A with adjacency given by α(xA) = xG and ω(xA) = xH. Then X is a tree and
the left action of G ∗A H on its cosets defines an action of G ∗A H on X, such that the quotient
is a segment. Every vertex stabilizer is conjugate to either G or H, and every edge stabilizer is
conjugate to A.

This is a theorem where you really should read and understand the proof: many later results
use the same ideas or refer back to it. See Exercise set 5 to familiarize with this theorem on the
torus knot groups.

Theorem 6.6. Let G be a group acting on a tree X such that the quotient is a segment, and let
e ∈ X1. Then G ∼= Gα(e) ∗Ge Gω(e).

7 HNN extensions

Now for the second of two fundamental constructions in Bass–Serre theory.

Definition 7.1. Let G be a group, A ≤ G a subgroup and ϕ : A→ G an injective homomorphism
(in other words, ϕ is an isomorphism between two subgroups of G). The HNN extension of G with
respect to ϕ is the group G∗ϕ = 〈G, t | t−1at = ϕ(a) : a ∈ A〉. We call G the base group, A the
associated subgroup and t the stable letter. We denote B := ϕ(A).

As usual, generators of A suffice for the presentation.

Definition 7.2. Let TA be a system of representatives of right cosets A\G and TB of B\G, both
containing 1. A normal form for an element x ∈ G∗ϕ is a decomposition x0t

ε1x1 · · · tεnxn, where
x0 ∈ G, xi ∈ TA ∪ TB, εi = ±1, and t is always followed by TB and t−1 is always followed by TA,
and there is no subword of the form tε1t−ε.

See Exercise set 4 to practice normal forms on the Baumslag–Solitar groups.

Theorem 7.3. Every element of G∗ϕ can be written uniquely in normal form. Moreover, the
existence and uniqueness of normal forms characterizes G∗ϕ.

Corollary 7.4. G embeds naturally as a subgroup of G∗ϕ, and t has infinite order.
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HNN extensions can be realized as subgroups of amalgamated products, which creates a relation
with the previous section. They are also useful to prove a lot of embedding theorems (all due to
Higman–Neumann–Neumann or a subset thereof):

Theorem 7.5. Every countable group can be embedded in a 2-generated group that has the same
type of torsion as the original group, and this construction preserves finite presentability. In
particular, there exist continuum many 2-generated groups.

Theorem 7.6. Every countable group can be embedded in a countable group in which all elements
of the same order are conjugate.

Theorem 7.7. Every countable group can be embedded in a countable simple, divisible group. In
particular, there exist continuum many countable simple groups.

Next, we have the second version of the Fundamental Theorem of Bass–Serre Theory, which
describes HNN extensions as groups acting on trees such that the quotient is a loop (i.e., a graph
with one vertex and two edges).

Theorem 7.8. Define a graph X as follows: vertices X0 := G ∗ϕ /G, edges X1
+ := G ∗ϕ /A with

adjacency given by α(xA) = xG and ω(xA) = xtG. Then X is a tree and the left action of G∗ϕ on
its cosets defines an action of G∗ϕ on X, such that the quotient is a loop. Every vertex stabilizer
is conjugate to G and every edge stabilizer is conjugate to A.

See Exercise set 5 to familiarize with this theorem on the Baumslag–Solitar groups.

Theorem 7.9. Let G be a group acting on a tree X such that the quotient is a loop, and let
e ∈ X1. Let t ∈ G be such that t · α(e) = ω(e) (this exists). Then Ge and t−1Get are subgroups of
Gα(e) isomorphic under ϕ : g 7→ t−1gt, and G ∼= Gα(e)∗ϕ.

8 Graphs of groups and general Bass–Serre Theory

Definition 8.1. A graph of groups G consists of a graph Y , a group for each vertex and each edge
of Y , where Ge = Ge, and inclusions αe : Ge → Gα(e). This in turns defines αe = ωe : Ge → Gω(e).

We write F (G, Y ) for the group

〈Gv : v ∈ Y 0, te : e ∈ Y 1 | tete = 1 : e ∈ Y 1, t−1e αe(g)te = ωe(g) : e ∈ Y 1, g ∈ Ge〉.

Given a spanning tree T of Y , the fundamental group of G (with respect to T ) is the group
π1(G, Y, T ) = 〈F (G, Y ) | te = 1 : e ∈ T 〉.

To construct π1(G, Y, T ), you can start with one vertex, then inductively take the free product
with the T -neighbouring vertex groups amalgamated over the corresponding edge groups, until you
have covered every edge in T and thus every vertex in Y . Then you take an HNN extension for
every edge of Y 1

+ \T , with associated subgroup the edge group and isomorphism given by the two
inclusions. In this sense the previous two constructions are building blocks of this more general
one.

Theorem 8.2. The group π1(G, Y, T ) is independent of the choice of T , up to isomorphism.

In this general setting we do not have normal forms, but something still strong enough to prove
theorems.
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Definition 8.3. For e ∈ T 1 and g ∈ Ge, we say that αe(g) ∈ Gα(e) and ωe(g) ∈ Gω(e) are equivalent
(with respect to T ) : notice that they represent the same element of π1(G, Y, T ). We extend this
notion by transitivity so that this is an equivalence relation on the union of all vertex groups.

Definition 8.4. Any x ∈ π1(G, Y, T ) can be written as a product x = x1 · · ·xn, where each xi is
in some vertex group or is an edge generator. We call such a product reduced if no two consecutive
xi are equivalent to elements of the same vertex group, and there are no subwords of the form
tεet
−ε
e , or t−1e gte where g is equivalent to some element of Gα(e), or tegt

−1
e where g is equivalent to

some element of Gω(e).

Reduced expressions exist for every element, but they are not necessarily unique. Still:

Theorem 8.5. If g ∈ π1(G, Y, T ) admits a non-empty reduced expression, then g 6= 1.

Corollary 8.6. Each vertex group embeds naturally as a subgroup of π1(G, Y, T ).

And now here is our final version of the Fundamental Theorem of Bass–Serre Theory. Both
statements are more precise in the lecture notes and the proofs.

Theorem 8.7. Let G = π1(G, Y, T ), and define a graph X as follows: vertices X0 := tv∈Y 0G/Gv,
edges X1

+ := te∈Y 1
+
G/Ge, and adjacency given by α(xGe) = xGα(e) and ω(xGe) = xteGω(e). Then

X is a tree and the left action of G on its cosets defines an action of G on X, such that the quotient
is isomorphic to Y . Every vertex stabilizer is conjugate to a vertex group, and every edge stabilizer
is conjugate to an edge group.

See Exercise set 6 to familiarize with this theorem on the Generalized Baumslag–Solitar groups.

Theorem 8.8. Let G be a group acting on a tree X, and let Y be the quotient. Then there exists
a graph of groups G with underlying graph Y whose fundamental group is isomorphic to G.

Definition 8.9. The tree constructed here is called the Bass–Serre tree of G: the definition is
really a generalization of the ones of the previous two sections.

Some related results:

Corollary 8.10. Every finite subgroup of G is conjugate into a vertex group.

Proposition 8.11. A fundamental group of a finite, connected graph of groups with finite vertex
groups is finitely generated and virtually free, i.e., it admits a finite-index free subgroup.

9 Applications of Bass–Serre Theory I: Subgroups of amal-

gamated products

This theorem allows to understand subgroups of free products, and also of amalgamated products
under additional hypotheses.

Theorem 9.1 (Kurosh). Let (Hi)i∈I be groups with a common subgroup A and let H := ∗AHi

be the corresponding amalgamated product. Let G ≤ H be a group intersecting trivially every
conjugate of A. Then there exists a free subgroup F ≤ H and systems Xi of representatives of
G\H/Hi such that

G ∼= F ∗ (∗i∈I(∗x∈Xi
G ∩ xHix

−1))
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10 Applications of Bass–Serre Theory II: Stallings’s The-

orem

From this section, only the definitions, examples, and statements are potentially relevant for the
exam.

Definition 10.1. Let X be a graph. A ray in X is a one-way infinite path with no repeating edge.
Two rays r, s are equivalent if for every finite subset F of X, there is a path in X \F connecting
a vertex of r to a vertex of s. An equivalence class of rays is called an end.

Given a finitely generated group, we can talk about the ends of its Cayley graphs. It turns out
that the number of ends is independent of the Cayley graph you choose.

Theorem 10.2 (Freudenthal). A finitely generated group has 0, 1, 2 or infinitely many ends.

The case of 0 ends encompasses precisely finite groups, the case of 1 end (e.g., Z2) is the
mysterious one, and the other two cases (e.g., Z and F2, respectively) are taken care of by Stallings’s
Theorem.

Definition 10.3. A group G splits over a subgroup A if it can be written as a free product
amalgamated over A or as an HNN extension with associated subgroup A.

Theorem 10.4 (Stallings). A finitely generated group has more than one ends if and only if it
splits over a finite subgroup.

Proposition 10.5. A finitely generated virtually free group is the fundamental group of a finite
connected graph of groups with finite vertex groups.

Corollary 10.6. A finitely generated torsion-free virtually free group is free.
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