Exercise sheet 3 with solutions

Rough Path Theory

Andrew L. Allan

Spring 2021

Problem 1

Recall that, for a rough path $\mathbf{X} = (X, \mathbb{X}) \in \mathscr{C}^{\alpha}$, the bracket of \mathbf{X} is defined as the path $[\mathbf{X}]: [0,T] \to \mathbb{R}^{d \times d}$ given by

$$[\mathbf{X}]_t := X_{0,t} \otimes X_{0,t} - 2 \operatorname{Sym}(\mathbb{X}_{0,t}).$$

Show that

$$[\mathbf{X}]_{s,t} = X_{s,t} \otimes X_{s,t} - 2\operatorname{Sym}(\mathbb{X}_{s,t})$$

for all $(s,t) \in \Delta_{[0,T]}$.

Solution:

We have

$$\begin{split} [\mathbf{X}]_{s,t} &= [\mathbf{X}]_t - [\mathbf{X}]_s \\ &= X_{0,t} \otimes X_{0,t} - X_{0,s} \otimes X_{0,s} - 2 \operatorname{Sym}(\mathbb{X}_{0,t} - \mathbb{X}_{0,s}) \\ &= X_{0,t} \otimes X_{0,t} - X_{0,s} \otimes X_{0,s} - 2 \operatorname{Sym}(\mathbb{X}_{s,t} + X_{0,s} \otimes X_{s,t}) \\ &= X_{0,t} \otimes X_{0,t} - X_{0,s} \otimes X_{0,s} - 2 \operatorname{Sym}(\mathbb{X}_{s,t}) - X_{0,s} \otimes X_{s,t} - X_{s,t} \otimes X_{0,s} \\ &= X_{0,t} \otimes X_{0,t} - X_{0,s} \otimes X_{0,t} - 2 \operatorname{Sym}(\mathbb{X}_{s,t}) - X_{s,t} \otimes X_{0,s} \\ &= X_{s,t} \otimes X_{0,t} - 2 \operatorname{Sym}(\mathbb{X}_{s,t}) - X_{s,t} \otimes X_{0,s} \\ &= X_{s,t} \otimes X_{s,t} - 2 \operatorname{Sym}(\mathbb{X}_{s,t}). \end{split}$$

Problem 2

Let $\mathbf{X} = (X, \mathbb{X}) \in \mathscr{C}^{\alpha}$ be a rough path, and let $\Gamma \in \mathcal{C}^{2\alpha}$. Let $Z_t = X_t + \Gamma_t$ for $t \in [0, T]$, and

$$\mathbb{Z}_{s,t} = \mathbb{X}_{s,t} + \int_{s}^{t} X_{s,u} \otimes d\Gamma_{u} + \int_{s}^{t} \Gamma_{s,u} \otimes dX_{u} + \int_{s}^{t} \Gamma_{s,u} \otimes d\Gamma_{u}$$

for $(s,t) \in \Delta_{[0,T]}$, where the three integrals on the right-hand side are defined as Young integrals.

Part (a) Show that $\mathbf{Z} = (Z, \mathbb{Z})$ is a rough path.

Part (b) Show that [Z] = [X].

Part (c) Deduce that **Z** is weakly geometric if and only if **X** is weakly geometric.

Solution:

Part (a) From the estimate for Young integrals which we got directly from the sewing lemma, we have that

$$\left| \int_{s}^{t} X_{s,u} \otimes d\Gamma_{u} \right| = \left| \int_{s}^{t} X_{u} \otimes d\Gamma_{u} - X_{s} \otimes \Gamma_{s,t} \right| \lesssim |t - s|^{3\alpha},$$

and similarly

$$\left| \int_{s}^{t} \Gamma_{s,u} \otimes dX_{u} \right| \lesssim |t - s|^{3\alpha}, \qquad \left| \int_{s}^{t} \Gamma_{s,u} \otimes d\Gamma_{u} \right| \lesssim |t - s|^{4\alpha}.$$

It is then clear that $|\mathbb{Z}_{s,t}| \lesssim |t-s|^{2\alpha}$, so that $\mathbb{Z} \in \mathcal{C}_2^{2\alpha}$.

It remains to check that (Z,\mathbb{Z}) satisfies Chen's relation, which is an easy calculation.

Part (b) By the integration by parts formula for Young integration, we deduce that

$$\operatorname{Sym}\left(\int_{s}^{t} X_{s,u} \otimes d\Gamma_{u} + \int_{s}^{t} \Gamma_{s,u} \otimes dX_{u}\right) = \frac{1}{2} (X_{s,t} \otimes \Gamma_{s,t} + \Gamma_{s,t} \otimes X_{s,t}).$$

We then have

$$[\mathbf{Z}]_{s,t} = Z_{s,t} \otimes Z_{s,t} - 2\operatorname{Sym}(\mathbb{Z}_{s,t})$$

$$= (X_{s,t} + \Gamma_{s,t}) \otimes (X_{s,t} + \Gamma_{s,t}) - 2\operatorname{Sym}(\mathbb{X}_{s,t}) - X_{s,t} \otimes \Gamma_{s,t} - \Gamma_{s,t} \otimes X_{s,t} - \Gamma_{s,t} \otimes \Gamma_{s,t}$$

$$= X_{s,t} \otimes X_{s,t} - 2\operatorname{Sym}(\mathbb{X}_{s,t})$$

$$= [\mathbf{X}]_{s,t}.$$

Part (c) Simply recall that \mathbf{X} is weakly geometric if and only if $[\mathbf{X}] = 0$, and use the result of part (b).

Problem 3

Let $\mathbf{X} = (X, \mathbb{X}) \in \mathscr{C}^{\alpha}$ be a rough path, and suppose that $(Y, Y') \in \mathscr{D}_{X}^{2\alpha}$ and $(Y', Y'') \in \mathscr{D}_{X}^{2\alpha}$ are controlled paths. Suppose further that

$$Y_t = Y_0 + \int_0^t Y_s' \, \mathrm{d}\mathbf{X}_s + \Gamma_t$$

for all $t \in [0, T]$, for some path $\Gamma \in \mathcal{C}^{2\alpha}$. Let $f \in \mathbb{C}^3$.

Prove that

$$f(Y_T) = f(Y_0) + \int_0^T Df(Y_u) Y_u' \, d\mathbf{X}_u + \int_0^T Df(Y_u) \, d\Gamma_u + \frac{1}{2} \int_0^T D^2 f(Y_u) (Y_u' \otimes Y_u') \, d[\mathbf{X}]_u.$$

Solution:

Taking a second order Taylor expansion, we have

$$f(Y_t) - f(Y_s) = Df(Y_s)Y_{s,t} + \frac{1}{2}D^2f(Y_s)(Y_{s,t} \otimes Y_{s,t}) + O(|t-s|^{3\alpha}).$$

We have that

$$Y_{s,t} = \int_s^t Y_u' \, d\mathbf{X}_u + \Gamma_{s,t}$$
$$= Y_s' X_{s,t} + Y_s'' X_{s,t} + \Gamma_{s,t} + O(|t-s|^{3\alpha})$$

Substituting this into the above, we obtain

$$f(Y_t) - f(Y_s) = Df(Y_s) \left(Y_s' X_{s,t} + Y_s'' X_{s,t} + \Gamma_{s,t} \right) + \frac{1}{2} D^2 f(Y_s) \left(Y_s' X_{s,t} \otimes Y_s' X_{s,t} \right) + O(|t-s|^{3\alpha}).$$

We now introduce the term

$$D^2 f(Y_s)(Y_s' \otimes Y_s') \mathbb{X}_{s,t} = D^2 f(Y_s)(Y_s' \otimes Y_s') \operatorname{Sym}(\mathbb{X}_{s,t}) + D^2 f(Y_s)(Y_s' \otimes Y_s') \operatorname{Anti}(\mathbb{X}_{s,t}),$$

where Sym and Anti denote the symmetric and antisymmetric parts. We recall that the contraction of a symmetric tensor (here D^2f) with an antisymmetric tensor (here Anti(\mathbb{X})) always vanishes. Thus,

$$D^2 f(Y_s)(Y_s' \otimes Y_s') \mathbb{X}_{s,t} = D^2 f(Y_s)(Y_s' \otimes Y_s') \operatorname{Sym}(\mathbb{X}_{s,t}).$$

We then have

$$f(Y_{t}) - f(Y_{s}) = Df(Y_{s}) \left(Y_{s}' X_{s,t} + Y_{s}'' \mathbb{X}_{s,t} + \Gamma_{s,t} \right) + D^{2} f(Y_{s}) (Y_{s}' \otimes Y_{s}') \mathbb{X}_{s,t}$$

$$+ \frac{1}{2} D^{2} f(Y_{s}) \left(Y_{s}' X_{s,t} \otimes Y_{s}' X_{s,t} \right) - D^{2} f(Y_{s}) (Y_{s}' \otimes Y_{s}') \operatorname{Sym}(\mathbb{X}_{s,t}) + O(|t - s|^{3\alpha})$$

$$= Df(Y_{s}) Y_{s}' X_{s,t} + \left(Df(Y_{s}) Y_{s}'' + D^{2} f(Y_{s}) (Y_{s}' \otimes Y_{s}') \right) \mathbb{X}_{s,t} + Df(Y_{s}) \Gamma_{s,t}$$

$$+ \frac{1}{2} D^{2} f(Y_{s}) (Y_{s}' \otimes Y_{s}') (X_{s,t} \otimes X_{s,t} - 2 \operatorname{Sym}(\mathbb{X}_{s,t})) + O(|t - s|^{3\alpha})$$

$$= \left(Df(Y) Y' \right)_{s} X_{s,t} + \left(Df(Y) Y' \right)_{s}' \mathbb{X}_{s,t} + Df(Y_{s}) \Gamma_{s,t}$$

$$+ \frac{1}{2} D^{2} f(Y_{s}) (Y_{s}' \otimes Y_{s}') [\mathbf{X}]_{s,t} + O(|t - s|^{3\alpha}) .$$

Thus,

$$f(Y_T) - f(Y_0) = \lim_{|\pi| \to 0} \sum_{[s,t] \in \pi} (f(Y_t) - f(Y_s))$$

= $\int_0^T Df(Y_u) Y_u' d\mathbf{X}_u + \int_0^T Df(Y_u) d\Gamma_u + \frac{1}{2} \int_0^T D^2 f(Y_u) (Y_u' \otimes Y_u') [\mathbf{X}]_u.$

Problem 4

Suppose that $\mathbf{X} = (X, \mathbb{X}) \in \mathscr{C}^{\alpha}$ and $(K, K') \in \mathscr{D}_{X}^{2\alpha}$ are such that the rough integral $\int_{0}^{\infty} K_{u} \, \mathrm{d}\mathbf{X}_{u}$ takes values in \mathbb{R} . Let V be the path given by

$$V_t = \exp\left(\int_0^t K_u \, \mathrm{d}\mathbf{X}_u - \frac{1}{2} \int_0^t (K_u \otimes K_u) \, \mathrm{d}[\mathbf{X}]_u\right), \qquad t \in [0, T].$$

Prove that V is the unique solution of the rough differential equation

$$V_t = 1 + \int_0^t V_u K_u \, d\mathbf{X}_u, \qquad t \in [0, T].$$
 (1)

Solution:

Define the controlled path

$$(Z, Z') := \left(\int_0^{\cdot} K_u \, \mathrm{d}\mathbf{X}_u, K \right) \in \mathscr{D}_X^{2\alpha},$$

and then let $\mathbf{Z} = (Z, \mathbb{Z})$ be the canonical rough path lift of Z as defined in the lectures, so that

 $\mathbb{Z}_{s,t} := \int_s^t Z_{s,u} \, \mathrm{d} Z_u.$

By the associativity and consistency of rough integration, for any controlled path V, we have that

$$\int_0^t V_u K_u \, \mathrm{d} \mathbf{X}_u = \int_0^t V_u \, \mathrm{d} Z_u = \int_0^t V_u \, \mathrm{d} \mathbf{Z}_u.$$

Thus, a path V satisfies the RDE (1) if and only if it satisfies

$$V_t = 1 + \int_0^t V_u \, \mathrm{d}\mathbf{Z}_u,$$

which we recall has a unique solution. Moreover, the solution is given by

$$V_t = \exp\left(Z_t - \frac{1}{2}[\mathbf{Z}]_t\right).$$

Recalling from the lectures that

$$[\mathbf{Z}]_t = \int_0^t (K_u \otimes K_u) \, \mathrm{d}[\mathbf{X}]_u,$$

we obtain the desired representation of V.