Exercise sheet 2 with solutions

Rough Path Theory

Andrew L. Allan

Spring 2021

Problem 1

Let $\beta \in (\frac{1}{3}, \frac{1}{2}]$, and let $\mathbf{X} = (X, \mathbb{X}) \in \mathscr{C}^{\beta}$ be a (for simplicity one-dimensional) β -Hölder rough path. Let B be a one-dimensional standard Brownian motion, and let

$$\mathbb{B}_{s,t} = \int_s^t B_{s,r} \, \mathrm{d}B_r$$

be the Itô rough path lift of B.

Note that, since X is a continuous deterministic path, $\int_s^t X_{s,r} dB_r$ is a well-defined Itô integral. It is not clear that one can directly define the integral of B against X. However, by imposing integration by parts, we can define

$$\int_s^t B_{s,r} \, \mathrm{d}X_r := X_{s,t} B_{s,t} - \int_s^t X_{s,r} \, \mathrm{d}B_r.$$

Let

$$Z_t = \begin{pmatrix} X_t \\ B_t \end{pmatrix}, \qquad \mathbb{Z}_{s,t} = \begin{pmatrix} \mathbb{X}_{s,t} & \int_s^t X_{s,r} \, \mathrm{d}B_r \\ \int_s^t B_{s,r} \, \mathrm{d}X_r & \mathbb{B}_{s,t} \end{pmatrix}.$$

Part (a) Show that $\mathbf{Z} = (Z, \mathbb{Z})$ satisfies Chen's relation almost surely.

Part (b) Let q > 2. Show that

$$\left\|\int_{s}^{t} X_{s,r} \, \mathrm{d}B_{r}\right\|_{L^{q/2}} \le C|t-s|^{\frac{1}{2}+\beta}, \qquad \left\|\int_{s}^{t} B_{s,r} \, \mathrm{d}X_{r}\right\|_{L^{q/2}} \le C|t-s|^{\frac{1}{2}+\beta}$$

for some constant C.

Part (c) Use the Kolmogorov criterion for rough paths to show that **Z** is an α -Hölder rough path for any $\alpha \in (\frac{1}{3}, \beta)$.

Solution:

Part (a) We already know that $(Z^1, \mathbb{Z}^{11}) = (X, \mathbb{X})$ and $(Z^2, \mathbb{Z}^{22}) = (B, \mathbb{B})$ satisfy Chen's relation. It remains to check the cross terms. This is not difficult. The calculation for \mathbb{Z}^{21} is made easier by first noticing that

$$\int_{s}^{t} B_{s,r} \, \mathrm{d}X_{r} = X_{s,t} B_{s,t} - \int_{s}^{t} X_{s,r} \, \mathrm{d}B_{r}$$
$$= \int_{s}^{t} X_{s,t} \, \mathrm{d}B_{r} - \int_{s}^{t} X_{s,r} \, \mathrm{d}B_{r} = \int_{s}^{t} X_{r,t} \, \mathrm{d}B_{r}.$$
(1)

Part (b) By the Burkholder–Davis–Gundy inequality, we have

$$\mathbb{E}\left[\left|\int_{s}^{t} X_{s,r} \,\mathrm{d}B_{r}\right|^{\frac{q}{2}}\right] \lesssim \left(\int_{s}^{t} (X_{s,r})^{2} \,\mathrm{d}r\right)^{\frac{q}{4}} \lesssim \left(\int_{s}^{t} |r-s|^{2\beta} \,\mathrm{d}r\right)^{\frac{q}{4}} \lesssim |t-s|^{(1+2\beta)\frac{q}{4}},$$

and hence that

$$\left\| \int_{s}^{t} X_{s,r} \, \mathrm{d}B_{r} \right\|_{L^{q/2}} \lesssim |t-s|^{\frac{1}{2}+\beta}.$$

Using the expression on the right-hand side of (1), the second estimate follows by a nearly identical argument.

Part (c) It is clear that $||X_{s,t}||_{L^q} \leq |t-s|^{\beta}$ and $||\mathbb{X}_{s,t}||_{L^{q/2}} \leq |t-s|^{2\beta}$, and it was shown in the lectures that $||B_{s,t}||_{L^q} \leq |t-s|^{\frac{1}{2}}$ and $||\mathbb{B}_{s,t}||_{L^{q/2}} \leq |t-s|$. Combining these estimates with the ones in the previous part, we have that

$$||Z_{s,t}||_{L^q} \lesssim |t-s|^{\beta}, \qquad ||\mathbb{Z}_{s,t}||_{L^{q/2}} \lesssim |t-s|^{2\beta}$$

It then follows from the Kolmogorov criterion for rough paths that \mathbf{Z} is an α -Hölder rough path for any $\alpha \in (\frac{1}{3}, \beta - \frac{1}{q})$. It remains to let $q \to \infty$.

Problem 2

Let $\alpha, \gamma \in (0, 1]$ such that $\alpha(1 + \gamma) > 1$. Let $X \in \mathcal{C}^{\alpha}([0, T]; \mathbb{R}^d)$ and $f \in C^{1+\gamma}(\mathbb{R}^d; \mathbb{R})$. Prove that $\int_0^T Df(X_u) \, \mathrm{d}X_u$ is a well-defined Young integral, and that

$$f(X_T) = f(X_0) + \int_0^T Df(X_u) \,\mathrm{d}X_u$$

Solution:

We first note that, since $Df \in C^{\gamma}$, we have

$$|Df(X_t) - Df(X_s)| \lesssim |X_{s,t}|^{\gamma} \lesssim |t - s|^{\alpha \gamma},$$

so that $Df(X) \in \mathcal{C}^{\alpha\gamma}$. Since $\alpha + \alpha\gamma > 1$, we know that the Young integral

$$\int_0^T Df(X_u) \, \mathrm{d}X_u = \lim_{|\pi| \to 0} \sum_{[s,t] \in \pi} Df(X_s) X_{s,t}$$

exists. We have

$$f(X_t) - f(X_s) - Df(X_s)X_{s,t} = \int_0^1 \left(Df(X_s + rX_{s,t}) - Df(X_s) \right) X_{s,t} \, \mathrm{d}r,$$

and hence

$$\left| f(X_t) - f(X_s) - Df(X_s) X_{s,t} \right| \lesssim |X_{s,t}|^{1+\gamma}$$

Let π be a partition of [0, T]. Then

$$\left| f(X_T) - f(X_0) - \int_0^T Df(X_u) \, \mathrm{d}X_u \right| = \lim_{|\pi| \to 0} \left| \sum_{[s,t] \in \pi} \left(f(X_t) - f(X_s) - Df(X_s) X_{s,t} \right) \right|$$

$$\lesssim \lim_{|\pi| \to 0} \sum_{[s,t] \in \pi} |X_{s,t}|^{1+\gamma}$$

$$\lesssim \lim_{|\pi| \to 0} \sum_{[s,t] \in \pi} |t - s|^{\alpha(1+\gamma)} = 0.$$

Problem 3

Let $\alpha \in (\frac{1}{3}, \frac{1}{2}]$ and $X \in \mathcal{C}^{\alpha}$. Convince yourself that the space $\mathscr{D}_X^{2\alpha}$ of controlled paths with respect to X, when equipped with the norm

$$||Y,Y'||_{\mathscr{D}^{2\alpha}_X} = |Y_0| + |Y'_0| + ||Y'||_{\alpha} + ||R^Y||_{2\alpha},$$

becomes a Banach space.

Solution: Easy.

Problem 4

For some $\alpha \in (\frac{1}{3}, \frac{1}{2}]$, let $F \in \mathcal{C}^{2\alpha}$ be a 2α -Hölder continuous path, and let $\mathbf{X} = (X, \mathbb{X}) \in \mathscr{C}^{\alpha}$ and $\tilde{\mathbf{X}} = (\tilde{X}, \tilde{\mathbb{X}}) \in \mathscr{C}^{\alpha}$ be two rough paths such that

$$\tilde{X}_t = X_t, \qquad \tilde{X}_{s,t} = X_{s,t} + F_{s,t} \qquad \text{for all} \quad s \le t$$

Let $(Y, Y') \in \mathscr{D}_X^{2\alpha} = \mathscr{D}_{\tilde{X}}^{2\alpha}$. Show that

$$\int_0^T Y_u \,\mathrm{d}\tilde{\mathbf{X}}_u = \int_0^T Y_u \,\mathrm{d}\mathbf{X}_u + \int_0^T Y_u' \,\mathrm{d}F_u.$$

Solution:

Since $Y' \in \mathcal{C}^{\alpha}$ and $F \in \mathcal{C}^{2\alpha}$, and $\alpha + 2\alpha > 1$, we know that

$$\int_0^T Y'_u \,\mathrm{d}F_u = \lim_{|\pi| \to 0} \sum_{[s,t] \in \pi} Y'_s F_{s,t}$$

exists as a Young integral. We have

$$\int_0^T Y_u \,\mathrm{d}\tilde{\mathbf{X}}_u = \lim_{|\pi| \to 0} \sum_{[s,t] \in \pi} Y_s \tilde{X}_{s,t} + Y'_s \tilde{\mathbb{X}}_{s,t}$$
$$= \lim_{|\pi| \to 0} \sum_{[s,t] \in \pi} Y_s X_{s,t} + Y'_s \mathbb{X}_{s,t} + Y'_s F_{s,t}$$
$$= \int_0^T Y_u \,\mathrm{d}\mathbf{X}_u + \int_0^T Y'_u \,\mathrm{d}F_u.$$

Problem 5

Let $\frac{1}{3} < \alpha \leq \frac{1}{2}$ and $0 < \beta \leq \alpha$ such that $2\alpha + \beta > 1$, and define $\gamma = \alpha + \beta$. Let $X \in \mathcal{C}^{\alpha}$. Let's say that a pair (Y, Y') is a (β, γ) -controlled path if $Y \in \mathcal{C}^{\alpha}$, $Y' \in \mathcal{C}^{\beta}$ and $R^{Y} \in \mathcal{C}^{\gamma}_{2}$, where R^{Y} is defined by

$$Y_{s,t} = Y'_{s}X_{s,t} + R^{Y}_{s,t}.$$

Part (a) Let $f \in C^{1+\beta/\alpha}$. Show that (f(X), Df(X)) is a (β, γ) -controlled path.

Part (b) Let $\mathbf{X} = (X, \mathbb{X}) \in \mathscr{C}^{\alpha}$ be a rough path, and let (Y, Y') be a (β, γ) -controlled path. Use the sewing lemma to prove that the limit

$$\int_0^t Y_u \, \mathrm{d}\mathbf{X}_u := \lim_{|\pi| \to 0} \sum_{[u,v] \in \pi} Y_u X_{u,v} + Y'_u \mathbb{X}_{u,v}$$

exists.

Solution:

Part (a) It is clear that $f(X) \in \mathcal{C}^{\alpha}$. We have $|Df(X_t) - Df(X_s)| \leq |X_{s,t}|^{\beta/\alpha} \leq |t-s|^{\beta}$, so that $Df(X) \in \mathcal{C}^{\beta}$. Let

$$R_{s,t}^{f(X)} := f(X_t) - f(X_s) - Df(X_s)X_{s,t}.$$

Then

$$\begin{aligned} |R_{s,t}^{f(X)}| &= \left| f(X_t) - f(X_s) - Df(X_s) X_{s,t} \right| \\ &= \left| \int_0^1 \left(Df(X_s + rX_{s,t}) - Df(X_s) \right) X_{s,t} \, \mathrm{d}r \right| \\ &\lesssim |X_{s,t}|^{1+\beta/\alpha} \lesssim |t-s|^{\gamma}, \end{aligned}$$

so that $R^{f(X)} \in \mathcal{C}_2^{\gamma}$.

Part (b) Let $A_{s,t} = Y_s X_{s,t} + Y'_s X_{s,t}$, and let $\delta A_{s,u,t} = A_{s,t} - A_{s,u} - A_{u,t}$ for $s \leq u \leq t$. Exactly as in the lectures, one can show using Chen's relation that

$$\delta A_{s,u,t} = -R_{s,u}^Y X_{u,t} - Y_{s,u}' \mathbb{X}_{u,t},$$

and hence

$$|\delta A_{s,u,t}| = |R_{s,u}^Y X_{u,t} + Y_{s,u}' X_{u,t}| \lesssim |t-s|^{\gamma+\alpha} + |t-s|^{\beta+2\alpha}$$

Since $\gamma + \alpha = \beta + 2\alpha > 1$, it follows from the sewing lemma that the desired limit does indeed exist.