4. Free groups and graphs

Def 4.1: Let X be a connected graph, x & X' and denote by P(X, X) the set of closed naths at X.

· Two naths prope & P(X,X) are homotopic if prome be Itained from pr by a finite number of insertions and deletions of subpaths e. E.

We write EpJ for the honotony class of p.

· Concatenation of maths defines a multiplication on the set of handlong dames of naths in P(X,X). The resulting group is called the fundamental group Tr (X,X) of X with repet to X.

Tem 9.2:

This coincides with the fundamental group of the "geometric realisation" of X as defined in topology.

If $\chi' \in \chi''$, then there is an isomorphism $T_{\Lambda}(X_{|X}) \longrightarrow T_{\Lambda}(X_{|X'})$ $L_{\mathcal{P}} \longrightarrow L_{\mathcal{Q}} p_{\mathcal{Q}}^{-1} \mathcal{I}$,

where g is a (fixed) nath from χ to χ' .

· Each homotopy class contains a unique reduced nath.

Jhm 4.3. Let X be a connected graph, x & X° and Ta

Jhm 4.3: Let X be a connected graph, $x \in X^{\circ}$ and Tapanning tree (i.e. a true containing all vertices). For $V \in X^{\circ}$, let p_{V} be the unique path from X to V in T.

Then $TT_{n}(X, Y)$ is the free group with basis $S = \{ [peJ \mid e \in X_{+}^{+} \setminus T_{-}^{+} \},$ where $pe := pa(e) \in Pw(e)$.

Lem. 4.4. Let 6 = <5> be a group. Then the layley

Lem. 4.4. Let 6 = <57 beagroup. Then the layley graph P(6,5) is a tree if and only if 6 is a bree group with basis S.

to 4.5, Every free group acts freely and without inversions on a tree.

Thm 4.6: Let Go be a group that acts freely and without inversions on a true X. Then his free and its rank is equal to $|Y_+^*|T|$, when Y := 6.1 and T is a granning tree of Y.

In particular, if Y = 6.1X is finite, then $SL(6) := |Y_+^*| - |Y_-^*| + 1$.

Cor 4.7 (Nielse-Ichnier):

1) Every subgroup of a fixe group is free.

2) If 6 is free of finite rank and H is a subgroup of index m, then $2h(H) = m \cdot (rh(6) - 1) + 1$.