Exercise sheet 2 with solutions Rough Path Theory

Andrew L. Allan

Spring 2021

Problem 1

Let $\beta \in\left(\frac{1}{3}, \frac{1}{2}\right]$, and let $\mathbf{X}=(X, \mathbb{X}) \in \mathscr{C}^{\beta}$ be a (for simplicity one-dimensional) β-Hölder rough path. Let B be a one-dimensional standard Brownian motion, and let

$$
\mathbb{B}_{s, t}=\int_{s}^{t} B_{s, r} \mathrm{~d} B_{r}
$$

be the Itô rough path lift of B.
Note that, since X is a continuous deterministic path, $\int_{s}^{t} X_{s, r} \mathrm{~d} B_{r}$ is a well-defined Itô integral. It is not clear that one can directly define the integral of B against X. However, by imposing integration by parts, we can define

$$
\int_{s}^{t} B_{s, r} \mathrm{~d} X_{r}:=X_{s, t} B_{s, t}-\int_{s}^{t} X_{s, r} \mathrm{~d} B_{r} .
$$

Let

$$
Z_{t}=\binom{X_{t}}{B_{t}}, \quad \mathbb{Z}_{s, t}=\left(\begin{array}{cc}
\mathbb{X}_{s, t} & \int_{s}^{t} X_{s, r} \mathrm{~d} B_{r} \\
\int_{s}^{t} B_{s, r} \mathrm{~d} X_{r} & \mathbb{B}_{s, t}
\end{array}\right)
$$

Part (a) Show that $\mathbf{Z}=(Z, \mathbb{Z})$ satisfies Chen's relation almost surely.
Part (b) Let $q>2$. Show that

$$
\left\|\int_{s}^{t} X_{s, r} \mathrm{~d} B_{r}\right\|_{L^{q / 2}} \leq C|t-s|^{\frac{1}{2}+\beta}, \quad\left\|\int_{s}^{t} B_{s, r} \mathrm{~d} X_{r}\right\|_{L^{q / 2}} \leq C|t-s|^{\frac{1}{2}+\beta}
$$

for some constant C.
Part (c) Use the Kolmogorov criterion for rough paths to show that \mathbf{Z} is an α-Hölder rough path for any $\alpha \in\left(\frac{1}{3}, \beta\right)$.

Solution:

Part (a) We already know that $\left(Z^{1}, \mathbb{Z}^{11}\right)=(X, \mathbb{X})$ and $\left(Z^{2}, \mathbb{Z}^{22}\right)=(B, \mathbb{B})$ satisfy Chen's relation. It remains to check the cross terms. This is not difficult. The calculation for \mathbb{Z}^{21} is made easier by first noticing that

$$
\begin{align*}
\int_{s}^{t} B_{s, r} \mathrm{~d} X_{r} & =X_{s, t} B_{s, t}-\int_{s}^{t} X_{s, r} \mathrm{~d} B_{r} \\
& =\int_{s}^{t} X_{s, t} \mathrm{~d} B_{r}-\int_{s}^{t} X_{s, r} \mathrm{~d} B_{r}=\int_{s}^{t} X_{r, t} \mathrm{~d} B_{r} \tag{1}
\end{align*}
$$

Part (b) By the Burkholder-Davis-Gundy inequality, we have

$$
\mathbb{E}\left[\left|\int_{s}^{t} X_{s, r} \mathrm{~d} B_{r}\right|^{\frac{q}{2}}\right] \lesssim\left(\int_{s}^{t}\left(X_{s, r}\right)^{2} \mathrm{~d} r\right)^{\frac{q}{4}} \lesssim\left(\int_{s}^{t}|r-s|^{2 \beta} \mathrm{~d} r\right)^{\frac{q}{4}} \lesssim|t-s|^{(1+2 \beta) \frac{q}{4}}
$$

and hence that

$$
\left\|\int_{s}^{t} X_{s, r} \mathrm{~d} B_{r}\right\|_{L^{q / 2}} \lesssim|t-s|^{\frac{1}{2}+\beta}
$$

Using the expression on the right-hand side of (1), the second estimate follows by a nearly identical argument.

Part (c) It is clear that $\left\|X_{s, t}\right\|_{L^{q}} \lesssim|t-s|^{\beta}$ and $\left\|\mathbb{X}_{s, t}\right\|_{L^{q / 2}} \lesssim|t-s|^{2 \beta}$, and it was shown in the lectures that $\left\|B_{s, t}\right\|_{L^{q}} \lesssim|t-s|^{\frac{1}{2}}$ and $\left\|\mathbb{B}_{s, t}\right\|_{L^{q / 2}} \lesssim|t-s|$. Combining these estimates with the ones in the previous part, we have that

$$
\left\|Z_{s, t}\right\|_{L^{q}} \lesssim|t-s|^{\beta}, \quad\left\|\mathbb{Z}_{s, t}\right\|_{L^{q / 2}} \lesssim|t-s|^{2 \beta}
$$

It then follows from the Kolmogorov criterion for rough paths that \mathbf{Z} is an α-Hölder rough path for any $\alpha \in\left(\frac{1}{3}, \beta-\frac{1}{q}\right)$. It remains to let $q \rightarrow \infty$.

Problem 2

Let $\alpha, \gamma \in(0,1]$ such that $\alpha(1+\gamma)>1$. Let $X \in \mathcal{C}^{\alpha}\left([0, T] ; \mathbb{R}^{d}\right)$ and $f \in C^{1+\gamma}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$. Prove that $\int_{0}^{T} D f\left(X_{u}\right) \mathrm{d} X_{u}$ is a well-defined Young integral, and that

$$
f\left(X_{T}\right)=f\left(X_{0}\right)+\int_{0}^{T} D f\left(X_{u}\right) \mathrm{d} X_{u}
$$

Solution:

We first note that, since $D f \in C^{\gamma}$, we have

$$
\left|D f\left(X_{t}\right)-D f\left(X_{s}\right)\right| \lesssim\left|X_{s, t}\right|^{\gamma} \lesssim|t-s|^{\alpha \gamma}
$$

so that $D f(X) \in \mathcal{C}^{\alpha \gamma}$. Since $\alpha+\alpha \gamma>1$, we know that the Young integral

$$
\int_{0}^{T} D f\left(X_{u}\right) \mathrm{d} X_{u}=\lim _{|\pi| \rightarrow 0} \sum_{[s, t] \in \pi} D f\left(X_{s}\right) X_{s, t}
$$

exists. We have

$$
f\left(X_{t}\right)-f\left(X_{s}\right)-D f\left(X_{s}\right) X_{s, t}=\int_{0}^{1}\left(D f\left(X_{s}+r X_{s, t}\right)-D f\left(X_{s}\right)\right) X_{s, t} \mathrm{~d} r
$$

and hence

$$
\left|f\left(X_{t}\right)-f\left(X_{s}\right)-D f\left(X_{s}\right) X_{s, t}\right| \lesssim\left|X_{s, t}\right|^{1+\gamma}
$$

Let π be a partition of $[0, T]$. Then

$$
\begin{aligned}
\left|f\left(X_{T}\right)-f\left(X_{0}\right)-\int_{0}^{T} D f\left(X_{u}\right) \mathrm{d} X_{u}\right| & =\lim _{|\pi| \rightarrow 0}\left|\sum_{[s, t] \in \pi}\left(f\left(X_{t}\right)-f\left(X_{s}\right)-D f\left(X_{s}\right) X_{s, t}\right)\right| \\
& \lesssim \lim _{|\pi| \rightarrow 0} \sum_{[s, t] \in \pi}\left|X_{s, t}\right|^{1+\gamma} \\
& \lesssim \lim _{|\pi| \rightarrow 0} \sum_{[s, t] \in \pi}|t-s|^{\alpha(1+\gamma)}=0
\end{aligned}
$$

Problem 3

Let $\alpha \in\left(\frac{1}{3}, \frac{1}{2}\right]$ and $X \in \mathcal{C}^{\alpha}$. Convince yourself that the space $\mathscr{D}_{X}^{2 \alpha}$ of controlled paths with respect to X, when equipped with the norm

$$
\left\|Y, Y^{\prime}\right\|_{\mathscr{D}_{X}^{2 \alpha}}=\left|Y_{0}\right|+\left|Y_{0}^{\prime}\right|+\left\|Y^{\prime}\right\|_{\alpha}+\left\|R^{Y}\right\|_{2 \alpha}
$$

becomes a Banach space.
Solution: Easy.

Problem 4

For some $\alpha \in\left(\frac{1}{3}, \frac{1}{2}\right]$, let $F \in \mathcal{C}^{2 \alpha}$ be a 2α-Hölder continuous path, and let $\mathbf{X}=(X, \mathbb{X}) \in$ \mathscr{C}^{α} and $\tilde{\mathbf{X}}=(\tilde{X}, \tilde{\mathbb{X}}) \in \mathscr{C}^{\alpha}$ be two rough paths such that

$$
\tilde{X}_{t}=X_{t}, \quad \tilde{\mathbb{X}}_{s, t}=\mathbb{X}_{s, t}+F_{s, t} \quad \text { for all } \quad s \leq t
$$

Let $\left(Y, Y^{\prime}\right) \in \mathscr{D}_{X}^{2 \alpha}=\mathscr{D}_{\tilde{X}}^{2 \alpha}$. Show that

$$
\int_{0}^{T} Y_{u} \mathrm{~d} \tilde{\mathbf{X}}_{u}=\int_{0}^{T} Y_{u} \mathrm{~d} \mathbf{X}_{u}+\int_{0}^{T} Y_{u}^{\prime} \mathrm{d} F_{u}
$$

Solution:

Since $Y^{\prime} \in \mathcal{C}^{\alpha}$ and $F \in \mathcal{C}^{2 \alpha}$, and $\alpha+2 \alpha>1$, we know that

$$
\int_{0}^{T} Y_{u}^{\prime} \mathrm{d} F_{u}=\lim _{|\pi| \rightarrow 0} \sum_{[s, t] \in \pi} Y_{s}^{\prime} F_{s, t}
$$

exists as a Young integral. We have

$$
\begin{aligned}
\int_{0}^{T} Y_{u} \mathrm{~d} \tilde{\mathbf{X}}_{u} & =\lim _{|\pi| \rightarrow 0} \sum_{[s, t] \in \pi} Y_{s} \tilde{X}_{s, t}+Y_{s}^{\prime} \tilde{\mathbb{X}}_{s, t} \\
& =\lim _{|\pi| \rightarrow 0} \sum_{[s, t] \in \pi} Y_{s} X_{s, t}+Y_{s}^{\prime} \mathbb{X}_{s, t}+Y_{s}^{\prime} F_{s, t} \\
& =\int_{0}^{T} Y_{u} \mathrm{~d} \mathbf{X}_{u}+\int_{0}^{T} Y_{u}^{\prime} \mathrm{d} F_{u}
\end{aligned}
$$

Problem 5

Let $\frac{1}{3}<\alpha \leq \frac{1}{2}$ and $0<\beta \leq \alpha$ such that $2 \alpha+\beta>1$, and define $\gamma=\alpha+\beta$. Let $X \in \mathcal{C}^{\alpha}$. Let's say that a pair $\left(Y, Y^{\prime}\right)$ is a (β, γ)-controlled path if $Y \in \mathcal{C}^{\alpha}, Y^{\prime} \in \mathcal{C}^{\beta}$ and $R^{Y} \in \mathcal{C}_{2}^{\gamma}$, where R^{Y} is defined by

$$
Y_{s, t}=Y_{s}^{\prime} X_{s, t}+R_{s, t}^{Y}
$$

Part (a) Let $f \in C^{1+\beta / \alpha}$. Show that $(f(X), D f(X))$ is a (β, γ)-controlled path.
Part (b) Let $\mathbf{X}=(X, \mathbb{X}) \in \mathscr{C}^{\alpha}$ be a rough path, and let $\left(Y, Y^{\prime}\right)$ be a (β, γ)-controlled path. Use the sewing lemma to prove that the limit

$$
\int_{0}^{t} Y_{u} \mathrm{~d} \mathbf{X}_{u}:=\lim _{|\pi| \rightarrow 0} \sum_{[u, v] \in \pi} Y_{u} X_{u, v}+Y_{u}^{\prime} \mathbb{X}_{u, v}
$$

exists.

Solution:

Part (a) It is clear that $f(X) \in \mathcal{C}^{\alpha}$. We have $\left|D f\left(X_{t}\right)-D f\left(X_{s}\right)\right| \lesssim\left|X_{s, t}\right|^{\beta / \alpha} \lesssim|t-s|^{\beta}$, so that $D f(X) \in \mathcal{C}^{\beta}$. Let

$$
R_{s, t}^{f(X)}:=f\left(X_{t}\right)-f\left(X_{s}\right)-D f\left(X_{s}\right) X_{s, t} .
$$

Then

$$
\begin{aligned}
\left|R_{s, t}^{f(X)}\right| & =\left|f\left(X_{t}\right)-f\left(X_{s}\right)-D f\left(X_{s}\right) X_{s, t}\right| \\
& =\left|\int_{0}^{1}\left(D f\left(X_{s}+r X_{s, t}\right)-D f\left(X_{s}\right)\right) X_{s, t} \mathrm{~d} r\right| \\
& \lesssim\left|X_{s, t}\right|^{1+\beta / \alpha} \lesssim|t-s|^{\gamma},
\end{aligned}
$$

so that $R^{f(X)} \in \mathcal{C}_{2}^{\gamma}$.
Part (b) Let $A_{s, t}=Y_{s} X_{s, t}+Y_{s}^{\prime} \mathbb{X}_{s, t}$, and let $\delta A_{s, u, t}=A_{s, t}-A_{s, u}-A_{u, t}$ for $s \leq u \leq t$. Exactly as in the lectures, one can show using Chen's relation that

$$
\delta A_{s, u, t}=-R_{s, u}^{Y} X_{u, t}-Y_{s, u}^{\prime} \mathbb{X}_{u, t}
$$

and hence

$$
\left|\delta A_{s, u, t}\right|=\left|R_{s, u}^{Y} X_{u, t}+Y_{s, u}^{\prime} \mathbb{X}_{u, t}\right| \lesssim|t-s|^{\gamma+\alpha}+|t-s|^{\beta+2 \alpha} .
$$

Since $\gamma+\alpha=\beta+2 \alpha>1$, it follows from the sewing lemma that the desired limit does indeed exist.

