Exercise sheet 1 with solutions

Rough Path Theory

Andrew L. Allan

March 13, 2021

Problem 1

For $\alpha \in (0,1]$, recall the space of α -Hölder continuous paths $\mathcal{C}^{\alpha}([0,T];\mathbb{R}^d)$, and the associated seminorm

$$\|X\|_{\alpha} = \sup_{0 \le s < t \le T} \frac{|X_{s,t}|}{|t-s|^{\alpha}}.$$

Show that $\mathcal{C}^{\alpha}([0,T];\mathbb{R}^d)$ becomes a Banach space when equipped with the norm

 $X \mapsto |X_0| + ||X||_{\alpha}.$

Solution:

It is easy to see that $\mathcal{C}^{\alpha}([0,T];\mathbb{R}^d)$ is a vector space and that $X \mapsto |X_0| + ||X||_{\alpha}$ does indeed define a norm on $\mathcal{C}^{\alpha}([0,T];\mathbb{R}^d)$. It remains to show that this space is complete. To this end, let $(X^n)_{n\geq 1}$ be a Cauchy sequence in $\mathcal{C}^{\alpha}([0,T];\mathbb{R}^d)$, so that

$$|X_0^n - X_0^m| + ||X^n - X^m||_{\alpha} \longrightarrow 0 \quad \text{as} \quad n, m \longrightarrow \infty.$$

For each $t \in [0, T]$, since

$$\begin{aligned} |X_t^n - X_t^m| &\le |X_0^n - X_0^m| + |X_{0,t}^n - X_{0,t}^m| \\ &\le |X_0^n - X_0^m| + \|X^n - X^m\|_{\alpha} t^{\alpha} \longrightarrow 0 \quad \text{as} \quad n, m \longrightarrow \infty, \end{aligned}$$

we can define

$$X_t := \lim_{n \to \infty} X_t^n.$$

For $0 \le s < t \le T$, we have

$$\frac{|X_{s,t}|}{|t-s|^{\alpha}} = \lim_{n \to \infty} \frac{|X_{s,t}^n|}{|t-s|^{\alpha}} \le \sup_{n \ge 1} \|X^n\|_{\alpha},$$

and hence

$$\|X\|_{\alpha} = \sup_{0 \le s < t \le T} \frac{|X_{s,t}|}{|t-s|^{\alpha}} \le \sup_{n \ge 1} \|X^n\|_{\alpha} < \infty,$$

which means that the path X is itself α -Hölder continuous, i.e. $X \in \mathcal{C}^{\alpha}$.

We still need to show that $X^n \to X$ in \mathcal{C}^{α} . To see this, note that

$$\frac{|X_{s,t}^n - X_{s,t}|}{|t - s|^{\alpha}} = \lim_{m \to \infty} \frac{|X_{s,t}^n - X_{s,t}^m|}{|t - s|^{\alpha}} \le \limsup_{m \to \infty} \|X^n - X^m\|_{\alpha}$$

and hence that

$$||X^n - X||_{\alpha} = \sup_{0 \le s < t \le T} \frac{|X_{s,t}^n - X_{s,t}|}{|t - s|^{\alpha}} \le \limsup_{m \to \infty} ||X^n - X^m||_{\alpha} \longrightarrow 0 \quad \text{as} \quad n \longrightarrow \infty.$$

Thus, $X^n \to X$ in \mathcal{C}^{α} as desired.

Problem 2

Suppose that $X \in \mathcal{C}^{\alpha}$ for some $\alpha > 1$. Show that the path X must be equal to a constant.

Solution:

Let $t \in [0,T]$ and let $\pi = \{0 = s_0 < s_1 < \cdots < s_N = t\}$ be a partition of the interval [0,t]. Then

$$\begin{aligned} |X_{0,t}| &= \left| \sum_{i=0}^{N-1} X_{s_i,s_{i+1}} \right| \le \sum_{i=0}^{N-1} |X_{s_i,s_{i+1}}| \le \|X\|_{\alpha} \sum_{i=0}^{N-1} |s_{i+1} - s_i|^{\alpha} \\ &\le \|X\|_{\alpha} \left(\sum_{i=0}^{N-1} |s_{i+1} - s_i| \right) \max_{0 \le i < N} |s_{i+1} - s_i|^{\alpha-1} = \|X\|_{\alpha} t |\pi|^{\alpha-1} \end{aligned}$$

Since $\alpha - 1 > 0$ and we can choose the mesh size $|\pi|$ to be arbitrarily small, it follows that $|X_{0,t}| = 0$, and hence that $X_t = X_0$ for all $t \in [0,T]$.

Problem 3

Let $\alpha \in (0,1)$ and let $X : [0,T] \to \mathbb{R}$ be the path given by $X_t = t^{\alpha}$. Show that $X \in \mathcal{C}^{\alpha}$, but $X \notin \mathcal{C}^{0,\alpha}$.

Solution:

Let $0 \le s < t \le T$. Note that $0 \le \frac{s}{t} < 1$ and $0 < 1 - \frac{s}{t} \le 1$. Then

$$\frac{|X_{s,t}|}{|t-s|^{\alpha}} = \frac{t^{\alpha} - s^{\alpha}}{(t-s)^{\alpha}} = \frac{1 - (\frac{s}{t})^{\alpha}}{(1 - \frac{s}{t})^{\alpha}} \le \frac{1 - \frac{s}{t}}{1 - \frac{s}{t}} = 1,$$

so $||X||_{\alpha} \leq 1$, and hence $X \in \mathcal{C}^{\alpha}$.

Note that

$$\frac{|X_{0,t}|}{|t-0|^{\alpha}} = \frac{t^{\alpha}}{t^{\alpha}} = 1$$

for any $t \in (0, T]$, which means that

$$\lim_{\delta \to 0} \sup_{|t-s| < \delta} \frac{|X_{s,t}|}{|t-s|^{\alpha}} \ge 1.$$

Thus, by the characterization of $\mathcal{C}^{0,\alpha}$ given in the lectures, it follows that $X \notin \mathcal{C}^{0,\alpha}$.

Problem 4

Let $X \colon [0,T] \to \mathbb{R}^d$ be a smooth path, and let

$$\mathbb{X}_{s,t} = \int_s^t (X_r - X_s) \otimes \mathrm{d}X_r$$

for all $(s,t) \in \Delta_{[0,T]}$, with the integral being defined in the Riemann–Stieltjes (or Young) sense. Show that Chen's relation:

$$\mathbb{X}_{s,t} = \mathbb{X}_{s,u} + \mathbb{X}_{u,t} + X_{s,u} \otimes X_{u,t} \tag{1}$$

holds for all $0 \le s \le u \le t \le T$.

Solution: Easy

Problem 5

Convince yourself that the space $\mathcal{C}^{\alpha} \times \mathcal{C}_{2}^{2\alpha}$ equipped with the norm

$$(X, \mathbb{X}) \mapsto |X_0| + \|\|\mathbf{X}\|\|_{\alpha}$$

is a Banach space. Then show that the space of rough paths \mathscr{C}^{α} (i.e. the elements of $\mathcal{C}^{\alpha} \times \mathcal{C}_2^{2\alpha}$ which are constrained by Chen's relation (1)) is a complete metric space with metric

$$(\mathbf{X}, \mathbf{X}) \mapsto |X_0 - X_0| + \|\mathbf{X}; \mathbf{X}\|_{\alpha}$$

Solution:

That $\mathcal{C}^{\alpha} \times \mathcal{C}_2^{2\alpha}$ is a Banach space follows from the same argument as in Problem 1. It remains to show that the space \mathscr{C}^{α} of rough paths is a closed subset of $\mathcal{C}^{\alpha} \times \mathcal{C}_2^{2\alpha}$.

To this end, take a sequence $\mathbf{X}^n = (X^n, \mathbb{X}^n)$, $n \ge 1$, of elements satisfying Chen's relation, and such that $|X_0^n - X_0| + \|\mathbf{X}^n; \mathbf{X}\|_{\alpha} \to 0$ as $n \to \infty$, for some element $\mathbf{X} = (X, \mathbb{X}) \in \mathcal{C}^{\alpha} \times \mathcal{C}_2^{2\alpha}$. We have that

$$\mathbb{X}_{s,t}^n = \mathbb{X}_{s,u}^n + \mathbb{X}_{u,t}^n + X_{s,u}^n \otimes X_{u,t}^n$$

for all triplets $s \le u \le t$ and all $n \ge 1$. Letting $n \to \infty$, each term converges, and we obtain

$$\mathbb{X}_{s,t} = \mathbb{X}_{s,u} + \mathbb{X}_{u,t} + X_{s,u} \otimes X_{u,t}.$$

That is, Chen's relation holds for **X**.

Problem 6

Let $\frac{1}{3} < \alpha < \beta \leq \frac{1}{2}$ and let $\mathbf{X} = (X, \mathbb{X}) \in \mathcal{C} \times \mathcal{C}_2$. For each $n \geq 1$, let $\mathbf{X}^n = (X^n, \mathbb{X}^n) \in \mathcal{C}^\beta$ be a β -Hölder rough path, and assume that $\sup_{n\geq 1} \|\|\mathbf{X}^n\|\|_{\beta} < \infty$. Suppose further that $X^n \to X$ and $\mathbb{X}^n \to \mathbb{X}$ uniformly as $n \to \infty$.

Show that $\mathbf{X} \in \mathscr{C}^{\beta}$, and that $\|\mathbf{X}^n; \mathbf{X}\|_{\alpha} \to 0$ as $n \to \infty$.

Solution:

The results on lower semi-continuity and interpolation of Hölder continuous paths are easily seen to also be valid for two-parameter functions $\mathbb{X} \colon \Delta_{[0,T]} \to \mathbb{R}^{d \times d}$. It is then easy

to deduce that $\|\|\mathbf{X}\|\|_{\beta} < \infty$ and that $\|\mathbf{X}^n; \mathbf{X}\|_{\alpha} \to 0$ as $n \to \infty$. It follows from the previous problem that Chen's relation holds for (X, \mathbb{X}) , and hence that $\mathbf{X} \in \mathscr{C}^{\beta}$.

Problem 7

Part (a) Suppose that the pair (X, \mathbb{X}) satisfies Chen's relation (1). Let $0 \le s < t \le T$, and let $\{s = u_0 < u_1 < \cdots < u_N = t\}$ be a partition of the interval [s, t].

Show that

$$\mathbb{X}_{s,t} = \sum_{i=0}^{N-1} \left(\mathbb{X}_{u_i, u_{i+1}} + X_{s, u_i} \otimes X_{u_i, u_{i+1}} \right).$$

Part (b) Let $\mathbf{X} = (X, \mathbb{X}) \in \mathscr{C}_{g}^{0, \alpha}$ be a geometric rough path. Show that

$$\lim_{\delta \to 0} \sup_{|t-s| < \delta} \frac{|X_{s,t}|}{|t-s|^{\alpha}} = 0, \quad \text{and} \quad \lim_{\delta \to 0} \sup_{|t-s| < \delta} \frac{|\mathbb{X}_{s,t}|}{|t-s|^{2\alpha}} = 0$$

Part (c) Let $\mathbf{X} = (X, \mathbb{X}) \in \mathscr{C}_{g}^{0, \frac{1}{2}}$ be a geometric $\frac{1}{2}$ -Hölder rough path. Prove (using the results of parts (a) and (b)) that \mathbb{X} is necessarily equal to the Riemann–Stieltjes integral of X against itself, i.e. that

$$\mathbb{X}_{s,t} = \lim_{|\pi| \to 0} \sum_{i=0}^{N-1} X_{s,u_i} \otimes X_{u_i,u_{i+1}}$$

where $\pi = \{ s = u_0 < u_1 < \dots < u_N = t \}.$

Solution:

Part (a) One can show by induction on k = 0, 1, ..., N - 1 that

$$\mathbb{X}_{s,u_{k+1}} = \sum_{i=0}^{k} (\mathbb{X}_{u_i,u_{i+1}} + X_{s,u_i} \otimes X_{u_i,u_{i+1}}).$$

Setting k = N - 1 then gives the desired equality.

Part (b) Since $X \in C^{0,\alpha}$, the first limit was proved in the lecture notes. The second limit follows from a nearly identical argument applied to X. In particular, for any $\varepsilon > 0$ we know there exists a smooth path Y such that $\|X - Y\|_{2\alpha} \leq \|\mathbf{X}; \mathbf{Y}\|_{\alpha} < \varepsilon$, where $\mathbf{Y} = (Y, \mathbb{Y})$ and $\mathbb{Y}_{s,t} = \int_s^t (Y_r - Y_s) \otimes dY_r$. We can bound $|\mathbb{Y}_{s,t}|/|t - s|^{2\alpha}$ by an identical argument to the one in the lecture notes.

Part (c) Let $\varepsilon > 0$. By part (b) (with $\alpha = \frac{1}{2}$), there exists a $\delta > 0$ such that

$$\sup_{v-u|<\delta} \frac{|\mathbb{X}_{u,v}|}{|v-u|} < \varepsilon$$

Let $\pi = \{s = u_0 < u_1 < \cdots < u_N = t\}$ be a partition of the interval [s, t] with mesh size $|\pi| < \delta$. Then, using part (a), we have

$$\left| \mathbb{X}_{s,t} - \sum_{i=0}^{N-1} X_{s,u_i} \otimes X_{u_i,u_{i+1}} \right| = \left| \sum_{i=0}^{N-1} \mathbb{X}_{u_i,u_{i+1}} \right| < \sum_{i=0}^{N-1} \varepsilon |u_{i+1} - u_i| = \varepsilon |t-s|.$$

Since $\varepsilon > 0$ may be taken arbitrarily small, the result follows.