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The Kinetic Theory

Kinetic Theory emanates from Statistical Mechanics, which is
the study of mechanical system formed of a large number of
elements. The core idea of Kinetic theory can be stated as
follows:

Statement
The behaviour of a fluid can be entirely determined by the
motion of the particles that constitute this fluid.
In other words, the evolution of any macroscopic observables
(temperature, pressure, velocity, density...) can be derived from
the underlying Newton dynamics which govern the motion of
particles.

I



Historical Context

Fathers of Kinetic Theory:
I James Clerk Maxwell, 1831-1879
I Ludwig Boltzmann, 1844-1906
I (Rudolf Clausius, 1822-1888)

Alternative theory: Caloric theory (Lavoisier, Laplace, Carnot,
Poisson...)
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Microscopic scale
→ Newton dynamics

A particle → (Lal , kill position & velocity E R'x
ite

ti th = V LH{ v. LEI = act, Xan, run ,
I 6 equations

In a fluid , one can assure that there
nearto particles

→This oak in not
relevant to describe a fluid

A- Too many equations
* The information is .

not directly relevant

← Initial condition



Macroscopic scale
→ fluid dynamics : empirical sciences

Unknowns of the equations are macroscopic observables

Famous exegetes : Diffusion equations (heatequate)
-

Bielen equations
Navier-Stokes equations

As or : fluids are meddled as continua



Mesoscopic scale
→ Kinetic equations

*
"

Fictive
-scale fit to study phenomena which are

not macroscopically observable and yet
involve

a large enough number of particles for
Statistical

Mechanics to apply .

*
The unknown of kinetic -equation is called a

distribution function ,

It is a probability density .
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The Phase Space

The phase space is the space of all possible states occurring in
the mathematical model of some physical system.

If we study a deterministic system described by an evolution
equation, then the phase space is the "smallest" space on which
the equation determines a unique, well-behaved solution.

In the context of this lecture, the phase space of a particle
obeying Newton’s laws is made of position and velocity (x, v).

Type A a type B ↳ CA , n.N



The distribution function

Consider a system of identical point particles. If the total
number of particle per unit of volume is large enough then the
state of the system at time t can be described statistically in
the single particle phase space.

We consider the distribution function f © f(t, x, v) that is the
number density of particles which are located at the position x
and have the velocity v at time t. In other words, if � and V
are subsets of R3 then the total number of particles N�,V which
have positions in � and velocity in V at time t is given by

N�,V(t) =
⁄⁄

�◊V
f(t, x, v) dx dv.

Note that f(t, ·, ·) is in fact a probability density.

Iffltinni draw = I



The distribution function
More generally, given a (additive) physical quantity for a
particle such as momentum or energy, we can express the
corresponding quantity for the portion of the particle system
with position in � by integrals of f .

I Momentum: The momentum of a particle with mass m and
velocity v is given by „(v) = mv so the total momentum of
particles with position in � is

P�(t) =
⁄⁄

�◊R3
mvf(t, x, v) dx dv.

I Energy: The kinetic energy of that same particle is given
by „(v) = 1

2m|v|2, hence the total kinetic energy of
particles in � is given by

E�(t) =
⁄⁄

�◊R3

1
2m|v|2f(t, x, v) dx dv.

Note that P� and E� are macroscopic observables!



Key questions in Kinetic Theory

In this class, we will tackle some of the most fundamental
questions of Kinetic Theory in the context of non-collisional
plasma physics:

I Rigorous derivation of Kinetic equations from Newton
dynamics: How do you derive a PDE on the distribution
function f from the system of ODEs describing the motion
of particles (X(t), V (t))?

I Well-posedness of the kinetic equation
I Qualitative analysis, stability, long-time behaviour of a

solution to the kinetic equation.
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Plasmas

Plasma is state of matter. A plasma is an ionised gas, i.e. a gas
which contains a significant amount of ions and free electrons.
Plasmas can be artificially generated by heating a neutral gas,
or by embedding a gas into a strong magnetic field to the point
where the gas becomes increasingly electrically conductive.
Exemples of plasmas: stars, interstellar/intergalactic medium,
solar wind, lightning...



Formal derivation of a Vlasov equation
Newton : ICH = VAI Xctol = no

toDo, (no, v. IE 11231123 (UCH = act,XLH , Vell! Veto) = v. (N)

A solution of Cnl is (Xlt; G.no,vi.Vlt; to . a.v. i ) .

Bon sider Oeo c Nute and define Ot b

Q. -- flame akin' stuff : ÷::: for cameo.}

fffct. . no,vddnoduo -
= ¥ flannelnow

Oto

=¥fCt, xltytan.rdiktithn.vn) dxtdvr



Formal derivation of a Vlasov equation
Assertion : The substitution Cno.volh@CtiEo.no.v. I,VA; b.

is Lebesgue measure preserving dudes datedUr
6 reasonable if we neglect collisions

fffctinvddnodv.
For my Geo

Ot
.

t
, Nti tan.routine. dude

⇒ floor. .vn = fct.XUIE.a.vn ,
Vce; to .no.v.D
-

¥ : lo -- Q-fer Dnf tact.mxQf I
-

✓lasso equation
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Interaction Potentials
Newton'sla : m HI =Z it"

F.→ i in the force exerted by the JH particle onto
the in part.

If the interaction
is tkanlzhon invariant then

"often" the

force derives from an interaction potential
W : IR's in

f- = -OWGi -xD ,
c>ogekdkgcdp.IE?feijsiElectrostatic

E# : * Wki -Al =
e9i%¥ perennial
ki -Al felons force

←
MISS

• WH-Xp = - c Mimi gradational potential
(Xi -xjld

-Z
-i
Newton force



Interaction Potentials
As N -s e a

m LH =§, F-→×", fl tip dy
with fl477 =

,

(ay ,u
do is the macroscopic density .

⇒ m ur = !g, -ON Cy--Neil playsdy = -O@ *f.) Ken

Vlasov Equation becomes

Q.f.tvOnf e Foa f --o{f- = DC w *f.Kyi , f.Gil fceiyndu
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The Vlasov-Poisson model

Reminder . if wear = fm÷ ,

9%5 then W is the

fundamental solution of
the Laplace equation ÷ ±DW = do

Hence : U -

-

W *e ⇒ DU=p

VLasou-poissorsys.to#Q-ftvOnf-F.If = 0,
F- -ON

,
I DM -

- ffeats.. .. . .

" t.EE::
"

::

fcoin,ol = fin Cnn
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Energy of the systemQ-ftv.Onfi-F-Ovf-oqn.gs(F. - OU ,
IAM=p

* Kinch =

,

Etuifetish drew kinetic energy

& Petch =

,

Ultra flt.nu drew potential energy

= !.tw#f.kxieltiaidu
• Total Energy : % Kind + {Petal



Conservation of total Energy Q-ft v.Onft F-Ovf --o

¥Er = ff gun off and
¥ - ou .

tou --e

+ If@adel e da e E f@*et de da
-

- ff flu dad e f@*e) du

8ontinu.dk#on : f du the Vlasov ego
a tie

1QetQffJ



Conservation of total Energy

Eh Er = ff tht f v-Onf - F. Orf) dad-flew*e)OnCuf token
⇐ -

= ff@oF1fdnoWtffDnCwael.rf drawIF

=D

→ Bowservatra of herd energy
.



Conservation of total Energy in the Coulombian case

Petch = Jdluiai eChon du = - fUDU du
= f toutdu a friedn

Ze = Vuh CEI t PotCtl = constant

h ftp.ifltf If
⇐ the moment of f is hounded
← FE ECKLEY



General Conservations

p : IR tlR,pE81G
Then4¥¥!Hdnd

proofs: a.f pig, + v.O.fpyp.FIfptp
-

- o

ggdnow
ftp.lfhtv.hn/plhl-iFPrCpcfh--o

4 ¥ ffpcfldndu to
to = O H



General Conservations
A pts = ISM , pal C- Reruns

→ f) If It, an IP dads = fflfincn.nldad ft

* pls I -- s logis ) Entropy

→ fffloglfldndu -

- fffinlogcfin) dado kE

⇒ The Vlasov- Poisson system conserves entropy


