Exercise sheet 1
 Rough Path Theory

Andrew L. Allan

February 22, 2021

Problem 1

For $\alpha \in(0,1]$, recall the space of α-Hölder continuous paths $\mathcal{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$, and the associated seminorm

$$
\|X\|_{\alpha}=\sup _{0 \leq s<t \leq T} \frac{\left|X_{s, t}\right|}{|t-s|^{\alpha}}
$$

Show that $\mathcal{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ becomes a Banach space when equipped with the norm

$$
X \mapsto\left|X_{0}\right|+\|X\|_{\alpha} .
$$

Problem 2

Suppose that $X \in \mathcal{C}^{\alpha}$ for some $\alpha>1$. Show that the path X must be equal to a constant.

Problem 3

Let $\alpha \in(0,1)$ and let $X:[0, T] \rightarrow \mathbb{R}$ be the path given by $X_{t}=t^{\alpha}$. Show that $X \in \mathcal{C}^{\alpha}$, but $X \notin \mathcal{C}^{0, \alpha}$.

Problem 4

Let $X:[0, T] \rightarrow \mathbb{R}^{d}$ be a smooth path, and let

$$
\mathbb{X}_{s, t}=\int_{s}^{t}\left(X_{r}-X_{s}\right) \otimes \mathrm{d} X_{r}
$$

for all $(s, t) \in \Delta_{[0, T]}$, with the integral being defined in the Riemann-Stieltjes (or Young) sense. Show that Chen's relation:

$$
\begin{equation*}
\mathbb{X}_{s, t}=\mathbb{X}_{s, u}+\mathbb{X}_{u, t}+X_{s, u} \otimes X_{u, t} \tag{1}
\end{equation*}
$$

holds for all $0 \leq s \leq u \leq t \leq T$.

Problem 5

Convince yourself that the space $\mathcal{C}^{\alpha} \times \mathcal{C}_{2}^{2 \alpha}$ equipped with the norm

$$
(X, \mathbb{X}) \mapsto\left|X_{0}\right|+\|\mathbf{X}\|_{\alpha}
$$

is a Banach space. Then show that the space of rough paths \mathscr{C}^{α} (i.e. the elements of $\mathcal{C}^{\alpha} \times \mathcal{C}_{2}^{2 \alpha}$ which are constrained by Chen's relation (1)) is a complete metric space with metric

$$
(\mathbf{X}, \tilde{\mathbf{X}}) \mapsto\left|X_{0}-\tilde{X}_{0}\right|+\|\mathbf{X} ; \tilde{\mathbf{X}}\|_{\alpha}
$$

Problem 6

Let $\frac{1}{3}<\alpha<\beta \leq \frac{1}{2}$ and let $\mathbf{X}=(X, \mathbb{X}) \in \mathcal{C} \times \mathcal{C}_{2}$. For each $n \geq 1$, let $\mathbf{X}^{n}=\left(X^{n}, \mathbb{X}^{n}\right) \in$ \mathscr{C}^{β} be a β-Hölder rough path, and assume that $\sup _{n \geq 1}\left\|\mathbf{X}^{n}\right\|_{\beta}<\infty$. Suppose further that $X^{n} \rightarrow X$ and $\mathbb{X}^{n} \rightarrow \mathbb{X}$ uniformly as $n \rightarrow \infty$.

Show that $\mathbf{X} \in \mathscr{C}^{\beta}$, and that $\left\|\mathbf{X}^{n} ; \mathbf{X}\right\|_{\alpha} \rightarrow 0$ as $n \rightarrow \infty$.

Problem 7
Part (a) Suppose that the pair (X, \mathbb{X}) satisfies Chen's relation (1). Let $0 \leq s<t \leq T$, and let $\left\{s=u_{0}<u_{1}<\cdots<u_{N}=t\right\}$ be a partition of the interval $[s, t]$.

Show that

$$
\mathbb{X}_{s, t}=\sum_{i=0}^{N-1}\left(\mathbb{X}_{u_{i}, u_{i+1}}+X_{s, u_{i}} \otimes X_{u_{i}, u_{i+1}}\right)
$$

Part (b) Let $\mathbf{X}=(X, \mathbb{X}) \in \mathscr{C}_{g}^{0, \alpha}$ be a geometric rough path. Show that

$$
\lim _{\delta \rightarrow 0} \sup _{|t-s|<\delta} \frac{\left|X_{s, t}\right|}{|t-s|^{\alpha}}=0, \quad \text { and } \quad \lim _{\delta \rightarrow 0} \sup _{|t-s|<\delta} \frac{\left|\mathbb{X}_{s, t}\right|}{|t-s|^{2 \alpha}}=0 .
$$

Part (c) Let $\mathbf{X}=(X, \mathbb{X}) \in \mathscr{C}_{g}^{0, \frac{1}{2}}$ be a geometric $\frac{1}{2}$-Hölder rough path. Prove (using the results of parts (a) and (b)) that \mathbb{X} is necessarily equal to the Riemann-Stieltjes integral of X against itself, i.e. that

$$
\mathbb{X}_{s, t}=\lim _{|\pi| \rightarrow 0} \sum_{i=0}^{N-1} X_{s, u_{i}} \otimes X_{u_{i}, u_{i+1}},
$$

where $\pi=\left\{s=u_{0}<u_{1}<\cdots<u_{N}=t\right\}$.

