Exercise sheet 1 with solutions
 Rough Path Theory

Andrew L. Allan

March 13, 2021

Problem 1

For $\alpha \in(0,1]$, recall the space of α-Hölder continuous paths $\mathcal{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$, and the associated seminorm

$$
\|X\|_{\alpha}=\sup _{0 \leq s<t \leq T} \frac{\left|X_{s, t}\right|}{|t-s|^{\alpha}}
$$

Show that $\mathcal{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ becomes a Banach space when equipped with the norm

$$
X \mapsto\left|X_{0}\right|+\|X\|_{\alpha} .
$$

Solution:

It is easy to see that $\mathcal{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ is a vector space and that $X \mapsto\left|X_{0}\right|+\|X\|_{\alpha}$ does indeed define a norm on $\mathcal{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$. It remains to show that this space is complete. To this end, let $\left(X^{n}\right)_{n \geq 1}$ be a Cauchy sequence in $\mathcal{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$, so that

$$
\left|X_{0}^{n}-X_{0}^{m}\right|+\left\|X^{n}-X^{m}\right\|_{\alpha} \longrightarrow 0 \quad \text { as } \quad n, m \longrightarrow \infty
$$

For each $t \in[0, T]$, since

$$
\begin{aligned}
\left|X_{t}^{n}-X_{t}^{m}\right| & \leq\left|X_{0}^{n}-X_{0}^{m}\right|+\left|X_{0, t}^{n}-X_{0, t}^{m}\right| \\
& \leq\left|X_{0}^{n}-X_{0}^{m}\right|+\left\|X^{n}-X^{m}\right\|_{\alpha} t^{\alpha} \longrightarrow 0 \quad \text { as } \quad n, m \longrightarrow \infty
\end{aligned}
$$

we can define

$$
X_{t}:=\lim _{n \rightarrow \infty} X_{t}^{n} .
$$

For $0 \leq s<t \leq T$, we have

$$
\frac{\left|X_{s, t}\right|}{|t-s|^{\alpha}}=\lim _{n \rightarrow \infty} \frac{\left|X_{s, t}^{n}\right|}{|t-s|^{\alpha}} \leq \sup _{n \geq 1}\left\|X^{n}\right\|_{\alpha}
$$

and hence

$$
\|X\|_{\alpha}=\sup _{0 \leq s<t \leq T} \frac{\left|X_{s, t}\right|}{|t-s|^{\alpha}} \leq \sup _{n \geq 1}\left\|X^{n}\right\|_{\alpha}<\infty
$$

which means that the path X is itself α-Hölder continuous, i.e. $X \in \mathcal{C}^{\alpha}$.

We still need to show that $X^{n} \rightarrow X$ in \mathcal{C}^{α}. To see this, note that

$$
\frac{\left|X_{s, t}^{n}-X_{s, t}\right|}{|t-s|^{\alpha}}=\lim _{m \rightarrow \infty} \frac{\left|X_{s, t}^{n}-X_{s, t}^{m}\right|}{|t-s|^{\alpha}} \leq \limsup _{m \rightarrow \infty}\left\|X^{n}-X^{m}\right\|_{\alpha}
$$

and hence that

$$
\left\|X^{n}-X\right\|_{\alpha}=\sup _{0 \leq s<t \leq T} \frac{\left|X_{s, t}^{n}-X_{s, t}\right|}{|t-s|^{\alpha}} \leq \limsup _{m \rightarrow \infty}\left\|X^{n}-X^{m}\right\|_{\alpha} \longrightarrow 0 \quad \text { as } \quad n \longrightarrow \infty
$$

Thus, $X^{n} \rightarrow X$ in \mathcal{C}^{α} as desired.

Problem 2

Suppose that $X \in \mathcal{C}^{\alpha}$ for some $\alpha>1$. Show that the path X must be equal to a constant.

Solution:

Let $t \in[0, T]$ and let $\pi=\left\{0=s_{0}<s_{1}<\cdots<s_{N}=t\right\}$ be a partition of the interval $[0, t]$. Then

$$
\begin{aligned}
\left|X_{0, t}\right| & =\left|\sum_{i=0}^{N-1} X_{s_{i}, s_{i+1}}\right| \leq \sum_{i=0}^{N-1}\left|X_{s_{i}, s_{i+1}}\right| \leq\|X\|_{\alpha} \sum_{i=0}^{N-1}\left|s_{i+1}-s_{i}\right|^{\alpha} \\
& \leq\|X\|_{\alpha}\left(\sum_{i=0}^{N-1}\left|s_{i+1}-s_{i}\right|\right) \max _{0 \leq i<N}\left|s_{i+1}-s_{i}\right|^{\alpha-1}=\|X\|_{\alpha} t|\pi|^{\alpha-1} .
\end{aligned}
$$

Since $\alpha-1>0$ and we can choose the mesh size $|\pi|$ to be arbitrarily small, it follows that $\left|X_{0, t}\right|=0$, and hence that $X_{t}=X_{0}$ for all $t \in[0, T]$.

Problem 3

Let $\alpha \in(0,1)$ and let $X:[0, T] \rightarrow \mathbb{R}$ be the path given by $X_{t}=t^{\alpha}$. Show that $X \in \mathcal{C}^{\alpha}$, but $X \notin \mathcal{C}^{0, \alpha}$.

Solution:

Let $0 \leq s<t \leq T$. Note that $0 \leq \frac{s}{t}<1$ and $0<1-\frac{s}{t} \leq 1$. Then

$$
\frac{\left|X_{s, t}\right|}{|t-s|^{\alpha}}=\frac{t^{\alpha}-s^{\alpha}}{(t-s)^{\alpha}}=\frac{1-\left(\frac{s}{t}\right)^{\alpha}}{\left(1-\frac{s}{t}\right)^{\alpha}} \leq \frac{1-\frac{s}{t}}{1-\frac{s}{t}}=1,
$$

so $\|X\|_{\alpha} \leq 1$, and hence $X \in \mathcal{C}^{\alpha}$.
Note that

$$
\frac{\left|X_{0, t}\right|}{|t-0|^{\alpha}}=\frac{t^{\alpha}}{t^{\alpha}}=1
$$

for any $t \in(0, T]$, which means that

$$
\lim _{\delta \rightarrow 0} \sup _{|t-s|<\delta} \frac{\left|X_{s, t}\right|}{|t-s|^{\alpha}} \geq 1 .
$$

Thus, by the characterization of $\mathcal{C}^{0, \alpha}$ given in the lectures, it follows that $X \notin \mathcal{C}^{0, \alpha}$.

Problem 4

Let $X:[0, T] \rightarrow \mathbb{R}^{d}$ be a smooth path, and let

$$
\mathbb{X}_{s, t}=\int_{s}^{t}\left(X_{r}-X_{s}\right) \otimes \mathrm{d} X_{r}
$$

for all $(s, t) \in \Delta_{[0, T]}$, with the integral being defined in the Riemann-Stieltjes (or Young) sense. Show that Chen's relation:

$$
\begin{equation*}
\mathbb{X}_{s, t}=\mathbb{X}_{s, u}+\mathbb{X}_{u, t}+X_{s, u} \otimes X_{u, t} \tag{1}
\end{equation*}
$$

holds for all $0 \leq s \leq u \leq t \leq T$.
Solution: Easy

Problem 5

Convince yourself that the space $\mathcal{C}^{\alpha} \times \mathcal{C}_{2}^{2 \alpha}$ equipped with the norm

$$
(X, \mathbb{X}) \mapsto\left|X_{0}\right|+\|\mathbf{X}\|_{\alpha}
$$

is a Banach space. Then show that the space of rough paths \mathscr{C}^{α} (i.e. the elements of $\mathcal{C}^{\alpha} \times \mathcal{C}_{2}^{2 \alpha}$ which are constrained by Chen's relation (1)) is a complete metric space with metric

$$
(\mathbf{X}, \tilde{\mathbf{X}}) \mapsto\left|X_{0}-\tilde{X}_{0}\right|+\|\mathbf{X} ; \tilde{\mathbf{X}}\|_{\alpha}
$$

Solution:

That $\mathcal{C}^{\alpha} \times \mathcal{C}_{2}^{2 \alpha}$ is a Banach space follows from the same argument as in Problem 1. It remains to show that the space \mathscr{C}^{α} of rough paths is a closed subset of $\mathcal{C}^{\alpha} \times \mathcal{C}_{2}^{2 \alpha}$.

To this end, take a sequence $\mathbf{X}^{n}=\left(X^{n}, \mathbb{X}^{n}\right), n \geq 1$, of elements satisfying Chen's relation, and such that $\left|X_{0}^{n}-X_{0}\right|+\left\|\mathbf{X}^{n} ; \mathbf{X}\right\|_{\alpha} \rightarrow 0$ as $n \rightarrow \infty$, for some element $\mathbf{X}=$ $(X, \mathbb{X}) \in \mathcal{C}^{\alpha} \times \mathcal{C}_{2}^{2 \alpha}$. We have that

$$
\mathbb{X}_{s, t}^{n}=\mathbb{X}_{s, u}^{n}+\mathbb{X}_{u, t}^{n}+X_{s, u}^{n} \otimes X_{u, t}^{n}
$$

for all triplets $s \leq u \leq t$ and all $n \geq 1$. Letting $n \rightarrow \infty$, each term converges, and we obtain

$$
\mathbb{X}_{s, t}=\mathbb{X}_{s, u}+\mathbb{X}_{u, t}+X_{s, u} \otimes X_{u, t}
$$

That is, Chen's relation holds for \mathbf{X}.

Problem 6

Let $\frac{1}{3}<\alpha<\beta \leq \frac{1}{2}$ and let $\mathbf{X}=(X, \mathbb{X}) \in \mathcal{C} \times \mathcal{C}_{2}$. For each $n \geq 1$, let $\mathbf{X}^{n}=\left(X^{n}, \mathbb{X}^{n}\right) \in$ \mathscr{C}^{β} be a β-Hölder rough path, and assume that $\sup _{n \geq 1}\left\|\mathbf{X}^{n}\right\|_{\beta}<\infty$. Suppose further that $X^{n} \rightarrow X$ and $\mathbb{X}^{n} \rightarrow \mathbb{X}$ uniformly as $n \rightarrow \infty$.

Show that $\mathbf{X} \in \mathscr{C}^{\beta}$, and that $\left\|\mathbf{X}^{n} ; \mathbf{X}\right\|_{\alpha} \rightarrow 0$ as $n \rightarrow \infty$.

Solution:

The results on lower semi-continuity and interpolation of Hölder continuous paths are easily seen to also be valid for two-parameter functions $\mathbb{X}: \Delta_{[0, T]} \rightarrow \mathbb{R}^{d \times d}$. It is then easy
to deduce that $\|\mathbf{X}\|_{\beta}<\infty$ and that $\left\|\mathbf{X}^{n} ; \mathbf{X}\right\|_{\alpha} \rightarrow 0$ as $n \rightarrow \infty$. It follows from the previous problem that Chen's relation holds for (X, \mathbb{X}), and hence that $\mathbf{X} \in \mathscr{C}^{\beta}$.

Problem 7
Part (a) Suppose that the pair (X, \mathbb{X}) satisfies Chen's relation (1). Let $0 \leq s<t \leq T$, and let $\left\{s=u_{0}<u_{1}<\cdots<u_{N}=t\right\}$ be a partition of the interval $[s, t]$.

Show that

$$
\mathbb{X}_{s, t}=\sum_{i=0}^{N-1}\left(\mathbb{X}_{u_{i}, u_{i+1}}+X_{s, u_{i}} \otimes X_{u_{i}, u_{i+1}}\right)
$$

Part (b) Let $\mathbf{X}=(X, \mathbb{X}) \in \mathscr{C}_{g}^{0, \alpha}$ be a geometric rough path. Show that

$$
\lim _{\delta \rightarrow 0} \sup _{|t-s|<\delta} \frac{\left|X_{s, t}\right|}{|t-s|^{\alpha}}=0, \quad \text { and } \quad \lim _{\delta \rightarrow 0} \sup _{|t-s|<\delta} \frac{\left|\mathbb{X}_{s, t}\right|}{|t-s|^{2 \alpha}}=0 .
$$

Part (c) Let $\mathbf{X}=(X, \mathbb{X}) \in \mathscr{C}_{g}^{0, \frac{1}{2}}$ be a geometric $\frac{1}{2}$-Hölder rough path. Prove (using the results of parts (a) and (b)) that \mathbb{X} is necessarily equal to the Riemann-Stieltjes integral of X against itself, i.e. that

$$
\mathbb{X}_{s, t}=\lim _{|\pi| \rightarrow 0} \sum_{i=0}^{N-1} X_{s, u_{i}} \otimes X_{u_{i}, u_{i+1}},
$$

where $\pi=\left\{s=u_{0}<u_{1}<\cdots<u_{N}=t\right\}$.

Solution:

Part (a) One can show by induction on $k=0,1, \ldots, N-1$ that

$$
\mathbb{X}_{s, u_{k+1}}=\sum_{i=0}^{k}\left(\mathbb{X}_{u_{i}, u_{i+1}}+X_{s, u_{i}} \otimes X_{u_{i}, u_{i+1}}\right)
$$

Setting $k=N-1$ then gives the desired equality.
Part (b) Since $X \in \mathcal{C}^{0, \alpha}$, the first limit was proved in the lecture notes. The second limit follows from a nearly identical argument applied to \mathbb{X}. In particular, for any $\varepsilon>0$ we know there exists a smooth path Y such that $\|\mathbb{X}-\mathbb{Y}\|_{2 \alpha} \leq\|\mathbf{X} ; \mathbf{Y}\|_{\alpha}<\varepsilon$, where $\mathbf{Y}=(Y, \mathbb{Y})$ and $\mathbb{Y}_{s, t}=\int_{s}^{t}\left(Y_{r}-Y_{s}\right) \otimes \mathrm{d} Y_{r}$. We can bound $\left|\mathbb{Y}_{s, t}\right| /|t-s|^{2 \alpha}$ by an identical argument to the one in the lecture notes.

Part (c) Let $\varepsilon>0$. By part (b) (with $\alpha=\frac{1}{2}$), there exists a $\delta>0$ such that

$$
\sup _{|v-u|<\delta} \frac{\left|\mathbb{X}_{u, v}\right|}{|v-u|}<\varepsilon .
$$

Let $\pi=\left\{s=u_{0}<u_{1}<\cdots<u_{N}=t\right\}$ be a partition of the interval $[s, t]$ with mesh size $|\pi|<\delta$. Then, using part (a), we have

$$
\left|\mathbb{X}_{s, t}-\sum_{i=0}^{N-1} X_{s, u_{i}} \otimes X_{u_{i}, u_{i+1}}\right|=\left|\sum_{i=0}^{N-1} \mathbb{X}_{u_{i}, u_{i+1}}\right|<\sum_{i=0}^{N-1} \varepsilon\left|u_{i+1}-u_{i}\right|=\varepsilon|t-s| .
$$

Since $\varepsilon>0$ may be taken arbitrarily small, the result follows.

