Rough Path Theory

Lecture Notes

Andrew L. Allan

Abstract

These notes are based on a lecture course I gave at ETH Ziirich in Spring semester
2021. They are intended to provide a gentle but rigorous introduction to the theory of
rough paths, with a particular focus on their integration theory and associated rough
differential equations, and how the theory relates to and enhances the field of stochastic
calculus.

The first motivation is to understand the limitations of classical notions of integration
to handle paths of very low regularity, and to see how the rough integral succeeds where
other notions fail. We then construct rough integrals and establish solutions of differential
equations driven by rough paths, as well as the continuity of these objects with respect to
the paths involved, and their consistency with stochastic integration and SDEs. Various
applications and extensions of the theory are then discussed.
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1 Introduction

Numerous real world phenomena require us to model and analyze systems of controlled!
differential equations of the form
Y, = f(¥;) dX. (1.1)

Here f is some (typically nonlinear) function (also known as a “vector field”), X : [0, T] — R?
is an input signal, and Y: [0, 7] — R™ is the output/solution.

Of course, we haven’t yet given a precise meaning to the right-hand side of . If
the signal X is “nice”, let’s say at least absolutely continuous, then we have the natural
interpretation dX; = d(ﬁt dt = X, dt, and we obtain the very classical ODE

Y; = f(Y) X,

In many applications, particularly in the context of systems affected by random noise,
as is commonplace in e.g. engineering and financial applications, the signal X is not so nice,
and in particular does not admit a classical derivative % (at least not as a function in the
usual sense). We therefore need to be a bit cleverer in how we interpret the differential d.X;.

A common first step is to rewrite the differential equation (1.1)) as the integral equation
t
Yi=Yo+ [ f(V)X., (1.2)
0

and our central question becomes how we should define the integral fg f(Ys) dXs.

One way of getting around having to deal directly with complicated objects is to first
deal with simpler ones and then take the limit in a suitable topology.

In the context of integration, one might suggest that for general continuous paths X,Y,
one could simply take an approximating sequence of smooth paths with X" — X and
Y™ — Y, and then define [} f(Ys)dX; by the limit lim, o0 fy f(Y?") dX7, since each of the
approximations fg fY)dX] is already well understood.

Although this is in principle possible, the problem is knowing in which topology to take
the limit. The obvious choice for continuous functions is to use the topology corresponding
to uniform convergence; that is, to take limits with respect to the supremum norm, so that
X" — X is interpreted as sup,¢o | X" — Xs| — 0 as n — oco. However, this is not sufficient,
as the following example demonstrates.

Example 1.1. For each n > 1, define the functions X", Y": [0,27] — R by
X[ = —n3 cos(nt), Y, = n3 sin(nt).

Then
27 2T . 1 27
Y dX] = Y X dt = ns / sin?(nt) dt
0 0 0

2m
1
=n3 / 5(1 — cos(2nt)) dt = nim.
0

!The description “controlled” differential equation is not particularly enlightening, but is quite common
in the literature. It simply refers to the fact that the equation is driven by a signal X, which then determines
the behaviour of the solution.



Thus, we have that X” — 0 and Y™ — 0 uniformly, but fo% Y*dX}) — ocoasn — oo. In

particular, the map (X,Y) — fOTYtht is not continuous with respect to the supremum
norm.

Given a smooth path X and some initial value y € R%, let Y be the solution of the
equation

t
Y, =y+/0 f(Y)dX,,  te[oT).

Given the above example, it should not be surprising that the map X — Y is also not
continuous in the supremum norm. Clearly, if this strategy is to work we would need a
topology considerably stronger than that of uniform convergence.

1.1 Riemann—Stieltjes integration

A sensible first attempt to define the integral in is via Riemann—Stieltjes integration.
Here and throughout, we shall denote a partition of the time interval [0,7] by 7 = {0 =
to < t1 < --- < ty = T}. We shall denote the “mesh size” of a partition 7 by |r| =
max{|tit1 — ;| :i=0,1,...,N —1}.

Let 7" = {0 = tf <t} < .-+ <t} =T}, n > 1, be a sequence of partitions with
vanishing mesh size, i.e. such that |7"| — 0 asn — oco. Foreachn > landi=0,1,...,N—1,
let uj be an arbitrary point in the interval [t}', ¢ ;]. The Riemann-Stieltjes integral of Y’
against X, when it exists, is defined as

T N,—1
/ Yo dX, = lim Z Y“Z'L (thnﬂ - Xt?)’
0

n—>o0 4

where the limit does not depend on the choice of the sequence of partitions (7"),>1, or on

the choice of the intermediate times v} € [t7', 7, ].

If X and Y are two continuous paths, then the Riemann—Stieltjes integral of Y against
X exists, for example, whenever at least one of X or Y is Lipschitz continuous or, more
generally, of bounded variation over the interval [0,7]. One could say: the integral exists
provided that at least one of X or Y is “nice”. The interested reader may see [Strll] for a
thorough explanation of Riemann—Stieltjes integration.

It is worth highlighting the fact that on each interval [t},#} ;] the intermediate time
ui € [t, 1} 1] may be chosen arbitrarily. It is quite straightforward to see why this should
be the case. Suppose for instance that X were Lipschitz continuous with Lipschitz constant
C, and let ui, v} € [t, 1} 1]. Then

Nn_l Nn—l
Z (YL? o Yu?>(Xt?+1 - thn) <C Z ’}/Uf - "th—H tm
=0 1=0

No—1
<C< Z [t —t |> max |Yn—Yu;z\

=CT max [Yyp —Yyr| — 0 as n — oo,
0<i<Np ¢



where the convergence holds since the mesh size || — 0 and Y is uniformly continuous on
the compact interval [0, 7. Thus,

Np—1 Np—1 Np—1
Jim Y Vi (X, = Xip) = lim Y Yap (X, — Xep) + Y (Yo = Yap) (X, — Xir)
=0 1=0 =0
Np—1
=t > Yup (X, — Xip),
=0
as desired.

For example, we have that

T N,—1 N,—1
, YedXe =l 2; Yip (Xip,, — X)) = lim Z; Yir,, (Ko, — Xep),
1= 1=

corresponding to choosing the left endpoint v} = t}' and right endpoint v = ¢, ; respec-
tively. Intuitively, the path Y does not vary enough over the interval [t}', 7, ;] for the value of
the integral fOT Y, dX; to be affected by whether we take the left endpoint, right endpoint, or
any other point in between. As we will see, this property is a luxury that we cannot expect
to hold in general for less regular paths X,Y, for which the choice of the intermediate time

u* will become crucial.

1.2 Young integration

In general we wish to be able to handle situations where neither X nor Y is particularly
nice. When considering paths of low regularity, it’s helpful to have a quantitative measure
of how irregular a given path is. For this purpose, we recall the notion of Hélder continuity.
For o € (0,1], we say that a path X: [0,7] — RY is a-Hélder continuous if there exists a
constant C' such that

| X — X < CJt— |

for all s,t € [0,T] with s < t. Clearly, any Holder continuous path is continuous, and saying
that a path is 1-Hoélder continuous is the same as saying that it is Lipschitz continuous.

Theorem 1.2. Let o, B € (0,1] such that
a+p>1. (1.3)

Let X be a-Hélder continuous, and let' Y be B-Hélder continuous. Let m™ = {0 = tj <t} <
e <y, = T}, n > 1, be a sequence of partitions with vanishing mesh size, i.e. such that
|7 — 0 as n — oco. For eachmn >1 andi=0,1,...,N —1, let u' be an arbitrary point in
the interval [t} , 1} |]. Then the limit

T Np—1
/ YodX, = lim Y Vi (Xyr  — Xen) (1.4)
0 =0

n—o0 4

exists, and does not depend on the choice of the sequence of partitions (m")p>1, or on the

choice of the intermediate times ui € [t}', 7, ].



A proof of Theorem [I.2] will be given in Section

The limit in is called the Young integral of Y against X. The key part of the
hypothesis of the above theorem is the inequality in . As we already observed above,
if either &« = 1 or 8 = 1 then the limit in exists as a Riemann—Stieltjes integral. The
point here then is that we can trade off the regularity of the paths X and Y to allow both
a < 1and B8 < 1, provided that o + 5 > 1.

If « = 8 (as is often the case in practice), then the inequality becomes

1
1 1.5
a > 5 (1.5)

Thus, Young integration is suitable when the underlying paths are a-Holder continuous for

some « strictly greater than %

We note again that here the choice of the intermediate time ' does not affect the value
of the integral. However, this relies on the fact that the paths X,Y are continuous. In
general this property fails to hold when we allow the paths X,Y to have jumps, i.e. when
we drop the continuity assumption, but we will restrict ourselves to continuous paths in this
course.

1.3 Stochastic integration

It is expected that the reader is already familiar with the fundamentals of stochastic calculus,
so we will not spend much time here to recall the relevant details. However, as the course
progresses we will recall the relevant concepts as and when they are needed, so a thorough
knowledge of the subject should not be essential.

One of the main motivations for considering paths of low regularity is the study of systems
under the influence of stochastic noise. In the most standard setting one supposes that the
system noise is generated by a Brownian motion W defined on some filtered probability space
(Q, F, (Ft)o<t<t,P). Recall that a (standard one-dimensional) Brownian motion is an R-
valued adapted stochastic process W with continuous trajectories and stationary independent
Gaussian increments, such that

W, — W, ~ N(0,£ — s) (1.6)

and Wy — Wy is independent of Fy for every s,t € [0, T] with s < t.

It follows easily from and Kolmogorov’s continuity criterion that the trajectories
of Brownian motion are almost surely a-Hdélder continuous for every a < % On the other
hand, it can be shown that they are almost surely not a-Holder continuous for any o > %
Recalling the condition above, we see that Young integration is not capable of providing
an integration theory for Brownian motion.

A very satisfying resolution was provided by the introduction of Ité calculus, which has
become a cornerstone of stochastic analysis. Very briefly, given an L?-bounded continuous
martingale M, and a progressively measurable process Y which has sufficient integrability
(specifically such that EJ fOT Y42 d(M);] < oo, where (M) denotes the quadratic variation

of M), one can define the It6 integral fOT Ys dM; as a limit in L?(P) of integrals of simple



adapted processes against M. Extensions to more general integrators and integrands then
follow by localization arguments. For details, see one of the many available textbooks on
stochastic calculus.

Let X be a continuous semimartingale, Y be a left-continuous locally bounded adapted
process, and 7" = {0 =t <t} <--- < N, = T}, n > 1, be a sequence of partitions with
vanishing mesh size. Then the [t0 integral of Y against X can be expressed as the limit in

probability:
Np—1

T
ST Vi (Xn, — Xip) S / Y,dX, as n— oo (1.7)
i=0 0
The main point here for us is the fact that the It6 integral is constructed using probability. In
this sense, it is not a purely analytical theory. Moreover, the limit in is only a limit in
probability, and does not in general hold almost surely. In other words stochastic integration
really is stochastic—it is not a “pathwise” theory.

Another important point here is the necessity of taking the left endpoint Y;» of ¥ in
(1.7). Taking a different choice of endpoint here will in general change the value of the
integral. Another common choice is to take the average of the left and right endpoints; that
is, to replace Yy» in by %(Yty + Yt?ﬂ)' This gives an alternative definition of stochastic
integral, known as the Stratonovich integral:

Np—1
/OTYS odXs = lim 2 §(Yt? + Yin )(Xep | — Xen), (1.8)
which exists as a limit in probability.
Note that
T Np—1
/0 Y;o0dX, = nh_{glo 2 §(Ytgb + Y, ) (Xap,, — Xip)
Np—1 1 Nal
- nh_>nolo Z Vi (thnﬂ o Xt?) + 9 Z (Y}/Z‘Lﬂ - K&?)(Xtyﬂ o Xt?)
=0 =0

T 1
0

where (Y, X) is the quadratic covariation of Y and X. For example, if X =Y = W for a
Brownian motion W, then we have

T T T
/ W o dWs :/ WedWs + —.
0 0 2
Thus, the answer to the question “What is the value of the integral of Y against X?”
depends crucially on which notion of integral one chooses. One should also recognise that
both these types of integral are perfectly valid; neither of them is the “correct” choice in
general, and the integral one chooses typically depends on the application one has in mind.
In financial and biological applications it is typically better from a modelling perspective to
choose the It6 integral, which also often proves useful due to the fact that it preserves the



martingale property. On the other hand, the Stratonovich integral is arguably more natural
from an abstract calculus perspective, as it satisfies the classical integration by parts and
chain rules, or “first order calculus”, which is not true of the It6 integral. We shall revisit
these ideas and explore them in more precise detail later in this course.

1.4 Rough integration

All of the integrals we have discussed above essentially start from the basic notion of con-
structing integrals as limits of “Riemann sums”. That is, we try to define the integral of a
path Y against another path X via

lim Y V(X — X,), (1.9)

—0
! [s,tlem

where u € [s, t], and the limit is taken over any sequence of partitions (7"),>1 with vanishing
mesh size. (Here we abuse notation slightly by writing [s,¢] € 7, but the meaning should
be clear.) However, for general paths X,Y which do not satisfy the Young condition ,
this limit may not exist, or the limit may depend on the choice of sequence of partitions, in
which case it is unclear that any particular limit is actually meaningful.

Moreover, we saw in the context of stochastic integration that even when the limit does
exist, it may depend crucially on how we select the intermediate points u € [s,t]. Intuitively,
the paths X and Y vary so rapidly during the small time interval [s, t] that a simple Riemann
sum, as in , is not enough to capture these rapid variations. As we will see, there is, in
a certain sense, a lack of information. To resolve this, we will now look more closely at what
happens over a small time interval.

Let f: R — R be a smooth function, and let X = (X',...,X%):[0,7] — R? be an
a-Holder continuous path for some a € (0, 1]. Suppose that we wish to integrate the path
f(X) against X itself. That is, we wish to give a meaning to fOT f(X,)dX,. Let [s,t] C [0,T]
be a “small” time interval, and let r € [s,t]. By Taylor expansion, we have that

F(X0) = f(Xs) + DF(Xe) (X — Xs) + ...

where D f denotes the gradient of f. Integrating with respect to X, we obtain
t t
/ f(X,p)dX, = f(Xo) (X — Xs) + Df(Xs)/ (X, — Xs)@dX, + ...
S S

Note that, given two vectors z,y € R, the notation z ® y, known as the tensor product of
x and y, is used to denote the d x d-matrix with (4, j)-entry given by [z ® y|” = z'y?. For
clarity, we rewrite the above in component form: for j =1,...,d, we have

e axt = pe) e - X + o) [ - xhaxi+
S i=1 S
It turns out that, provided o > %, the higher order terms we have omitted in the

above expansion vanish upon applying lim._,o Z[SJ] e In fact, if o > % (recall the Young
condition (|1.5))), then one can show that

|li|m > /t(Xr—Xs)®er:0. (1.10)

—0
[s,tlem



In this case we simply obtain

T t
/0 FO) X, = tm 37 [ A6)4X, = m Y FOG) (X - X,
[s,t]en ¥ ®

|m|—0
87

which we recognise as the definition of the Young integral of f(X) against X.

However, when a < % the convergence in (1.10)) does not necessarily hold, and this
“second order” term remains:

—im 3 (f(XSxXt - X)+Df(X.) [ - X)e dXT>

—0
! [s,tlem

This suggests that, for a € (%, %], in order to compute the integral of f(X) against X, we

need as inputs both the path increments X; — X as well as the integrals fst(XT - X5)®@dX,
for each pair of times s < t. We therefore make the definition:

t
Koy = / (X, — X,) ® dX,. (1.11)

Of course, for a < %, the integral on the right-hand side is not generally understood (at
least without probability). However, as we will see, rough path theory will tell us precisely
the features of the integral which are actually necessary, and these features will be expressed
as conditions which must be satisfied by X. We should therefore think of the object X,
sometimes referred to as the “enhancement” or the “lift” of X, as providing a “candidate”
for the value of the integral. At first glance one may have presumed that the symbol =: in
(1.11]) was a typo, and that the left-hand side should be defined by the right-hand side, but

this is not the case.

By a rough path, we mean the pair (X, X). But to be clear, when we come later to the
proper definition of a rough path we will abandon the equality in , and instead provide
analytical and algebraic conditions which must be satisfied by X. One should therefore just
think of as motivation for the “information” encoded by X.

We observed earlier that if we define Y as the solution of the equation

t
Yi=y+ /0 fV)dX,,  te(0,T), (1.12)

for a smooth path X, then the solution map X + Y is not continuous. It turns out that if
we interpret the integral in as a “rough integral” against the pair (X, X) (which we
will define properly later), then the solution map (X, X) — Y is continuous with respect to
a suitable rough path topology.
Solving such a “rough differential equation” thus essentially involves finding the two
mappings:
X — (X,X) — Y.

10



The first of these maps involves adding new information, and hence depends on the particular
problem one is trying to study. There is sometimes some work involved in constructing a
suitable rough path lift X, but, as we will see, there are many situations where this lift can
be obtained very naturally.

Given this lift, the second map—known as the Ité—Lyons map—is then continuous, and
in standard situations is even locally Lipschitz continuous.

2 Holder spaces

2.1 Basic properties

For brevity, given a path X : [0,7] — R? and a pair of times s,t € [0, T], we write
Xs,t =Xy — X,

for the increment of X from time s to time t.
We write C = C([0,T]; R?%) for the space of continuous paths X: [0,7] — RY. We will
sometimes write || X||ooc = sup;¢jo 77 |Xt| for the supremum norm.

Definition 2.1. For o € (0,1] we define the a-Hélder seminorm of a path X: [0, 7] — R¢
by

X
| X[l = sup | AL
0<s<t<T |t — 5

We define the space of a-Holder continuous paths as the family of paths X such that || X, <
00. We denote this space by C® = C*([0, T]; R%).

Note that ||-||o is only a seminorm, as it does not distinguish between additive constants.
We can obtain a genuine norm via the map

X = [ Xo| + [ X]la-

Equipped with this norm, C* becomes a Banach space (i.e. a normed vector space such that
the norm is complete, meaning that every Cauchy sequence converges to a limit within the
space).

It is easy to see that if 0 < o < 8 < 1 then C? C C®, and that this inclusion is strict. It
turns out that the Holder spaces C* are not separable.

Lemma 2.2 (Lower semi-continuity). Let a € (0,1] and X : [0,T] — R?. Let (X"),>1 C C®
be a sequence of a-Holder continuous paths and assume that X" — X pointwise. Then

| X||o < liminf | X"||,.
n—oo
Proof. Simply note that for all 0 < s <t <T', we have

R

|Xs,t|

= liminf —>— < liminf || X",
|t— 8|a n—00 ’t—s‘a n—o00
and take the supremum over 0 < s <t <T. O

11



Lemma 2.3 (Interpolation). Let 0 < o < 8 <1 and let X: [0,T] — R%. Then
1_2

5 5
1Xlla < 115 ( sup [Xeal) 7
0<s<t<T

Proof. Note that

| X Xoal \#, o, 1o
|t—ss|a: |t—ss|5 |Xs’t| 7.

Taking the supremum over 0 < s < t < T, we obtain the desired inequality. O

Lemma 2.4. Let 0 < a < 3 <1 and let X € C be a continuous path. Let (X™),>1 C C” be
a sequence of B-Hélder continuous paths and assume that sup,>; [|X"|g < oco. If X" — X
uniformly, then X € CP, and || X™ — X||o — 0 as n — co.

Proof. By Lemma [2.3] we have that
a 1-<
1X" = Xl < X" = X015 ( sup X2 - Xofl) (2.1)

By Lemma we know that
< limi Mg < n
1X]ls < Bmnf X" < sup | X7l < oo,
and hence that sup,> [[X" — X||g < co. Since X" — X uniformly, it follows that the
right-hand side of (2.1)) tends to zero as n — oo. O]

Lemma 2.5 (Compactness). Let 0 < a < 8 < 1. Let (X"),>1 C C? be a sequence of
B-Holder continuous paths and assume that

sup (| Xg'] + [ X"[|5) < oo. (2.2)
n>1

Then there exists a path X € CP and a subsequence (ng)r>1 such that | X™ — X|lo — 0 as
k — oo.

Proof. 1t follows from that the sequence of paths (X™),>; is uniformly bounded and
uniformly equicontinuous. It therefore follows from Arzela—Ascoli (see e.g. [EV10, The-
orem 1.4]) that there exists a continuous path X and a subsequence (nj)r>1 such that
X" — X uniformly. The result then follows from Lemma [2.4 O

The result of Lemma shows that C? is compactly embedded in C® whenever 0 < o <
$ < 1. That is, any bounded subset of C? is relatively compact in C®.

2.2 The closure of smooth paths

Definition 2.6. For a € (0,1], we define C%* = C%*([0,T];R?) to be the closure of the
space of smooth paths from [0,7] — R? with respect to the a-Holder seminorm.

It is clear that C%“ is a closed linear subspace of C, and thus is itself a Banach space.

12



Proposition 2.7. Let o € (0,1) and let X: [0,T] — R? be a path. Then X € C%* if and
only if

X
lim sup [ Xotl (2.3)

60 |y—g|<s [t — s|®

Proof. (=) Suppose first that X € C%®. Let ¢ > 0. By the definition of C%®, there exists
a smooth path Y such that | X — Y|, < §.

Since Y is smooth, it is Lipschitz continuous. Let L > 0 be the Lipschitz constant of Y.
Let 6 > 0 be sufficiently small such that L§'~® < 5. (Note that this would not work for
a=1.)

Then, for any s < t with |t — s| < J, we have

[ Xoal [ Xsp = Yiu Vs 4
t—sl® = Jt—s|® |t — s|*
<X = Yo+ LIt — s

§|]X—Y|]Q+L51’°‘<§+§:s.

Thus,
|Xs,t|

sup <
lt—s|<s [t —8]* = 7

and we deduce that ([2.3)) holds.

(«<=) Now suppose instead that (2.3) holds. Let ¢ > 0. By assumption, there exists a
0 > 0 such that
|Xs,t|
su

lt—s|<s |t — 8|*

<e. (2.4)

We can assume without loss of generality that 6 < 1.

Let 1 = {0 = up < ug < --- < uy = T} be a partition of the interval [0,7] with
equidistant points, so that u; = ¢T'/N for each i = 0,1,..., N, and such that the mesh size
‘7T| = |ui+1 — u2| < 9.

Consider the piecewise linear approximation of X, which is equal to X at each of the
points u; in the partition 7, and linear on the interval [u;, u;4+1] for each i =0,1,..., N — 1.
Note that this approximation is Lipschitz continuous with Lipschitz constant equal to

[ Xujuiga| 1

max — max | Xy,

0<i<N |ujr1 —wi| — |m] 0<i<n wiga |

Note that we can smooth out this path in a small neighbourhood of each of the points u; in
7, whilst only increasing the Lipschitz constant by an arbitrarily small amount. Thus, there
exists a smooth path Y such that

oV, =X, foreveryi=0,1,..., N,

e and the Lipschitz constant L of Y satisfies

1
L< ( max |X'U4i7ui+1’> +e.
7| 0<i<N
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Since |ujy1 — w;| = |w] < ¢ for each i, it follows from (2.4) that

max il
0<i<N ‘Uz’—&-l — w;|

and hence that

1 | X s 141 | 1
L<|— e S < 1), 95
- <|7r\1a 0SIEN |uir1 — ug|® te<e w[l-a + (2.5)

Let 0 <s <t <T. Let j,k be such that s € [uj,u;41) and t € (ug, upy1]. In particular,
we must have that j < k. We will deal with the cases j = k and j < k separately.
If j =k, then |t — 5| < |uj11 — uj| = |7| <6, so it follows immediately from (2.4]) that

|Xs,t
|t — 5|

<e.

Moreover, using (2.5)), we have

Y. 1
|t_s,;‘|a < Lit—s| @< 6(]77|10‘ + 1> t— s <e(14 |t —s['7) < 2,

where we used the fact that |t — s|'=* < |7]1=* < 617 < 1. Hence, in this case we have

Xog = Yaul _ [ Xaal | [Yal
t—sr S Jt—sl s

<e+2 =3e (2.6)

If j < k, then we have

Xs,t - Y;,t = (XS,Uj+1 + Xu]-+1,uk + Xuk,t) - (}/;,uj+1 + Yuj+1,uk + Yuk,t)
= Xs,u]-+1 - }/S,”LLj_'.l + X’U,k,t - Yuk,t- (27)

Since u; < s < ujy1 < up < t, we have that |ujr1 — s| < [t — s, and |ujy1 — 5| <
|ujt1 — uj| = |7| < 6. Thus, using (2.4]), we have

’X57Uj+1 | < ‘XS,UJ+1 |

> <e.
[t —s]* 7 Jujpr — s|®
Using ([2.5)), we also have
Woup] < Llujpq —s|' ™ <e B [m' =e(1 4 |n'7%) < 2e.
[t — s>~ [t -

Dealing with the terms X, ; and Y,,, ; similarly, we deduce from (2.7) that

|Xs,t - }/s,t| < |Xs,uj+1| |Y97uj+1‘ ’Xuk,t| |Yuk,t‘
L e e A A A

< 6Be. (2.8)

It follows from (2.6) and (2.8)) that || X — Y|, < 6e. Since Y is smooth and £ > 0 was
arbitrary, we have that X € ¢%. O

Example 2.8. Let o € (0,1) and let X: [0,7] — R be the path given by X; = t*. Then
X €0, but X ¢ CO.
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Lemma 2.9. Let 0 < o < B < 1. Then C? c C%.
Proof. Let X € CP. Let § > 0, and let s < t such that |t — s| < §. Then

[Xool X
jt—s|* [t —sl?

[t — 577 < |IX]| 507,

and we see that

lim sup Kot = 0.
3=0 ¢ —sj<s [t — s|*
By Proposition we have that X € C%. ]
We conclude that, for 0 < a < 8 < 1, we have
cPcchece (2.9)

and that each of these inclusions is strict.

Remark 2.10. Tt turns out that the closure of smooth paths in C! is equal to the space of con-
tinuously differentiable paths. The key to seeing this is to show that [ X||1 = sup;c(o1 | X |
for any continuously differentiable path X. It then follows that a sequence of smooth paths
is Cauchy with respect to the 1-Holder norm X +— | Xo| + || X |1 if and only if it is Cauchy
with respect to the norm X — |Xo| + sup;cjo 7 | X¢|, which we note is a norm on the space
of continuously differentiable paths.

2.3 Two-parameter functions

As well as paths defined on the interval [0, 7], we will also consider two-parameter functions
defined on

A = {(s:1) € [0,T]2 15 <t}
We will denote by Co = Ca(A(gr); ) the space of continuous functions from Ay — F,
where E will typically be either R™ or R¥*¢.

The notion of Holder continuity is also valid for such two-parameter functions. For
A: A — E, we similarly define

A
[Alla = sup | S’t|.
0<s<t<T |t — 5|®

We will denote the space of a-Holder continuous functions on Ay 1) by €.

To avoid confusion, we stress that if X is a path then X, ; means the increment X; — X,
but if A is a two-parameter function defined on A7) then As; just means A evaluated at
the pair of times (s,t) € A 7).

Although a path which is a-Hoélder continuous for some o > 1 is necessarily equal to
a constant, it is perfectly possible to have non-trivial functions A € C§ for o > 1. Note,
however, that in this case we have

S Al < JAlle 3 J— sl < ||A||a< 3 |t—s|>|7r|a—1=||A|aT|7rr“-1,

[s,t]lem [s,t]em [s,t]lem

which vanishes upon letting the mesh size || — 0.
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3 The space of rough paths

3.1 Basic definitions

Definition 3.1. For a € (3, %], an a-Hélder rough path (over RY) is a pair X = (X, X), where
X:[0,T] — R? is an a-Holder continuous path, X: Ap) — R¥*? is 2a-Hélder continuous,

and such that Chen’s relation:
Xs,t = Xs,u + Xu,t + Xs,u X Xu,t (31)

holds for all 0 < s < u <t < T. We shall denote the space of a-Holder rough paths by
¢ =¢*([0,T];RY).

Note that in component form, Chen’s relation states that
th - Xlsju + Xfluj,t + X;,uXi,t (3-2>
for each 1 <14,j <d.

Thus, a rough path is an element X = (X, X) € C*xC3% such that the algebraic condition
(3.1) holds. We will refer to X as the “lift” or “enhancement” of X, and think of a rough
path X as a path X which has been “lifted” or “enhanced” by the addition of X.

Let us briefly discuss this definition. First, we recall from the introduction that Young
integration provides an adequate integration theory for a-Hoélder continuous paths when
a > % We are therefore interested in cases when a < % As also indicated earlier, it will
turn out that the framework we focus on here is not sufficient to deal with the case when

a < %, so we will restrict ourselves to a > %. This is not a worry for us, as many very

3
interesting and important situations fit nicely into the regime a € (%, %] We will briefly
discuss extensions to o < % later in Section

As discussed in the introduction, one should think of X, ; as postulating the value of the
integral

t
/ Xor @ dX,.
S

That is, the (7, j)-component th corresponds to the integral f; X;T dX}. Note that X is
more regular than X, assumed to be 2a-Holder continuous. We will see examples later to
justify this condition, but for now it can be taken on trust that this is a sensible assumption.

A simple but important special case is when the path X is smooth. In this case we can
simply define X, ; := f; X, ®dX,, with the integral being defined in the Riemann-Stieltjes
sense. It is then easy to verify that X and X do indeed satisfy Chen’s relation , and
thus that X := (X, X) is a rough path for any o € (3, 3].

Definition 3.2. Given rough paths X = (X, X),X = (X,X) € ¥°, we define the a-Hblder
rough path distance by

1% Xlo = X = Xla + X — X]|2a

o |Xs,t - Xs,t‘ ’Xs,t - §~§s,t‘
= sup —F————+ sup — -
o<s<t<T |t — 8% o<s<t<T |t — 5|
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Note that (X, X) — ||X; X||« is a pseudometric; that is, it satisfies the usual conditions of
being a metric, except that ||X;X||o = 0 does not necessarily imply that X = X. However,
the map . . .

(X, X) = | Xo — Xo| + [IX; X[[a

does define a genuine metric.

It is not hard to see that C* x C3* is a Banach space with norm (X,X) — | Xo| + [|IX]|,,,
where

Xl == X Mo + [1Xl2a-

Note however that since Chen’s relation (3.1)) is nonlinear, the space of rough paths ¢ is not
even a vector space. Nevertheless, it is a closed subset of C* x C2. The space € equipped
with the metric (X, X) — |Xo — Xo| + ||X; X]|o is therefore a complete metric space.

Let (X,X) be a rough path, and let F' € C?*. Note that if we let stt = Xt + Fsy for
all (s,t) € Ap,7], then the pair (X, X) still satisfies Chen’s relation, and is thus also a rough
path. We infer that, given a rough path (X,X), the enhancement X is never unique.

On the other hand, suppose now that both (X,X) and (X,X) are rough paths with the
same underlying path X, and let G = X — X. It then follows from Chen’s relation that

Gs,t = Gs,u + Gu,t

for s < wu < t, so that in particular G ; = Go — Go s for every s < ¢. That is, G is actually
just the increment of the path given by ¢ — Go .

It follows that for any rough path (X, X), the enhancement X is determined up to the
addition of the increments of some path F' € C2*. The choice of F' does matter, and there is
in general no obvious canonical choice. However, as we will see, there are important examples
where such a canonical choice does exist.

The fact that the enhancement X is not unique should not be too surprising, given the
discussion in the introduction. We think of X,; as postulating the value of the integral
fst Xsr ®@dX,. But recall that, particularly in the setting of stochastic integration, the value
of such an integral depends on the choice of the intermediate point in the definition of the
integral, and that therefore there are in general multiple different ways of defining such an
integral. For example, we saw that the It6 and Stratonovich integrals give two different
but equally valid interpretations of a stochastic integral. The choice of the enhancement X
corresponds, in a meaningful sense, to the choice of It6, Stratonovich, or any other choice of
integral.

Note that, given knowledge of just the path t — (X, Xo ), we can reconstruct the entire
enhancement X via Chen’s relation: X;; = Xg; —Xo, s — X0,s ® X ¢. In this sense, the “rough
path” (X, X) is indeed a genuine path, rather than just some two-parameter function.

3.2 Geometric rough paths

Chen’s relation (3.1]) captures the basic additive structure that one would expect any reason-
able notion of integral to respect, but it doesn’t encode any form of integration by parts or
chain rule. We now seek an additional condition which will allow us to recover such classical
rules of calculus.
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Let X = (X1,...,X%):[0,7] — R? be a smooth path, and let X, := fst Xsr ® dX, be
its canonical lift (with the integral being defined in the Riemann—Stieltjes sense), so that
X = (X,X) is a rough path. Applying integration by parts, we have

w1, = [ X0 [ XX = XX
S S

That is,

1
Sym(Xse) = 5 Xt ® X (3.3)

The condition (3.3]) is thus a consequence of classical “first order calculus”. This motivates
the following definition.

Definition 3.3. We define the space of weakly geometric a-Holder rough paths € as the
set of elements X = (X, X) € €* such that (3.3) holds for all (s,t) € A 7).

Note that 67" is a closed subset of ¢"*, and hence is itself a complete metric space. We
also make the following alternative definition.

Definition 3.4. We define the space of geometric a-Hélder rough paths ‘ég’a as the closure
of canonical lifts of smooth paths with respect to the a-Hé6lder rough path distance.

To spell out this definition, X = (X, X) is a geometric rough path if and only if there
exists a sequence of smooth paths (X"),>; such that || X";X]||, — 0 as n — oo, where
X" = (X", X"), and X7, = [£ X7 @ dX? for all (s,t) € Ap .

It is clear that ‘590 “C ¢,', and it turns out that this inclusion is strict. It can also be

shown that ‘fgﬁ C ‘KS? *“ whenever % <a<p< % Recall the embeddings of Holder spaces in
(2.9). In the rough path setting we have the analogous inclusions

0,a @ «
€Y CE) CEr C b, (3.4)

each of which is strict.

4 Brownian motion as a rough path

In this section will we exhibit an important example of a (random) rough path, and see in
particular how stochastic processes can be lifted to rough paths.

4.1 Kolmogorov criterion for rough paths

In the following we will write L? for the standard Lebesgue space on the underlying proba-
bility space, so that || Xs¢||za = E[|~X57t|q}1/q. Recall that we say X is a modification of X if,
for every ¢ € [0,T], we have that X; = X; almost surely.

Theorem 4.1. Let (X,X): Q x[0,T] = R% x R¥™9 be a measurable stochastic process which
almost surely satisfies Chen’s relation. Let ¢ > 2 and 8 > %. Suppose that there exists a
constant C' > 0 such that, for all (s,t) € A7y,

1Xstllze < Clt — 57, Xstll parz < Clt = 5. (4.1)
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Then, for alla € [0, B— %), there exists a modification (X,X) of (X,X) and random variables
K, € L1, Ky € LY? such that, for all (s,t) € Ajo,m)s
| Xs4| < Kalt — |7, X5 < Kot — s> (4.2)

In particular, if B — = > L then, for every a € ( , 08— %), we have that (X’,X) S

Proof. Without loss of generality we may take T'= 1. For each n > 0, let D,, = {2% k=
0,1,...,2" — 1} denote the dyadic partition of the interval [0, 1) with mesh size 27". Let

Ky, = %g%},f | Xt t42-nl, Kp = g%’s Xy 420l
It follows from (4.1)) that

E[K7] < E[ Z ’Xt’t”n’q] < Z C12~"P1 = cag—m(Ba—1)

teDy, teDy,
E[K?L/z] < E|: Z |Xt,t+2”|q/2:| < Z CQ/22—n5(1 — CQ/22—7L(5¢I—1).
teDy, teDy,

Fix s < t in Up>oD,,. Choose m > 0 such that 2-(m+1) « ¢ _ g < 27™_ The interval s, t]
can be expressed as the finite union of intervals of the form [u,v] € D,, with n > m + 1 and
where no three intervals have the same length. In other words, we have a partition of [s, t]
of the form

Ss=ug<up < <uny==t,
where [u;, uj+1] € D, for some n > m + 1, and for each fixed n > m + 1 there are at most
two such intervals taken from D,,. It follows that

|Xs,t|sor;a<>5v|xs,umr<ZlXul,uz+1l<2 >
n=m+1

and similarly,

N—-1 N-1
|X8¢‘ = Z (Xui,ui+1 + XS,ui ® Xui»UiJrl Z uuui+l‘ + ’X57ui”Xuiaui+l|)
’L:O 1,:
N—-1 N-—1
= D SER (T NE ) [ § DN}
=0 =0
o0
<2 ) K, +( Z K> .
n=m-+1 n=m+1
We thus obtain
| X, - o Kn
‘t _ S‘a <2 Z 9— (m+1 =2 Z —no — Z 9—na Ka.
n=m+1 n= m+1 n=0
Since
1
CQ*"(B*g) 0 B 1
HK HL‘Z < 22 2 no Z 2—na = 2022 e 1 @) < o0,
n=0 n=0
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we have that K, € L?. Similarly,

|Xs,t‘ = Ky - Ky 2 - Ky 2 .
s =2 2 gamma T2 2 e ) S22 5w T K= Ka
n=m+1 n=m++1 n=0
Since
E[KY/%)2/a C9~2UB=3)
IKe HW<2Z K B <2y O Kl
n=0

— 2022*2””*%*‘1) + 1Kl < oo,

we have that K, € Li/2,

So far we have shown that holds for (X, X) at every pair of times s < ¢ in Up>0Dy,.
We now need to extend this to all times in between, which is where a modification is required.

For each t € [0,1], let (t3)g>1 C Up>0Dy, be a sequence of times with ¢, — ¢ as k — oo.
It follows from the above that X is Holder continuous on U,>0D,, and hence that the limit
X, = limpy o0 Xy, exists. By Fatou’s lemma, we have

| X; — X¢||re <liminf || Xy, — X¢||ze < liminf Ot — t,,]° = 0,
k—o0 k—00

so that X; = X; almost surely. Thus, X is indeed a modification of X. Moreover, assuming
s — s and t — t with sy, tr € Up>0D),, we have

| Xst| = lm | X, ¢, | < lIm K|t — sg|® = K|t — 5| (4.3)
k—o00 k—o00
(This argument also implies that X, almost surely does not depend on the choice of the
sequence of times (tx)g>1.)
For each pair 0 < s <t < 1 (the cases with s = 0 or ¢ = 1 may be dealt with similarly),
let (si)k>1 C Un>0Dy, and (tk)k>1 C Up>0Dp be sequences such that s, s and ¢, \,t as

k — oo, and define X, ; = limy_,o X, 1, . Since s, < s <t <y, Chen’s relation implies that
Xsk,tk - Xs,t = Xsk,s + Xt,tk + Xsk,s & Xs,tk + Xs,t & Xt,tk'
We then have

1 Xt — X, sios T Xty + Xps @ Xty + Xt @ Xety [l a2
< Xspsllparz + 1Kl parz + 1 Xsy sl zall Xs o e + 1 X sl Lall Xty || 2o

< Cls — si[*? + Cltx — t1* + C?|s — sil°|tx — 517 + C?[t — 5| [t — 1]°,

and, similarly to above, it follows from Fatou’s lemma that Xs,t = X, almost surely for
every (s,t), so that X is a modification of X. Finally, we have that

Kot = lim |Xg, 0| < lm Koltp — 532" = Kot — s,
k—oo k—o0
which, combined with (4.3)), implies that (4.2]) holds for (X , X) for all s < t. O

Although in general (f( ) X) is a modification of (X, X), in practice one usually assumes
that, whenever it exists, such a modification has always been adopted. It is therefore usual
to keep the same notation (X, X), rather than introducing (X, X).
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4.2 Ito Brownian motion

Consider a d-dimensional standard Brownian motion B. We can enhance B by defining
t
Bg? = / BS,T [ dBr, (S,t) € A[O,T}) (44)
S

where the stochastic integral is understood in the sense of It6. By the additivity of the
integral, it is easy to check that the pair (B,B'*) satisfies Chen’s relation. It remains to
use the Kolmogorov criterion for rough paths to check that (B, B'°) has the required Hélder
regularity.

Proposition 4.2. For any o € (%, %), we have that, almost surely,
B := (B,B") € €%([0,T]; R?).
Proof. Let ¢ > 2 and (s,t) € A ). We have
|Bsellze = lI(t = )2 Bullze = | Billzslt - 2.

Applying the Burkholder-Davis—Gundy inequality twice, we also have

2 t
] gchEH/ | B |* dr

< ch[ sup yBs,Ty%] [t — 8|t < C2Jt — o3,
re(s,t]

]

t
5[44I || [ B wa5,
S

so that .
B pare < Cf [t — s
We can therefore apply Theorem with g = %, to deduce (possibly after taking a suitable

modification) that (B,B!) € C% x C2* for any a € (0,% - %) By taking ¢ — oo, it follows

that (B, B®) € € for all o € (3, 3). O
To be explicit, this means that for almost every w € €2, we have that
B(w) = (B(w),B"™(w)) € ©°.

In other words, B is a random rough path, or a rough path-valued random variable. We
refer to B = (B,B™"°) as (It6 enhanced) Brownian rough path.

An obvious question is whether B so defined is geometric. The answer, sadly, is no.
Indeed, It6’s formula tells us that, for each 1 <i,5 <d,

BB, = / Bi B + / Bi dBi + (B, B'),.,
S S

where, for a Brownian motion B, we have (B?, BY); = 9;j(t — s) (where 6;; is the Kronecker
delta). Thus,

5 1
Sym(ES?) =3 (Bst ® Bst — (t = s)I), (4.5)

where I denotes the d x d-identity matrix, and we see that (3.3)) does not hold.
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4.3 Stratonovich Brownian motion

For one-dimensional continuous semimartingales, X, Y, the Stratonovich integral of Y against
X is defined by

t t
1
/ Y, 0dX, = / Yo dX, + 5 (¥, X)s. (4.6)
0 0

Recall also the limit in (1.8). An advantage of Stratonovich integration is that it obeys “first
order calculus”. By this, we mean that it satisfies the classical integration by parts formula

t t
XthZXoYoJr/ XsodYer/ Y5 0dX,
0 0

and chain rule/fundamental theorem of calculus

P = 10 + | "DI(X,) 0 dX,.

As we will see in the next proposition, as a consequence it turns out that Stratonovich-
enhanced Brownian motion gives a rough path which is also geometric.

As above, let B be a d-dimensional standard Brownian motion. Instead of using It6
integration, we can alternatively enhance B via

t
Bgftrat — / Bs,r ® odB;,, (S,t) S A[O,T].
s

It is again easy to see that the pair (B,B"2") satisfies Chen’s relation. We also see from

[5) that

s 1
Bg,ttrat — BE? + §(t — S)I, (47)
which means in particular that
5 1 1
Sym(Bfftrat) = Sym(IBg?) + §(t —s)I = iBS’t ® Bs . (4.8)

Proposition 4.3. For any o € (%, %), we have that, almost surely,
Str d
B := (B,B°") € €)*([0, T]; RY).

Proof. Since the function (s,t) — 3(t — s)I is 1-Holder continuous, it follows immediately
from that the Holder regularity of B is inherited by BSt2t., We therefore have that
B = (B,B5"at) ¢ ¢,

Let 8 € (a, %) It follows from that B € %gﬁ . Recalling the inclusions in , we
conclude that B € ‘5; o O

We refer to B = (B, B5"at) as (Stratonovich enhanced) Brownian rough path.

Recalling (4.5) and (4.8)), it is worth noting that for both It6 and Stratonovich enhanced
Brownian rough paths, given the path ¢ — By, the symmetric part of the enhancement is
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immediately known. This is a general feature, whereby the “new information” encoded by
the rough path lift X is actually in its antisymmetric part, given, for 1 < i,j < d, by

o1 to . t .
Anti(X,,)" = 2(/ xipaxi - [ xi, de«>’
S S

which we recognise as the Lévy area of the two-dimensional path ¢ — (X}, Xf ). In this sense,

a geometric rough path may be equivalently defined as a path X along with its Lévy area
Anti(X).

Since a 1 x l-matrix is already symmetric, any one-dimensional path X € C% may be
readily lifted to a weakly geometric rough path by simply setting

5 Integration

5.1 The sewing lemma

The following result may look at first glance like abstract nonsense, but it will actually turn
out to be a very useful tool for constructing integrals. Although this result is commonly
known as the sewing lemma, we will give it the recognition it deserves by calling it a theorem.

Theorem 5.1 (Sewing lemma). Let (E, |- ||) be a Banach space, and let A: A7) — E be a
continuous function. For each triplet 0 < s <u <t <T, write 0Asu := Ast — Asu — Aut-
Suppose that there exist constants A > 0 and € > 0 such that

10 A el < At — s|'F

forall0<s<u<t<T.
Then there exists a continuous path v: [0,T] — E, with y9 = 0, such that

e — vs — Asill < CAJt — s (5.1)

for all (s,t) € Ajg), where the constant C depends only on €. Moreover, for all (s,t) €
A we have that
0,77
lim Z Au,v = — Vs

—0
! [uv]en

where the limit is taken over any sequence of partitions w of the interval [s,t| with mesh size
|| — 0.

Proof. Let (s,t) € Ajg ). For each integer n > 0, let {s =t <t} < --- < 1§, =t} be the
dyadic partition of [s,t], so that t? = s+ 5= (t — s), which has mesh size |7"| = [t?, | — 7| =

27"t — s|. Let
on 1

no o _
ALp =D Av,
=0
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For each n and each ¢, let u} be the midpoint of the interval [t], ?_H]. We have that

2m—1

n n+1 __

AT =) dAnara,
=0

and hence that

2" —1 2" —1
AT, = AZFH <Y N0 A e, <D Aty — 671
1=0 1=0
2" —1
— )\’t . 8‘1+€ Z an(lJrs) — )\‘t o 8|1+s2fns'
1=0

We then have that

o0 o0

2 13

+1 1 —ne _ 1

ZHAZJ_A?,t || S)\|t—8| +EZ2 na—)\|t—$’ +Eﬁ — 0 as k — o0,
n=k n=~k

from which it follows that (AY;)n>0 is a Cauchy sequence. Since A" takes values in a Banach

space, we have that the limit

pp— 3 n
sy := lim AL,

n—oo
exists. Since
k = +1 1+ e
ITse = Al = || D (AT, — AT < At — s,
n=~k

we see that the convergence A, — I's; holds uniformly in (s,t) € Ajg 7}, and moreover that
/\‘t _ S‘lJrE
1—2-¢
Since A" is continuous, it follows from the uniform convergence that I' is also continuous.
It follows from the above construction that

Ps,u + Fu,t = Fs,t (53>

for all dyadic times s < u < t, and it then follows by continuity that (5.3|) holds for all times
s < wu < t. We thus infer that I is really just the increments of a continuous path. That is,
if we define v, =T'g¢ for ¢t € [0,77, then we have that

[Tst— Asell < (5.2)

Y —vs = sy for all (s,t) € Ajg 1y,
and in particular that 79 = 0. The inequality (5.2)) then reads
)\\t _ S‘l—i-a
1—-2-¢ "’

which implies (5.1). For any (s,t) € Ajg ) and any (not necessarily dyadic) partition 7 =
{s=ty<t; <--- <ty =t} of [s,t], we then have

‘|7t — Vs — As,tH S

N-1 N-1 N
’ Yt — Vs — Z Ati,ti+1 Z (’Yti+1 - ’Yti - Ati,ti_H) ’ S 1_9-—=¢ Z ’ti+1 - ti|1+(€
=0 i=0 =0
< At
and we deduce that Zi]i_ol Ap ity = Yt — s as || = 0. O
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5.2 Young integration

Proposition 5.2. Let X € C* and Y € C? for some o, B € (0,1] with o+ 8 > 1. Then the
limit

|7|—0

t
/ Y, dX, = lim Y Y, Xy,
‘ [uv)em

exists for every t € [0,T], where the limit is taken over any sequence of partitions 7w of the
interval [0,t] with mesh size |w| — 0. This limit is called the Young integral of Y against
X, which moreover comes with the estimate

t
[ Yl = YoXos| < CIY )Xot~ 517+ (5.4

for all (s,t) € A ), where the constant C' depends only on o+ 3.
Proof. Let Agy =YX, and let 0 At = Ast — Asy — Auy for s <u < t. We have
0Asut = YsXst — Vs Xsu — YuXu
=YXyt — YuXuy
= —YsuXut,
and hence
16 A5l = [YeuXugl < [Yllgll X llalt — s|**7.

By the sewing lemma (Theorem , there exists a continuous path v =: [, ¥, dX, with the
desired properties. O

The Young integral as defined in the previous proposition is given as a limit of left
endpoint Riemann sums. In this setting (in particular with continuous paths), the left
endpoint may be replaced by any other intermediate point without changing the value of the
integral, as shown in the next lemma.

Lemma 5.3. Let X € C* and Y € CP for some a, § € (0,1] with o+ 3 > 1. For a partition
7 and interval [u,v] € w, let r € [u,v] denote an arbitrary point in the interval [u,v]. The
Young integral of Y against X is equal to the limit

t
/ Yu qu = lim }/rXu,v
0 |7|—=0
[u,v]em

for any t € [0,T].
Proof. We have
<Yl Xlla D o—ul*?

[u,v]er

<Yl X aTlm|* 7~ — 0

> YurXuo

[u,v]er

as |r| — 0. Thus

t
lim Y, Xy, = lim ( Y YuXuwt Y YWXW> = / Y, dX,.
0

|m|—0 || —0
[u,v]em [u,vler [u,v]em
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Combining the results of Proposition and Lemma [5.3] we have proven Theorem

Proposition 5.4. Let X, X € C* and Y,Y € CP for some o, B € (0,1] with «+ 3 > 1. Then
there exists a constant C, depending only on «, 8 and T, such that

H/ Yuqu—/ Y, dX,
0 0 @

< (1Yo = Yol + 11V = Vll5) 1 X lla + (1¥] + [V [l5)1X = Xla)-

Proof. Let Ag; =YXy, fls,t = }7.5)2'5775, A=A—A, and 0AGut = Ast — Agy — Ayt Then
(5As,u,t = 6As,u,t - 51215,u,t = _(sz,uXu,t - };vs,u)?u,t)a
so that

’6As7u,t| S |Y:9,uXu,t - Y/ts,uXu,t’ S |sz,u - Ys,uHXu,t‘ + ’i/s,uHXu,t - Xu,t‘
< (1Y =Ygl Xlla + 1¥1l51X = Xlla) |t — s]**7.

By the sewing lemma (Theorem , there exists a path v and a constant C' such that
e = s = Dstl S C(IY = Yllal Xl + 1Y 1lslX = Xla) |t = 5]°*7,

and, letting 7 denote a partition of the interval [s, t],

t t
Y — s = lim Ay = lim < S Aup— Y Au,v) = [ Y,dX, - [ Y,dX,.
S

s

Combining the above, we have that

t t
‘ / Yu qu - / Yu qu - (Y;Xs,t - Y;Xs,t)
s s

<O(Y =Ygl Xlla+ V51X = Xlla)t = s**7. (5.5)

We also have

‘Y;Xs,t - 1~/s)zs,t’ S |1/s - ?:9”Xs,t| + |}~/s||Xs,t - Xs,t|
< (Y =Yool Xlla + Y [lscll X = Xlla) [t — s]*. (5.6)

Combining (5.5) and (5.6) and noting the simple bounds 1Y [loo < [Yo| +T7||Y || and ||Y —
Yoo < Yo — Yo| + TP||Y — Y|, it follows that

t t
‘/ Yuqu—/ Y, dX,

< 1+ )1+ T7) (1Yo = Yol + IV = Vl5) X la + ([Fol + IV 15) X = Xlla )£ = s,

and thus

‘/Yuqu—/ffudf(u
0 0 o

< (14 O+ T (1Yo = ol + 1Y = V1) X+ (ol + 1V 13) X = X o)
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As the next lemma shows, Young integration satisfies the classical integration by parts
formula.

Lemma 5.5. Let X € C* and Y € CP for some o, B € (0,1] with o+ 3 > 1. Then
T T
XoYr = XoYo +/ X, dY, +/ Y, dX,,.
0 0

Proof. Let m be a partition of the interval [0,7]. We have

> XoiVas

[s,t]lem

< IXNallYlls D 1t = s[>

[s,tlem
<N XallYllsTlm|* = — 0

as || — 0. Then

Xp¥p - Xo¥y = lim 37 (X% - X.Y5)
w|—0
[s,t]em

= lim (XsYs,t + Y X+ Xs,tYs,t)

|7|—0
[s,tlem

T T
—/ XudYu+/ Y, dX,.
0 0

O]

We write C'(R?%; R) for the space of continuous functions f: R¢ — R. Given a function
f:RY = R and k € N, we write D*f for the k' order derivative of f. For v € (0,1], we
say that f is locally y-Holder continuous if, for every bounded subset K C R%, there exists
a constant C such that |f(z) — f(y)| < Clx — y|? for all z,y € K.

For k € N and v € (0,1], we write f € C**7 = C*7(R%R) whenever a function f
is k times continuously differentiable, and the k" order derivative D* f is locally y-Holder
continuous.

Lemma 5.6. Let X € CY([0,T];R?) and f € C*TY(R%R) for some o,y € (0,1], such that
a(l+~)>1. Then fOT Df(X,)dX, is a well-defined Young integral, and

T
F(Xr) = f(Xo) + /0 Df(X.)dX..

The proof of Lemma [5.6] is left as an exercise. We conclude our discussion of Young
integration with the following lemma.

Lemma 5.7. Let X € C® and Y,K € C? for some o, € (0,1] with o + 8 > 1. Let
Z = fo K,dX,. Then Z € C*, and

T T
/ Y,dZ, = / Y, K, dX,.
0 0
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Proof. Tt follows from ([5.4]) that

t
| Zstl = ‘ / Ky dXy — KoXoy + KXot | < CIK gl X lalt — s|**7 + | K|l X |alt — [,
S

and hence that || Z||o < C||K ||| X [|aT? + || K|lco|| X |la < 00, so we indeed have that Z € C®.

Since Y € CP, the Young integral fOT Y, dZ, is then well-defined.
By repeated use of the estimate in ([5.4)), we have

t
S
= Y. K Xss + O(|t — 5/°77)

t
_ / Yo Ky dX, + O(Jt — s[*F7).

Taking lim _ Z[S flen ON both sides, we deduce the result. O
Using e as formal notation for integration, the previous lemma states that
Ye(KeX)=(YK)eX.

This property is therefore known as the associativity of Young integration.

5.3 Controlled paths

Let us recall some of the motivation discussed in the introduction. Given a sufficiently
smooth function f and a path X, a Taylor expansion tells us that

f(Xr) = f(Xs) + Df(Xs) X r,

and integrating with respect to X then gives

t t
/ f(Xr) er = f(Xs)Xs,t + Df(Xs)/ Xs,r @ dXT

This suggests that we might expect to be able to establish a limit of the form

T
/0 FOG) X, 2 T 37 F(X0) X+ DI (XK (5.7)
[

stlem

Indeed, we will soon prove that this limit does indeed exist, giving us a notion of “rough
integration”.

Notice however that the integrand here is not an arbitrary path, but is assumed to be a
given function of the path X. This is, unfortunately, a drawback of the theory; the space of
valid integrands is actually very restrictive. Happily, as we will see, this is rarely a problem in
practice. It is quite typical that the integrand one wishes to consider is of the required form
to allow for rough integration, including when considering solutions of differential equations
driven by rough paths.
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Having said that, we can do a bit better than explicit functions f of X. We now introduce
our space of valid integrands, namely the space of controlled paths.

In the following we will write e.g. £(R% R™) for the space of linear functions from R% —
R™. Naturally, one is welcome to identify this space with the space of m X d-matrices, but
we do not wish to start worrying about such trivial issues as the order in which we write
products of variables.

Definition 5.8. Let a € (3,1] and X € C%([0,T];R?). We say that a pair (Y,Y’) is a
controlled path (with respect to X), if Y € ([0, T];R™), Y’ € C%([0,T]; L(R% R™)) and

RY € C32([0,T);R™), where RY : Ap ) — R™ is defined implicitly by
Y:s,t = }/les,t + R3Y,t7 (37 t) € A[O,T]' (58)
We write 23 = 232([0, T]; R™) for the space of controlled paths (with respect to X).

This definition essentially says that the path Y “looks like” X on very small time scales.
We call Y’ the Gubinelli derivative of Y (with respect to X), and we call RY the remainder.

It is easy to see that, for a fixed X, the space @g(a of controlled paths is a vector space.
In fact, it is a Banach space when equipped with the norm

1Y, Yl g20 = [Yol + [Yg] + Y/ [la + | BY [l2a.
Note however that the space @)2(“ depends crucially on the choice of the path X.

Note that, given paths X and Y, the Gubinelli derivative Y’, when it exists, is not unique
in general. For instance, if it happens that X € C2* and Y € C?*, then any continuous path
Y’ would satisfy with ||RY||2 < 00. On the other hand, as shown in [FH20, Chapter 6],
if X is far from smooth, i.e. genuinely rough in all directions, then Y” is uniquely determined
by Y.

Recall that we write f € C* whenever a function f is k times continuously differentiable.
We will also write f € C’f when additionally f and all its derivatives up to order k are
uniformly bounded. Writing D¥ f for the k' order derivative of f, we write || - || o for the
norm given by

I£llcx = 11 flloo + 1D flloo + -+ + | D* flloc-

Example 5.9. Let o € (3, 3] and X € C® Let f € C2. Then the pair (f(X),Df(X)) is a
controlled path with respect to X. Indeed, it is clear that f(X) € C* and Df(X) € C%, and

we have

1
F(X0) = F(X) — DF(X)Xod| = /0 (DF(Xs 4+ rXos) — DF(X0) Xogdr

< flleel Xsel® < Ifllc2 1 X RN = s>,

which implies that [|R/)]sa < [|f]lc2l|X[2 < oo, where RISY = f(X;) — f(X.) —
Df(Xs)Xst.

In fact, it is enough to take f € C?, since the path X is bounded and, since f and its
derivatives are continuous, they are locally bounded, and hence bounded on the image of X.
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Example 5.10. Let o € (3, 4] and X € C* Let (Y,Y”),(Z,2') € 23" be two controlled
paths. Then the product Y Z is a controlled path with Gubinelli derivative (YZ) =Y Z' +
Y'Z. Indeed, we have

RZtZ = (YZ)s,t - (YZ);Xs,t
=YiZi = YiZs — (Y Zy + Y{Z) X4
=YiZst+ YsiZs+ YorZsr — (YoZo + Y. Z5) X5 4
=Y,RY, + R}, Zs+ Yo 1 Zsy,

and hence
IR ?l2a < Y [lscl B |20 + IR 20l Z]loc + Y [|all Z]la < oo

5.4 Rough integration

Recall the proof of Proposition in which we let As; = Y X, and saw that then 04, ¢ =
—Ysu Xyt This then meant that [§A .| < ||YV]5]X||alt — 5|27, and since o + B > 1, we
could then apply the sewing lemma. Clearly, if «+ 3 < 1 then this no longer works. However,
once we have lifted a path X to a rough path X = (X, X), we can get around this by using
the additional information encoded in the lift X.

Proposition 5.11. Let a € (3,3] and let X = (X,X) € €°([0,T];R?) be a rough path.
Let (Y,Y') € 22([0,T]; L(R%R™)) be a controlled path and let RY be the corresponding

remainder term. Then the limit

/Y dX, := hm D VX + YiXuy
[ }€7r
exists for every t € [0,T], where the limit is taken over any sequence of partitions 7 of the

interval [0, t] with mesh size |w| — 0. This limit is called the rough integral of (Y,Y”) against
X, which moreover comes with the estimate

t
‘ / Yo dXy =YXt = YiXst| < O(IRY l2all X la + 1Y llalIXl2a) [t — s[** (5.9)
S

for all (s,t) € A ], where the constant C depends only on a.
Proof. Let Asy = Ys X5+ Y] X, and let 0A; = Ay — As oy — Ay for s <u < t. We have
0Asut = Ast — Asu — Aut
— Vi Xop — YoXou — YaXug + YIXos — VX, — YiX,,
= YoXup = YauXus + Y{(Xep = Xou) = VX
=Y uXut + Y (Xut + Xou ® Xut) — YoXuy
= (—You+YiXgu)Xuy — Ys/,uXu,t
=~ Ry Xug = Y] Xup,
and hence

10 Asuel = 1Ry u Xt + Yo Xuel < (IR |l2all X lla + 1Yol X]|20) [t = s[*.

Since 3ac > 1, it follows from the sewing lemma (Theorem that there exists a continuous
path v =: fo Y, dX,, with the desired properties. ]
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Remark 5.12. Note that the rough integral [V dX is really the integral of the pair (Y,Y”)
against the rough path X = (X,X). However, the standard convention is to hide the
dependence on the Gubinelli derivative Y’ in the notation. In practice Y’ is generally always
clear from the context, so there is rarely any ambiguity in doing this. Nevertheless, one
should remember that the choice of Y’ does generally matter.

Remark 5.13. In Proposition the path Y is prescribed in take values in £(R% R™).
Recalling Definition we then have that the Gubinelli derivative Y’ takes values in
LR L(RYR™)). In particular, this means that the product Y’ X takes values in £(R?;R™),
consistent with Y, so that the relation Y;; = Y!X st + th makes sense. However, here we
also identify the space £(R?; £(RYR™)) with £L(R?*4;R™). This allows us to also make
sense of the product Y’X, which then takes values in R™.

We saw in Example that for any function f € C?, the pair (f(X),Df(X)) is a
controlled path. Hence, the rough integral fOT f(X,)dX, exists, and is given by the limit in

(%)

For any X = (X,X) € € and (Y,Y') € 23, the pair (Z,2') := ([, Yy dX,,Y) is itself
another controlled path with respect to X. Indeed, with Rit = Zst — Z. X5, we see from

(5.9) that

t
|RZ | = ‘/ Y, dX, — }/;Xs,t
s

s,t

< VXt + C(IRY N2all X lla + 1Y [lalIXl2a) [t - s>
<Y lloolXl2alt = s1** + C (IR ll2all X lla + Y lalXl|2a) [t — s,
and hence that ||R? |24 < 0.

In future we will denote R? by RloYudXu,

Lemma 5.14. For some a € (%, %], let F € C** be a 20-Hélder continuous path, and let
X = (X,X) € €% and X = (X,X) € € be two rough paths such that

X, = X, ot = Xot + Fis.
/ 200 __ 2,
Let (Y,Y') € 95 = 9. Then

T B T T
/ Y, dX, = / Y, dX, + / Y, dF,.
0 0 0

The proof of Lemma [5.14] is left as an exercise.

Theorem 5.15 (Stability of rough integration). Let a € (3,1], and let X = (X,X) € ¢
and X = (X,X) € € be rough paths. Let (Y,Y') € 23 and (Y,Y') € @)220‘ be controlled

paths, and let RY and RY be the corresponding remainder terms. There exists a constant C,
depending only on o and T', such that

1Y = Vo< (%~ T3+ 1Y = Vo) 1X o

+ (1% + 17X = Ko + IR = BT [2T)  (5.10)
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and
[ RdoYe X — RITe Xl < O ((1¥5 = Tg 4 1Y = Vo + IR = B l2a) X,
o (193] + 1V o+ IR 120) 1% X ). (5.11)
Proof. We have
|Ys: — }7st| = ‘YZXs,t + R;ft — 375,)25,15 — RZ,:}

< Y] = V| Xoal + V)Xo — Kol +|RY, — RY,

< (1Y = V' lool X o + 1Y llooll X = Xla) [t = 5% + | RY = R ||zalt — 5|22,
so that

Y = Vlla < 1Y = VllocllX la + ¥l X = Xl + B — BY 2aT*,

which gives the estimate in ((5.10)).
Let As,t - szXs,t + Y-s/Xs,ty A’le,t = ?SXS,t + ﬁlxs,b A=A- 1217 and 5As,u,t = As,i& -
As,u — Auﬂg. Then
5As,u,t - 5As,u,t - 5As,u,t == _(RZuXu,t + Yluxu,t - R;ju)zu,t - Y/vglmxu,t),

so that

108 el = | Ry Xup + Yy (Xus — R}:,uXu,t o
< |RY, = RY 1 Xl + R X — Xl + V7, — VK
< (IRY = R [|2allXla + | R [l2al| X — X[la
1Y = V' lalX 20 + ¥ lallX — Kl2a) [t — s>

+ ¥ Xt = Xl

By the sewing lemma (Theorem |5.1]), there exists a path v and a constant C' such that

e =7 = Astl < C(IRY = RV ||zal| X la + | RY [|2allX — X]|a
HY = Y [lalXll2a + [V la/|X — Xl|2a) [t — s

and, letting 7 denote a partition of the interval [s, t],
Y — s = lim Ay, = lim ( > Auy - Aw) = / Y, dX, — / Y, dX,.
™ ™ s s

Combining the above, we have that

t t
‘ / Yu qu - / Yu qu - (YsXs,t + }/S,Xs,t - 1/3Xs,t - }/SIXs,t)
s s

< O(IR" = BY llzal Xlla + IR llzall X = X[l
Y = P alXlloa + 17X = Kllea) It — sl*. (5.12)
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We also have

VX — VIR <V = V| [Kga| + [VY|[Xo e — Koy
< (Y =Y |solIX|2a + [V looIX — X[|2a) [t — s[> (5.13)

Combining ([5.12)) and (5.13]), we have

. e s t ¢
Y., dX, Y. dX, ~ ~ ~ o~
Rl — Rl | = ‘ / Y, dX, — YsXss — / Y, dX, + Y, X,
S S

< (1Y = ¥ ool 2 + ¥ o5 — Kll2cc) £ — 52
+C(IRY = B Jaall X[l + | BY [l3a} X = X
Y = Pl X0 + 7ol ~ Kll2a ) £ — 5,
and hence that
[ RJo Y X — RI Ve dXu || < (1Y = Voo X+ [V ool X — K20
+C(IR” = BY Jaall Xllo+ |1 [130| X = X la

Hro

Y = 7ol Kz + 7ol X — K20 )T,

which gives the estimate in (5.11)) for a new constant C'. O

Corollary 5.16. Let a € (1,1], and let X = (X,X) € €* and X = (X,X) € €* be rough
paths. Let (Y,Y') € 23 and (Y,Y') € @fza be controlled paths, and let RY and RY be the
corresponding remainder terms. There exists a constant C, depending only on o and T', such

that
H/ Yuqu—/ Y, dX,
0 0 o

< O+ Xl + 1K) (117, 7l X

(Yo — Yol + Vg = X1+ V" = V'lla+ I1BY = BY [l X, )

Proof. Since (fy Y, dX,,Y) € 23 and (|, Y, dX,,Y) e _@)220‘ are controlled paths, we have

t t
‘ / Y, dX, —/ Y, dX,
S S
J Yu dXy,

<Yy = Vil [ Xoa] + |Vl [ Xop — Kogl + | RIS — R
< (IIY = Yool X lla + 1Y loo|X — X[Ja)[t — 5] + [|RIo Yo dXu — RloYudXu]| |4 g2

[ Yu dXo,

~ o~ 'Y, dX.,
— [ViX,, + R, — VX, — Rl

Y, dX, ‘

so that

H/ Yuqu—/ Y, dX,
0 0 @

<Y = Yool Xlla + IV llooll X = Xllo + [|RIo Yo X — RloYu X[ e (5.14)
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Since Y; = Yy + Yo, we have || < |Yo| + [You| < [Yo| + ||V [laT?, so that
1Y oo < 1Yol + Y [laT*,

and similarly ) } )
1Y =Yoo < [Yo = Yo| + [|Y = YlaT*.

It is also easy to see from f{g,t = }7;)257)5 + th that

IV lla < (Y51 + 1Y T X o + [ RY 20T

Substituting these estimates along with (5.10) and ((5.11)) into (5.14)), we deduce the desired
inequality. O

6 Further topics in rough integration

In this section we will see how rough path theory allows various results from stochastic
calculus to be recovered in a pathwise sense, without the use of probability.

6.1 Associativity

We have seen how one can define the rough integral of a controlled path (Y,Y”) against a
rough path X. Recalling the definition of controlled paths, this amounts to saying that we
know how to integrate a path that “locally looks like X” against X itself. One may then
point out that, since any two controlled paths (with respect to X) both locally look like
X, they actually look locally like each other, which suggests that it should be possible to
integrate controlled paths against each other. This is indeed the case, as the next proposition
shows.

Proposition 6.1. Let X = (X,X) € € be a rough path, and let (Y,Y'),(Z,2") € 23 be
two controlled paths with remainders RY and RZ respectively. Then the limit

t
JRAASRIND DR ERER 5
[u,v]em

exists for every t € [0,T], where the limit is taken over any sequence of partitions 7 of the
interval [0,t] with mesh size |1| — 0. Moreover, we have the estimate

t
‘ / YudZu = YsZsy = VI ZXst| < O(IY ool Z'NallXIIZ + 1Y lla| RZ |20 (6.1)
S

IR [l2allZ lloo | X lla + 1Y Z a1 X|2a) [t — s>
for all (s,t) € Ay}, where the constant C' depends only on a.

Proof. Let Asy = YsZsy + Y!Z! X5, and define 6As 1 = Asy — Asy — Ayyg. Using Chen’s
relation ([3.1)), one can show that

5As,u,t = _}/S/Zg,qu,u & Xu,t - YS,uRit - RY Z/ Xu,t - (Y/Z/)s,uxu,tv

s, uu
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so that

16As el < (1Y ool Z" Nl X1E + 1Y lla | BZ |20
IR 20l Z' ool X lla + 1Y Z" ol X|2a) [t — s

By the sewing lemma (Theorem [5.1)), there exists a continuous path v =: Jo YudZ, with the
desired properties. O

We exhibited in Lemma the associativity of Young integration. We can now give a
corresponding result for rough integration.

Proposition 6.2. Let X = (X,X) be a rough path and let (Y,Y'),(K,K') € 232 be two
controlled paths, so that in particular the rough integral fo K, dX,, exists by Proposition
and the pair (Z,2') == ([, K. dXy, K) € 25 is also a controlled path. Then

/YudZ :/ Y, Ky dX,,
0 0

where on the left-hand side we have the integral of (Y,Y') against (Z,Z') as defined in
Proposition and on the right-hand side we have the rough integral of (Y K, (Y K)') against
X.

Proof. Recall from Example that the product Y K is itself a controlled path with Gu-
binelli derivative (YK)' =YK’ +Y'K. It follows from (5.9) that

t
&izfzad&ﬁd@&¢+wa+Ow—ﬂ“)
S

and .
/ VK, dX, = YK, X + (YK),Xs s + O(Jt — s|>9).
S

Similarly, by (6.1)), we have
t
/ Yy dZ, = YiZoy + Y ZXos + O(t — ).
S
We then calculate

t
/ YudZ, = YiZys + Y ZX, 4+ O(|t — )
S

= V(K Xss + K Xg1) + VIK X + Ot — s*)
=Y KXy + (YK, + Y/ KX + O(|t — s[*¥)
= YiK, Xot + (YK)Xgq + O(It — 5

t
:/ YKy dX, + O(Jt — 5.

Taking lim 0 Z[S flex ON both sides, we obtain fOT Y,dZ, = fOT Y, K, dX,. O
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Any controlled path with respect to a rough path can itself be lifted in a canonical way
to a rough path. Indeed, let X = (X, X) € € be a rough path, and let (Z,Z’) € 232 be a
controlled path. Define

t
Zs,t = / Zs,u dZy, (S,t) S A[(LT]’ (6'2)

where the integral is defined in the sense of Proposition It is easy to see that the pair
(Z,7Z) satisfies Chen’s relation, and it follows from the estimate in (6.1)) that Z is 2a-Hélder
continuous. Thus, the pair Z = (Z,Z) is another rough path.

Notice that, if Z is the rough path defined above, then we can integrate a controlled path
Y either with respect to Z as in Proposition [6.1] or against Z as in Proposition The
next lemma shows that these two different notions of rough integral coincide.

Lemma 6.3. Let X = (X,X) € €% be a rough path. Let (Z,Z') € 9% be a controlled path,
and let Z = (Z,Z) be the canonical rough path lift of Z, as defined in (6.2)). Let (Y,Y') € 22*
be a controlled path with respect to Z. Then (Y,Y'Z") € .@)2(9 s a controlled path with respect
to X, and, moreover, we have that

/YudZu:/ Y, dZ,,
0 0

where on the left-hand side we have the rough integral of (Y,Y') against Z, and on the right-
hand side we have the integral of (Y,Y'Z') against (Z,Z') as defined in Proposition 6.1}

Proof. We have that Zs; = Z. X5 + RsZ,t and Yy = Y] Zs; + Rﬁt. Then
Yor = YZXoy = Yoy = Y{(Zst = RYy) = RS, + YR,
Since the right-hand side is 2a-Hélder continuous, we see that (Y,Y'Z’) € #3%.
Similarly to the proof of Proposition using the estimates in (5.9) and (6.1)), we have
t
[ YadZ =Yz 4 Vi + O~ 5)
S
=YiZs1 + Y] Z.Z/ K51 + O(|t — 5>*)

t
= / Y, dZ, + O(|t — s3%).
S
Taking lim, o Z[sﬂeﬂ on both sides, we obtain fOT Y,dZ, = fOT Y. dZ,. O

6.2 The bracket of a rough path

An important object in stochastic calculus is the quadratic variation of a stochastic process.
Rough paths do not generally admit quadratic variation (although there are cases when they
do). However, there is a corresponding object in rough path theory which plays the same
role that the quadratic variation does in stochastic calculus. This object is called the bracket
of a rough path.
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Definition 6.4. Let X = (X,X) € ¥“ be a rough path, and let Sym(X) denote the sym-
metric part of X. The bracket of X is defined as the path [X]: [0,7] — R%*? given by

(X]t = Xot ® Xot —2Sym(Xoy).
Lemma 6.5. Let X = (X,X) € €. Then

[X]st = X5t @ Xgp —2Sym(X4)
for all (s,t) € Mg ). In particular, we have that [X] € C**.

The proof of Lemma is left as an exercise.

Example 6.6. Recall that a rough path X = (X,X) is said to be weakly geometric if it
satisfies the equality

1
Sym(xs,t) = §Xs,t & Xs,t-

We therefore see that a rough path X is weakly geometric if and only if [X]; = 0 for all
te[0,7].

Example 6.7. Let B be a Brownian motion, and let B = (B, B"°) be the It6 lift of B, as
defined in (4.4). Recall from (4.5) that the symmetric part of the Itd6 enhancement is given
by

Sym(ﬁﬁf?) = (Bs,t ® By — (t — S)I).

| =

Thus,
Bls: = (t —9)I.

At least in the case of It6 Brownian rough path, we see that the bracket of Brownian motion
does in fact coincide with its quadratic variation.

Lemma 6.8. Let X = (X,X) € € be a rough path and let (K,K') € 23%*. Recall that
(Z,2") fOK dX,, K) € 9%*. Let Z = (Z,7Z) be the canonical rough path lift of Z, as
deﬁned m , so that in particular the bracket [Z] of Z exists. Then

7] = /0 (Ko ® K) d[X],

where the integral on the right-hand side is a Young integral.

Proof. Since [X] is 2a-Hélder continuous,

/T(Ku@vK) Xy = lim > (K ® Ko)[X]as
0

|7 — [ er
exists as a Young integral. We have
(Z)st = Zst @ Zsy — 2Sym(Zg )
= (KXot + K(Xot) @ (Ko Xop + KXo) = 2(Z( @ Z{) Sym(Xsz) + O(Jt — s%)
= (KsX) ® (K Xop) = 20 @ K,) Sym(Xy) + O(Jt — 5*)
= (Ks @ Ko)[X]os + O(|t — s[**).

Taking lim|;| 0 >, e On both sides, we obtain [Z] = fOT(Ku ® K,)d[X],. O
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Abusing notation slightly, one could rewrite the result of Lemma as

[/0 K, dqu - /OtKSd[X}u,

giving us an analogous result to the well-known formula for the quadratic variation of It6
integrals.
6.3 The It6 formula for rough paths

One of the most useful results in stochastic calculus is It6’s formula, which plays the role of
the chain rule/fundamental theorem of calculus. In the setting of rough paths, we have the
following analogous result.

Proposition 6.9. Let X = (X,X) € €% be a rough path, and let f € C3. Then

T T
1
FOr) = £%0)+ | DFX) X+ [ DX, A,
where the first integral on the right-hand side is the rough integral of (Df(X), D?f(X))
against X, and the second integral is the Young integral of D*f(X) against the bracket [X].

Proof. Since X is bounded, we may assume without loss of generality that f € C’E. Since
Df € CZ, we have that the pair (Df(X), D?f(X)) is indeed a controlled path with respect
to X. We have

FOX0) — F(X0) = DF(X) KXo + 5 DAF(X) (X @ Xog) + R

1
= Df(Xs)Xay+ D f(Xo)Xsy + §D2f(Xs)(Xs,t ® Xst)
- DZf(Xs)Xsﬂf + Rs7t7
where
1 1
Rs,t = / / (D2f(Xs + T1T2Xs,t) - D2f(Xs))(Xs,t ® Xs,t)rl d7‘2 d7’1-
0o Jo
Note that
Rl < Ifllesl Xsal® < I f sl XNEIE = s>,

so that im0 X p ger [Bst] = 0.

Recall that the contraction of a symmetric matrix with an antisymmetric matrix is zero.
That is, if A is symmetric and B is antisymmetric, then }, ; AU BY = — > i AVBIt =
- Z” A% BY | which implies that Zi,j A BY = 0.

Since the Hessian matrix D?f(X,) is symmetric, it therefore kills the antisymmetric part
of X. Thus,

DQf(XS)XS,t = D2f(Xs) Sym(Xs,t)'

By Lemma 6.5, we then have that
1
f(Xt) - f(Xs) = (Df(Xs)Xs,t + DQf(Xs)Xs,t) + §D2f(Xs)[X]s,t + Rs,t-

Taking lim, o Z[SJ] e On both sides, we deduce the result. O
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Remark 6.10. In Proposition and also in Proposition [6.11] below, it is actually enough
to take f € C ate for any € > 0. This can be shown by using the more general notion of
(B, 7)-controlled paths introduced in the second exercise sheet.

Proposition 6.11. Let X = (X,X) € € be a rough path, and suppose that (Y,Y') € 93
and (Y',Y") € 2% are controlled paths. Suppose further that

t
0
for all t € [0,T), for some path T' € C?*. Let f € C3. Then
T T
FO) = 045) + [ DFYYIaXu+ [ Df(i)ar, + / D[ (Y,)(V, @ Y}) d[X],.
0 0
The proof of Proposition is left as an exercise.

6.4 The rough exponential

In this section we shall see our first example of a rough differential equation (RDE).
In the following, we will write ||.X |45, for the a-Holder seminorm over the interval [s, ],
Le. sup <y <yp<t [ Xupl/[v — ul*. We also define [|[X[|aq, (5, and [|X][, (5 similarly.

Proposition 6.12. Let 8 € (3, 3], and let X = (X,X) € € be rough path over R (so that
in particular X is real-valued) such that Xo = 0. Let

V; = exp (Xt - %[X]t), t e [0, 7). (6.3)

Then V is the unique solution to the linear rough differential equation
t
Vi=1 +/ Vi dXy,. (6.4)
0

By a solution to (6.4) we mean a path V € CP([0,T};R) such that (V,V) € 23, and such
that the equation holds with the integral defined as the rough integral of (V,V') against X.

Proof. Applying the 1t6 formula of Proposition withY = X — % [X], Y =1and f = exp,

we obtain
t 1 t 1 t
Vt—1+/ Vuqu—/ Vud[X]qu/ Vi d[X
0 2 Jo 2 Jo

t
—1+/ V, dX,,
0

so that V' does indeed satisfy (6.4)).

We now turn to proving uniqueness. Suppose that (V, V) € @25 were another solution of
(6-4). Let o € (%,ﬂ). Since a0 < f3, it is clear that X € €%, (V, ) € 2% and (V,V) € 2%

In the following we will let < denote inequality up to a multlphcatlve constant which
may depend on «, T and ||X||4.
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By Corollary we have

SV =Vla+ IR = BV |2a) IXIl,-

o

||V—I7Ha:H/ Vuqu—/ v, dX,
0 0

By the estimate in (5.11]), we have
IRV = RY [laq = || R Ve X — RIo Vet |y (IIV = Vo - | BV = BY [20) 1 Xl
Combining these inequalities, we have that

IV =Vl + B = R [l2a < C(IV = Vl]a + IR = R |l20) IXIl, (6.5)

for some constant C'. Note that
XM a0.q = 11X lasiots + IXll2aoq < X504t + 1X]l2,0,4t°7 ).

Therefore, by taking the terminal time ¢ = fp > 0 sufficiently small, we can ensure that
ClIXll,f0,66) < 1. It then follows from (6.5) that V' =V on the interval [0, Zo].

Since the constant C' in (6.5) does not depend on the initial condition Vo = Vp, we
can simply infer from the same argument that uniqueness also holds over the next interval
[to, 2tp], and so on, to deduce uniqueness over the entire original interval [0, 7. O

We call the path V defined in (6.3]) the rough exponential of X.

Corollary 6.13. Suppose that X = (X,X) € €% and (K, K') € 23 are such that the rough
integral fo K, dX, takes values in R. Let V' be the path given by

t 1 t
vtzexp</ Kudxu—2/<Ku®Ku>d[X]u>, te 0.7
0 0

Then V' is the unique solution of the rough differential equation
t

Vt:1+/ VoK, dXy, t € 0,T].
0

The proof Corollary is left as an exercise.

7 Differential equations

In the previous section we saw our first example of a rough differential equation. In this
section we shall study such equations in a more general setting. It is useful to first consider
the case where the driving path is regular enough to allow for Young integration, before
moving on to study equations driven by rough paths.

Throughout this section we will use the symbol < to mean an inequality up to a multi-
plicative constant which may depend on «,7T" and HfHC{j (for k =2 or 3).
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7.1 Young differential equations

Lemma 7.1. Let a € (0,1] and f € Cf. Then there exists a constant C, depending only on
a, T and ||f”cb2’ such that

IF(Y) = F)lla < CAH+ Y lla + 1Y lla) (1Yo = Yol + 1Y = Y]la)

holds for all Y,Y € C®.
Proof.

’f(y)s,t - f(i/)s,t‘
1 1
=‘/0 Df(ﬁw(}ﬁ—ﬁ))(}ﬁ—ﬁ)dr—/o DI, +1(Ys — V))(Ya — V) dr

SIY =) Yot IY = Yl

+ (|Ys

so that

1FY) = o SNY = Ylla+ (Y o+ Y)Y = Yoo
S @+ Ylla+ Yla) (1Yo = Yol +[IY = Ya).
O]
Theorem 7.2. Let 3 € (3,1] and let X € C#([0,T|;R?). Let f € CHR™; L(RL,R™)), and
let y € R™. There exists a unique path Y € CP([0, T]; R™) which satisfies

Yi=y+ /0 F(¥s) dX, (7.1)

for all t € [0,T7].
Proof. Let a € (4, 3). Define the map M,: C*([0,¢]; R™) — C([0,t];R™) by

M(Y) =y + / F(Ys) dX..
0
Let
By = {Y € C*(0, 1 R™) : Yo = 4, [V lajog < 1}

which, being a closed subset of the Banach space C%, is a complete metric space.
Invariance: Let Y € B;. Using the estimate in (5.4)), we have

MY o = H /0 V)X S (1) sl X o + 1Y)l XTle)

S A+ Y[l Xa < 21X la-

Thus,
[Me(Y) a0, < CollX

a0 < ClIX g 0,gt"

for some constant C;. Choosing ¢ = ¢; > 0 sufficiently small so that C’lHXHﬁ,[QT]tf_a <1,
we then have that [[My, (Y)[[a,0) < 1. Since My, (Y)o = y, it follows that the set By, is
invariant under the map M;,. That is, My, : B;, — By, .
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Contraction: Let Y,Y € B;. Using Proposition and Lemma we have

IM(Y) — My (7 IIa—H/f ) dX, — /f
SO = FDlal Xl S 1Y = Plall Xla.

This gives

IM(Y) = M(Y)]

a0, < Cof

0,41 X ooy < C2llY = Yllap0.]
for some constant Cy. Taking ¢ = t5 € (0, ¢1] sufficiently small so that C’2HX||5,[07T]t§_O‘ <1,
we obtain

N 1 N
My (V) = M, (V)llafo,15] < 1Y = Yllafo,ra)-

Thus, the map My, is a contraction on 5;,. By the Banach fixed point theorem, there exists
a unique fixed point. That is, there exists a unique Y € C® which satisfies ([7.1)) over the
time interval [0, to].

Since the constants C'1, Co above did not depend on the initial condition, we can then
simply apply this argument over the next interval [ta,2t2], and so on. By pasting these
solutions together, we deduce the existence of a unique solution Y over the entire interval
0,7

So far we only have that Y € C*. However, since X € C?, it follows from (7.1]) and .
that Y € CP. Since any solution in C? is automatically also in C%, our solutlon Y is also
unique in CP. O

Proposition 7.3. Let § € ( ] cmd fe Cb Let X, X € CP and y,j € R™, and let Y and

Y be the (unique) solutions of (7.1)) with the data (y, X) and (g, X)) respectively. Let M > 0
be a constant such that || X |3, ||XH5 < M. Then, for any o € (3, 3), there exists a constant
Cy > 0, depending on o, T, ||f||c§ and M, such that

IV =Y < Cu(ly— il + | X — X|a)-

Proof. Recall from the proof of Theorem [7.2| that the local solution Y over the time interval
[0,22] is an element of the set B;,, which means in particular that [|Y||4,0,,) < 1. Similarly,

we have that Hf/Ha 0,] < 1 for some ty > 0.
By Proposition

4} for any t € (0,2 A t2], we then have

Iy - YHa—H/f ax.- [ )

< (1f () = FYO) [+ (V) = f(V )H )Xl + (1£@) + 1F X)) 1X = Xl
< (Yo = Yol + Y = Yla) [ X[la + X = X|a-

This means that

1Y = Voo < Cs((1Yo = Yol + Y = Vllafon)]

11X = Xllajos)

for some constant Cl.
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Choosing t = t3 € (0,ts A t3] sufficiently small so that C3HXH,3,[07T]t§_a < 3 and rear-
ranging, we deduce that

Iy - Y|

a,[0,t3] S./ ‘}/b - YO’ + HX - XHCM,[O,tg,}'

It follows that there exists a 6 > 0, depending on «, T, || f ||C§ and M, such that, for any
interval [s,t] C [0,T] with [t — s| < J, we have

Iy - Y|

a,[s,t] 5 ’}/S - Y/ts‘ + ||X - X|

a,[s,t] (72)
Take a partition 7 of the interval [0, 7] with mesh size |r| < §. The estimate in (7.2]) then
holds over every interval [s,t] € m, and by combining these estimates one can deduce that
the same estimate holds over the entire interval [0, T']. O
7.2 Functions of controlled paths
Lemma 7.4. Let a € (3,1] and X € C*. Let f € C}. For any (Y,Y') € 93, the pair
(f(Y), Df(Y)Y') € 2%
18 a controlled path. Moreover, we have the estimates
2
IDFY)Y [la < C(L+ Y] + 1Y [l + 1B [|2a)" (1 + X la),
2 2
IRI ) [laa < C(1+ 5| + 1Y [la + 1RV [l2a) (1 + 1 X [|a) ",

where the constant C' depends on o, T and HfHCg

Proof. We have

|Df(YV)Y/ — Df(Ys)Y]| < [Df(Y)IIYL, |+ |DF(Ye) — DF(YL)|YY]
SV + Vel Y]
so that
IDFX)Y lla SV o+ 1Y Nl Yl
S o+ (1Y llooll X o + 1 RY l20) 1Y oo
SV o+ (Y54 1Y ) 1X Nl + 1R [l2a) (V5] + 1Y)
S @+ 1Y+ 1Yo+ 1R fl2a)* (1 + 1X o).

which gives the first estimate.

We also have
RIV) = f(V)) — F(Ye) — DF(YL)Y! X,
= f(Yy) = f(Ys) — Df(Ys)(Ysz — RY,)

1 1
_ / / D2f(Ye + r1rYe )YE2 1y dry dry + DF(YS)RY,,
0 0
so that

FY
|RID)| < [Yeul? + RV,

43



Then
IR |2 S IYIZ + IRY |20
2
< (Y ool X o + 1R ll20) ™ + 1BY 120
2 2
S @+ Y+ 1Y lla + 1RV ll2a) " (1 + 1Xla) ",
which gives the second estimate. O

Lemma 7.5. Let a € (1,4], X, X e C*, (Y,Y') € 9%, (Y,Y') € .@)230‘ and f € C}. Let
M > 0 be a constant such that || X|o < M, [ XNla < M, Y|+ 1Y la + [|RY l2a < M and
VY| + 1Y la + ||RY |20 < M. We have that

IPFY)Y’ = DY),
< C(|¥o = Yol + ¥ = Y| + 1Y = V'lla + IR = RY [lza + | X = X]la),
and
R~ RO,
< C(|¥o — Yol + ¥ = Y| + 1Y = ¥'lla + IR = RY [lza + |IX = X]la),
where the constant C' depends on o, T, Hchg and M.

Proof. In the following we shall allow the multiplicative constant indicated by the symbol <
to also depend on M.

We have
(DFVY' = DFE)Y'), |
< (DI = V), |+ (DAY - DIENT), |
<DV = Y)sul + [DF(Y)sp(Ye = V)
+|(Df(Yy) = DFY))Y |+ |(DF(Y) = DF(Y))ss Y4
and hence

|IDFY)Y' = DfFY)Y'|,
< NDFO)ocllY =Y lla + IDFO)allY” = ¥[loc

DY) = DFY)lcllY lla + [1DFY) = DY)l [loo
S =Y la+ 1Y =Yoo + Y = Voo + [DF(Y) = DF(Y)lla-

By Lemma 7.1 we have
IDfF(Y) = Df(Y)la S 1Yo = Yol + Y = Y]a,
and by (j5.10|) we have
IY =Yl S1Y = Y5 + Y = Y'la + | X = Xla + | R = R |l20. (7.3)

Putting this together, we obtain the first estimate.
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Wealsohave

R BRI

‘ st_Df DY X — f(V ) + Df(Ye) Y Xl

‘ JY)( st_RZt)—f(Y)st-i-Df( )( _R}:t)‘

< |£( st—Df DYar — F(V)es + DY) Vau| + [DF(Y2)RY, — D (V)RY,

= ’ / / DQf(K9 + 7’17'2Ys,t)Y5%2 T d”r’g d?”l — / / sz(f/s + 7’17’2?;7,5)?9%2 T d?"g d?”l
0 JO 0 0

+ |DF(YO) RS, — DF(Ya) Ry,
SIY = VlioolVee? + V5 = Vi3 + [DF (V) RY, — DF(VO)RY|
<Y - ?Hoo|3§t|2 + ’Ys tlVar = Varl + [ Yar — Yerl[ Vel
+ DS (¥:) = DFIIRY| + [DF(V)|IRY, - RY,|,
so that
|RI) — RIS 1Y = YooY I2 + (Y o+ IV ) 1Y = ¥ la
1Y = Vil BY llza + |R” = BY |20
S 1Yo = Yol + Y = Vo + [R" = BY |20
Using again, we obtain the second estimate. O
Lemma 7.6. Let o € (3, 3] and X = (X,X) € €. Let f € C}. For any (Y,Y') € 9%, the

pair
([ roax,.sm) e %
1s a controlled path. Moreover, weoha'ue the estimates
1F )l < O]+ 1Y )X Nl + | BY [|2aT9),
| BRI TPl < U Y]+ 1Yo + 1R o) (141X ) 1K

where the constant C' depends on «,T and HfHCg

200 —

Proof. The first estimate follows easily from the Lipschitz continuity of f and the relation
Y1 =Y/X,, + RY,.

By Lemma [7.4) we know that the pair (f(Y"), D f (Y)Y”) is a controlled path, and hence
by Proposition 5.11‘ that the rough integral fO w) dX,, exists. Moreover, it follows from
the estimate in ([5.9) that

. t
| Rl SO0 X ‘ / FYa) dXy — (Vo)X

SIDFY)YIXal + (IRT O |aa| X [l + 1 DLOY [l Xl2a) [t — 5>,
and hence, using the estimates in Lemma [7.4]
RIS dXu)l <y || X 20 + R |2a | X [la + | DLO)Y [l X120
S+ I+ 1Y o+ IR 20) > (1 4+ 1X 0) 2 (11X o + 1K |20),

which gives the second estimate. O

Iz =
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Lemma 7.7. Let o € (3,4] and X = (X,X),X = (X,X) € €% Let (Y,Y') € 2% and

(Y,Y') e @)220‘, and f € C3. Let M > 0 be a constant such that | X|a < M, | X|a < M,

Y5+ 1Y lla+ IR ll2a < M and |Y] + 1V [la + | RY [l2a < M. Then
1FY) = F(¥)]la
< (1% — ol + (1% — 55 + 1V = Vo)Xl + 1B~ B [paT® 41X — Xla).
and
«
< (0~ Tl 4 1%~ T4+ 1Y = Vo + IR — B g + X = X)X, + XX
where the constant C' depends on o, T, Hf”c;} and M.

Proof. In the following we shall allow the multiplicative constant indicated by the symbol <
to also depend on M.
By Lemma [7.1}, we have that

1Y) = fD)lla S L+ 1Y lla + [V ]la) (1Yo — Yol + Y = Yla)
S Yo = Yo[ + [[Y = Yo

By (5.10)), we have
1Y = Ylla $ (10 = Y| + 1Y = Y'lla) [ X[la + | X = Xlla + | R = RY [T

Combining these two inequalities, we obtain the first estimate.

By , we have

HRfO' fVw)dXu _ pfs f(f/u)df(uH2

S (IDF(Y0)Yy — DF(Yo)Yg| + IDF(YV)Y = DF(Y)Y|lo + [ RTY) = RTOV[100) X,
+ (IDF Y)Y+ IDF V)Y o+ [BI)|2a) X5 X -

We know from Lemma that the norms ||Df(Y)Y”||o and HRf(Y/) ||2o are both bounded by
> > % 2 SN2
(L + Y1+ 1Yl + 1R [|20) " (1 + 1X]la)” S 1,

and we know from Lemmathat the norms HDf(Y)Y’—Df(f/)f/’Ha and HRf(Y)—Rf(Y/) HM
can both be estimated by

Yo — Yol + Y5 = Yo | + [[Y" = Y'la + [RY = RV |20 + [|X — X[|a-

Substituting these estimates into the above, we obtain the desired inequality. O
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7.3 Rough differential equations

We are now ready to establish existence and uniqueness of solutions to RDEs of the form
dY; = f(V2) dX,
for sufficiently regular vector fields f.

Theorem 7.8. Let 3 € (5,3] and let X = (X,X) € €5([0,T;RY) be a rough path. Let

feCRrR™, L(RYR™)), and let y € R™. There exists a unique controlled path (Y,Y') € .@)2('8
such that Y' = f(Y), and such that

Yi=y+ /0 F(¥s) dX, (7.4)

for all t € [0,T].
Proof. Let a € (1, 8). Define the map M,: 23%([0,t];R™) — 232([0, t]; R™) by

My = (5+ [ 1) ax. ),
0
which we know defines a controlled path by Lemma Let

By ={(Y,Y") € Z3(10,4;R™) : Yo =y, Y5 = f(y), [V, Y]

X0, <1 },

where
1V, Y | x0 = 1Y [la + IR ]|20-

Since B; a closed subset of the Banach space 2%, it is a complete metric space with the
metric induced by the norm ||-,:||x . Note that the path s — (y + f(y)Xos, f(y)) is an
element of By, so the set B; is nonempty.

Let M = 1+ fllcs + X lajo.r)- Note that, if (Y, Y") € By, then |[Yg|+[|Y[la + || BY [|2a =
lfW+ 1YY | xa < Ifllez +1 < M, so that the hypotheses of Lemma are satisfied. In
the following we shall allow the multiplicative constant indicated by the symbol < to also
depend on M.

Invariance: Let (Y,Y’) € B;. By Lemma we have

MY, Y x.0 = 1 f (V)| + [|RITOD X |
S Y+ 1Y ) IX [la + [1RY l2at®
+ (14 1G]+ 1Y o+ IRY [l2a)* (1 + 1X Nla) X
< Xl + 2,

so that
MY, Y ) x 00,0 < CrIX g 0.q +1%)

for some constant Cy. Then

MY, Y ") x 0,00, < C1(HXHQ7[O¢} + [1Xl20.fo.q + )
< C1(IX g p0.0t" ™ + X2 f0.g 20~ +£%).
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Choosing t = t; > 0 sufficiently small, we can ensure that ||M;, (Y,Y")||x 0,4, < 1 for all
(Y,Y') € By,. Thus, the set By, is invariant under the map My, .

Contraction: Let (Y,Y"),(Y,Y") € By for some t € (0,¢;]. By Lemma we have

MUY, Y) = MY T = £ (V) = F(7) o+ [ RIS 4Xe — RIG ST X

SY = Yla + IR = RY[l2a) (IX[l,, + ),
so that

MY Y) = MY V)| 00

< Co(IY" =Y llaou1 + 1B = BV [laao,0) (Xl oo + 1)
for some constant C5. Then

[ MY, Y) = MY, Y| 0 0

< Co(IY" =Y llajo + IR = R llaajo.) (1X 10,08 + [Xll2p 0,92~ + ).
Choosing t = t € (0, 1] sufficiently small, we can then ensure that

<oy - @y

M, (YY) = Moy (V. V) [ o) < 5

) HX,a,[O,tQ] ’
The map My, is therefore a contraction on B;,. The unique fixed point of this map is then
the unique element (Y,Y’) € 22 of the RDE over the interval [0, 2] satisfying Y’ = f(Y).

Since the constants C7,Cy above did not depend on the initial condition, we can then
simply apply this argument over the next interval [ta,2ts], and so on. By pasting these
solutions together, we deduce the existence of a unique solution (Y,Y’) € 9%“ over the
entire interval [0, T7].

So far we only have that (Y,Y’) € 22*. However, since X € ¢”, we actually have that
(Y,Y') e @)Q(ﬁ. Indeed, since Y, = Y/ X, + RY, and X € C?, we see that Y € C?, and since
Y’ = f(Y) and f is Lipschitz, we then have that Y’ € C5. Moreover, by we have that

t
|R§:t| = |}/;,t - }/S,Xs,t = ‘ / f(Yu) qu - f(}/;)Xs,t

SIDFY)Y |loolXsal + O(It = s]*),
and since X € CS’B , we see that RY € CQM . Since .@)Qf C 2%, we have that the solution
(Y,Y”) is also the unique solution in 9)2(5 satisfying Y' = f(Y). O

Suppose that we have fixed a vector field f and an initial condition y. The previous
theorem shows that, given a rough path X, we can assign a unique (in a suitable sense)
solution (Y,Y”) to the corresponding rough differential equation. The solution map

X — (Y,Y)

in the context of rough paths is known as the It6—Lyons map.
We now come to a version of what is arguably the most important result in the theory:
the continuity of the It6—Lyons map.
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Theorem 7.9. Let 8 € (3,3] and f € C. Let X = (X,X),X = (X,X) € €7 and

y, g € R™, and let (YY) € @)2(5 and (Y,Y') € @;ﬁ be the solutions of the RDE (|7.4))
given by Theorem with the data (y,X) and (§,X) respectively. Let M > 0 be a constant
such that || X[, Xz < M. Then, for any o € (3.8), there exists a constant Cpy > 0,
depending on o, T, HfHCg and M, such that

1Y = Ylla + I = Y"a + IR = R [|l2a < Car(ly — 31 + 1X: X]la).

Proof. Recall from the proof of Theorem [7.8| that the local solution (Y,Y”) of the RDE over
the time interval [0, t2] is an element of By,, which means in particular that ||Y, Y| x o 0,6, <
1. Similarly, we have that H?,Y’HXQ’[O,M < 1 for some to > 0. In the following we shall
allow the multiplicative constant indicated by the symbol < to also depend on M.

By Lemma for any t € (t3 A Ta], we have that

Y =Y'lla = IF(Y) = FV)]a
S Yo = Yol + (IYg = Yol + 1Y = Y'[la) [ X[la + IR = R [l2at® + | X = X[la
and

IRY - R?Hm _ HRf(; FVu)dXu _ Rpls f({/u)dquQa
S (Yo = Yol + Yg = Y5l + 1Y = V'l + [|RY = BY [l2a + |X = Xla) 1X]l, + X X]a-
Noting that |Y] — Y| = |f(Yo) — f(Yo)| < |Yo — Yo|, we then have
1Y =¥l + 1R = B 0
< O (%o = Tol + (¥ = o+ 1RY = BY laa) (IX I, + 1) + 1% X L)
for some constant C'5. We have that
1l o + £ < X1 f0,g2%~ + Xl 0,25 =) + 2.

Choosing t = t3 € (t2 A t2] sufficiently small such that

— 2(8—
Cs (X 1. 10.57t3 = + IXIl2g fo.ss 5 +15) <

DO =

and rearranging, we obtain
||Y, — 57/”&7[07753] + ”RY — RYH2047[0¢3] S Yo — f/b| + [1X; XHa,[O,ta]'
It then follows from the estimate in (5.10]) that
1Y = Yoo S Yo = Yol + 1% Xl|a,jo,ta1-
It follows that there exists a § > 0, depending on «a, T, || f||C§ and M, such that, for any
interval [s,t] C [0,7] with |t — s| < J, we have
1Y =Y asg + IR = B |05 S 1Yo — Yol + [1X; Xl a5, (7.5)
1Y = Yllas < Yo = Yol + X X5, (7.6)

Take a partition 7 of the interval [0,7] with mesh size |r| < §. The estimates in (7.5)) and
(7.6) then hold over every interval [s,t] € m, and by combining the estimates on different
intervals one can deduce that the same estimates hold over the entire interval [0, 7. O
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8 Consistency with stochastic calculus

8.1 Stochastic integration

Recall from Section [ that a d-dimensional Brownian motion B can be lifted to a random
rough path B = (B,B). As always, the enhancement B is not unique, but we have two
important examples, namely the [t6 and Stratonovich enhancements. Let us first consider
the It6 enhancement:

t
B, = / Boy @dBr,  (st) € Ag).
S

We recall from Proposition that B(w) = (B(w), B (w)) € € for almost every w € .
The following result shows that rough and stochastic integrals against It6 Brownian motion
coincide whenever both are well-defined.

Proposition 8.1. Let (0, F, (Ft)icpo,r), P) be a filtered probability space. Let a € (%,%)
and let B = B = (B,B) = (B,B") be an Fi-adapted It6 enhanced Brownian rough
path, so that B € €% almost surely. Let (Y,Y') be an adapted stochastic process such that

(Y(w),Y'(w)) € @%?‘w) for almost every w € Q). Then

T T
/YudBu:/ Y, dB, (8.1)
0 0

almost surely.

It is helpful to make the dependence on w explicit here. The equality in (8.1) means
that, for almost every w € €2, we have that

/0 V() dBy () = < /0 v, dBu> (@),

where, by Proposition [5.11} we have that
T
/ Y, (w) dBy(w) = limo Ys(w)Bst(w) + Y (w)Bs ¢ (w). (8.2)
0 Iml— [s,t]lem
Proof of Proposition[8-1 Let (7™),>1 be a sequence of partitions with 7™ — 0 as n — oco.
Recall that the It6 integral against Brownian motion can be written as the limit in probability
s (T
Z YsBst — / Y, dB, as n — oo.
[s,t]len™ 0
There then exists a subsequence (ny)g>1 such that
T
> Y.By — / V,dB, as k— oo
[s,t]enmk 0
almost surely. Combining this with (8.2]), we have that

T T
> VB — / Y, dB, — / Y,dB, as k— oo (8.3)
0 0

[s,tjen™k
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almost surely.

Since the It6 integral fo B, ® dB, is a martingale, we can use the orthogonality of mar-
tingale increments. That is, for [u,v],[s,t] € m with v < s, we have that E[Y/B,, ,Y/Bs:] =
E[E[Y, B, Y, Bs: | Fs]] = E[Y, B, ,Y/E[Bs | Fs]] = 0. For any partition 7, we then have that

2
E[ > VB, } = > E[V/B../*].

[s,t]em [s,tlem
Let us assume for the moment that [|[Y”||zxjo,r7) < M for some constant M > 0. Recall
from the proof of Proposition [4.2] that E[|B;;|?] < C|t — s|? for a constant C. Then

E[ > VB,

[s,t]em
Applying this with m = n"* we have that

2
} = > E[V/By*] <CM? > |t— s> < CM*T)x|. (8.4)

[s,t]em [s,t]em

L2(P
Z YZBS,tLO as k — oo.
[s,tjen™k
We also know from (8.3)) that this sequence of random variables converges almost surely. It
follows that these limits must be equal almost surely.

If [|[Y']| oo (@x[0,77) 18 not finite then we can use a localization argument: Let M > 0 and
define the stopping time 73y = T Ainf{t € [0,T] : |Y/| > M}. Applying the argument above
with the stopped processes (Y')™ and B™ = (B™ B™), we deduce that [ Y, dB, =
fOTM Y, dB, almost surely. Since 7y — T as M — oo almost surely, the result then follows
upon letting M — oco. O

We now turn our attention to Stratonovich enhanced Brownian motion B = (B, BStrat),
where

t
BE,ttrat - / Bs,’r‘ ®o dBTa (S, t) € A[O’T} )

Recall that Stratonovich integration is related to It6 integration by the relation

T T 1
/ Y, 0dX, = / YodX, + 3 (¥, X)r (8.5)
0 0
for semimartingales X,Y , where the limit in probability
Z Y1 Xt 5 (Y, X)r as |m| =0,
[s,t]em

is the quadratic covariation of Y and X.
By Proposition we know that, almost surely, B = (B, Bt ¢ ‘5;) “ is a geometric
rough path. Let us also recall the following useful equalities:

5 1
B =BY + 5(t— )1, (8.6)
and 1 ]
Sym(BJy™) = Sym(B?) + 5 (t — 5)[ = 5 Bsy © By (8.7)

Similarly to the It6 case above, we now show that rough and stochastic integrals against
Stratonovich Brownian motion coincide whenever both integrals are well-defined.
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Proposition 8.2. Let (0, F, (Ft)icio,1), P) be a filtered probability space. Let a € (3,%) and
let B = B = (B B) = (B,B%"%) be an F;-adapted Stratonovich enhanced Brownian

rough path, so that B € 55 “ almost surely. Let (YY) be an adapted stochastic process such
that (Y (w),Y'(w)) € _@20‘ ) for almost every w € Q. Then

T T
/YudBu:/ Y, o dB,
0 0

Proof. The main step is to identify the quadratic covariation of ¥ and B. Recalling that
Y+ =Y!/Bs; + RZt, and using (8.7), we have that

almost surely.

Y4 Bst = YJ(Bst ® Bsy) + RY By
= 2Y] Sym(B}Y) + Y/(t — s) + RY,Bsy.

By the proof of Proposmon specifically (8.4] ., we saw that Z[S flen IB%;? — 0as|n| — 0.
It is easy to see that the same argument applies to the symmetric part Sym(IB%ItO), so that

Z Ys’Sym(IB%??) 5o as || — 0.
[s,tlem
We have that
ZY’t—s —>/ Y, du as |m| — 0,
[s,tlem
almost surely, and that

’ZR st

[s,tlem

<R 2all Blla D [t=5P** < IR [l2al BllaT|x[**™* = 0 as |x| =0
[s,t]lem

almost surely. Putting this all together, we have that

ZYHBM—>/ Y/du  as |r| =0,

[s,tlem
so that
T
(Y,B)r :/ Yé du.
0

Applying Lemma with Fy = %t] , in view of , we have that

T T 1 (T
/ Y, dBStat — / Y, dB3°+§ / Y, du.
0 0 0

Thus, by Proposition and (8.5)), we then have

T T 1 T
/ Y, dBStrat — / YudBy + 5(Y, B)r = / Y, o dB,.
0 0 0
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8.2 Stochastic differential equations

Given the consistency of rough and stochastic integrals shown above, it is straightforward
to deduce consistency of rough and stochastic differential equations.

Proposition 8.3. Let (Q,F,(Ft)icpo,1);P) be a filtered probability space. Let f € C3, ac
(%, %), and y € L?(P). Let B be a d-dimensional Brownian motion.

(i) If B = (B,B"%) € €< is It6 enhanced Brownian rough path, and (Y,Y') is the
solution of the RDE )
dy, = f(¥)dB;,  Yo=y,

as given in Theorem[7.8, then Y is the unique strong solution of the Ité SDE

Y, = f(V)dB,, Yo =y.

(i) Similarly, if BS" = (B, BS"at) ¢ %;)’a is Stratonovich enhanced Brownian rough path,
and (Y,Y") is the solution of the RDE

dy; = f(Y,) dBJ"™, Yy =y,
as given in Theorem[7.8, then Y is the unique strong solution of the Stratonovich SDE

dY, = f(Yi) odB,,  Yo=y.

Proof. Since the It6 integral [; B, ® dB, is adapted to the natural filtration generated by
B, we have in particular that IB%E? is 0(By : 0 < u < r)-measurable. It follows that

U(BS,Bif?:Ogsgrgt):a(Bu:()gugt).
The continuity of the Ité—Lyons map (Theorem tells us that the map
(B,B") — (Y,Y")

is continuous (with respect to suitable Holder norms). It follows that the solution (Y,Y”) is
also adapted to the natural filtration generated by B.
By Proposition [8.1} we then have that

t t
Yt=y+/ f<Ys>dB£F°=y+/ J(Y,)dB.,
0 0

so that Y does indeed solve the It6 SDE.

The proof in the Stratonovich case is the same, using Proposition [8:2] to conclude. O

9 Pathwise stability of likelihood estimators

In this section we shall see one of the earliest applications of rough path theory to statistics.
We will see how rough paths can be used to obtain pathwise stability of maximum likelihood
estimators for diffusion processes.
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Let V be a finite-dimensional vector space, let ¥ € R?? and let h: RY — L(V;R%) be a
Lipschitz continuous map. Consider the stochastic dynamics:

dX; = h(X)Adt + AW, (9.1)

with Xo = zg. Here, A € V is a parameter, W is a d-dimensional Brownian motion, and
xo € R? is a (deterministic) initial value. We assume that Y is nondegenerate, so that

C=xx'

is a positive definite symmetric matrix.

We are interested in estimating the parameter A by observing the process X up to some
time 7. We therefore consider the Maximum Likelihood Estimator (MLE) Az, which we
can think of as a function on pathspace:

Ap: C([0,T];RY) — V.

That is, given any observed path X (w) = (X¢(w))sc[o,7], We have a corresponding estimate
Ap(X(w)) € V.

9.1 The classical MLE

Let’s derive the MLE. Let P° be a probability measure under which W is a d-dimensional
standard Brownian motion, and define the process X by

Xt = w0+ XW;
for ¢ € [0,T]. For each A €V and t € [0,T], let
fih=2"h(X;)A

and .
WA =w, —/ fAds.
0

By Girsanov’s theorem (see e.g. [CEI5, Chapter 15]), we have that W4 is a Brownian motion
under the measure P4 defined via the Radon-Nikodym derivative:

dpA T T
I~ P < | usraw—5 [ |f;“|2ds>. ©2)

In particular, we then have that

dX, = X dw,
=(fAdt +dw)
= h(X,)Adt + AW,

so that X has the desired dynamics under P4.
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The Radon—Nikodym derivative in (9.2)) is precisely the likelihood function that we wish
to maximize. We have

dpA

T T
log g5 = [ (bCx)AT (£ T aw, - 5 [ th) AP ds
0 0

T 1 T
:/ (h(Xs)A)TC_ldXS—/ (h(X)A)TC1h(X,)Ads.
0 2 Jo

We wish to find the value of A which maximizes this expression. This is essentially just a
case of finding the stationary point of a quadratic equation, and it is straightforward to see
that the MLE Arp is characterized by the relation:

IpAr = Sy,

where

T
S = / h(X,)TCtdX, e V* (9.3)
0

and T
I = / h(X,)TC7Ih(X,) ds € L(V; V).
0

Here we write V* for the dual space of V, and the integral in (9.3)) should be interpreted as
an It6 integral. Thus, provided that I7 is invertible, the MLE is then given by

Ap =I;'Sp € V. (9.4)

Example 9.1. Suppose that W and X are 1-dimensional, V=R, ¥ = ¢ > 0, and A is just
the identity map on R, so that the underlying dynamics are given by

dXt = AXt dt + O'th

with Xy = x¢ € R. In this case, we have that

T
IT:G_2/0 XSQdS,

and
-2 -2

T
_ o
Sr=0c 2/ X,dX, = - (X3 — 28 —(X)p) = — (X% — 23 — o°T), (9.5)
0

so that, by (9.4), the MLE is given by

i _X%—.%'%—O’QT

= 9.6
2 [ X2ds 00

Note that this expression is well-defined provided that the path of X is not identically zero
(which is actually impossible if zop # 0 by continuity).

In the simple case of Example we have the explicit expression for the MLE.
Moreover, note that in this case the MLE is a continuous function on pathspace with respect
to the supremum norm. This means that if two observation paths X and X are close, in
the sense that the distance sup;¢pg | X — Xt\ is small, then the difference between the
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corresponding MLEs |Ap(X) — Ap(X)| will also be small. This stability property is very
desirable. In particular, it means that in practice any small errors in our observations of X
will not result in a large error in our estimation of the parameter A.

Unfortunately, pathwise stability with respect to the supremum norm does not hold in
general. The fact that it holds in the example above is essentially because things tend to be
nice when working in 1-dimension. We will see below an explicit example where this stability
fails. An interesting question then arises: can we recover pathwise stability of the MLE with
respect to a different topology? As we will see, it turns out that this stability can indeed be
recovered if we consider the observation path X as a rough path.

To make our discussion rigorous, we should start by checking that the MLE as derived
above is well-defined.

Lemma 9.2. Define
Ry ={X € C([0,T;R?) : VA € V with A # 0, 3t € [0,7] such that h(X;)A#0}.

We claim that It = I7(X) is invertible for any X € Ry,.
In particular, if P°(X € Ry) = 1, then the MLE Ar = Ar(X) = I;1(X)Sr(X) (as given
in (9.4) ) is almost surely well-defined.

Proof. Let A € V with A # 0. We have that
T
I (A A) = / (W(X)A)TCL(h(X,)A)ds > 0.
0

Since C' is positive definite by assumption, this expression is equal to zero if and only if
h(Xs)A = 0 for all s € [0,7]. Hence, for any X € Ry, I is non-degenerate (i.e. has
trivial kernel), and is therefore also invertible by standard results on bilinear forms over
finite-dimensional spaces. O

9.2 Lack of continuity for the classical MLE

Example 9.3. Suppose that W and X = (X', X?)T are 2-dimensional, V = R?*2 ¥ is the
2 x 2-identity matrix, and A is the identity map on R?, so that the underlying dynamics are
given by

dX; = AX, dt + dW;

with Xy = 2o € R2. In this case, the MLE AT satisfies the relation
Ip(Ap, ) = Sp.
That is, A € R2%2 gatisfies
Ir(Ap, H) = Sp(H)  for all H e R**2,

where the functionals I and St are given, for any A, H € R?*2 by

T
Ir(AH) = / XJH"AX,ds
0
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and -
ST(H):/ XJHT dX,.
0

Whenever the path X is such that I is invertible, the MLE can thus be computed by
inverting Ir. In particular (after a slightly tedious calculation), the upper-left component of
Ar is then given by

1 1 T T T T
At = (/ (X§)2ds/ X! dXsl—/ X;X§ds/ deXQ),
Ur\.Jo 0 0 0
T T T 2
UT:/ (X;)2ds/ (X2)?ds — </ X;X§ds> :
0 0 0

Since the variable Ur is defined in terms of simple Lebesgue integrals, it is clearly continuous
in the path X with respect to the supremum norm. One can see that the integral fOT Xlax!
is a continuous function of X! using It6’s formula, similarly to the calculation in . Thus,
all the integrals in the expression for fl%l are continuous functions of X, with the exception

where

of the last integral, namely f(;f X2dX!. We will now exhibit a sequence of paths (X™),>1
which converge uniformly to a limiting path X for which It is invertible, such that the
integral fOT X2 ax™! diverges as n — oo.

Let X:[0,1] — R? be the path which starts at the origin, and moves, at constant
speed, anticlockwise along the edges of the square with corners (0,0), (1,0), (1,1) and
(0,1), finishing back at the origin. Note that X € Ry, so that I7(X) is invertible and the
corresponding MLE is well-defined by Lemma

We now attach a fast spinning loop at the end of this path as follows. For each integer
n > 2, we let

XP =Xy, tel0,(n—1)/n],
1 [ cos(2mni(t — 2=1)) —
f == —
X = n< sin(2mn?(t — L_l) ’ te[(n—1)/n,1].
Note in particular that X' = ’}L , = X =(0,0)". We can therefore split up the integral

as
/X”Qanl / ngdxnl / an Jdxpt

In particular, recalling the discussion in Section we notice that the two integrals on the
right-hand side above are equal to (minus) the Lévy area traced out by the path X™ over
the corresponding time intervals. The first integral is hence simply (minus) the area of the
unit square, i.e.

n—1
0

Similarly, the second integral is simply (minus) the area of a circle with radius 1/n, multiplied
by n3, which is the number of times that this circle is traced out by the path X™. That is,

1
2
X4 dX;L’1 = —7n,
n—1 n »S
n
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so that .
/ Xm2dxml = —1 — 7.
0

Thus, we have that X™ — X uniformly as n — oo, but

AN (X" - AVN (X)) — 00 as n — oo

9.3 Stability via rough paths

Clearly then, if we want to restore pathwise stability then we need a stronger topology. We
will now see how rough path theory comes to the rescue. To gain access to our theory,
we need to assume a bit more regularity on the underlying dynamics. Specifically, we will
henceforth assume that h € CZ(R%; L(V;RY)).

Let X be the (unique) solution of the SDE (0.1]). As we saw in Section X can simply
be defined by X = zo + XYW, where W is a Brownian motion under the reference measure
PV, and then for any A € V, X has the desired dynamics under the corresponding measure
P4,

We now define a rough path lift for X via It0 integration. That is, we let

t
X, = / X,, ®dX, (9.7)

for all (s,t) € Ajg 7, where the integral is defined in the sense of It6 under the measure IPY.

We then know that the pair X = (X,X) € €% is almost surely an a-Hdélder rough path for

any o € (3, 3).

Note that since, for any parameter A € V, the measure P# is equivalent to P°, the
stochastic integral in (9.7 is almost surely equal to the same integral defined under PA,

Let
D= {(X,X) €c¥*: X ¢ Rh}.

It is then clear that, if P°(X € Ry,) = 1, then PY(X € D) = 1.

Recall the bilinear form I, which we may consider as a map from R, — L(V;V*), given
by

T
IT(X):/O h(X,)TC1h(X,) ds.

We now define the map S7: D — V*, given by
T
ST(X,X)—/ h(X,)TC7tdX,,
0

where the integral is defined as the (deterministic) rough integral against X = (X, X). Note
that, since h € C’g , it is clear that the integrand is a controlled path with respect to X, so
that this integral is well-defined.

We can now define a “robust MLE” as the map Ap:D—V given by

Ar(X,X) = I;1(X)Sr(X, X).
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Proposition 9.4. The map Ap defined above is a continuous map from D — V with respect
to the a-Holder rough path distance.
Moreover, writing X = (X, X) for the Ité rough path lift of X as in , we have that

PO(Ar(X) = Ap(X)) = 1.

Proof. The map I is clearly continuous with respect to the (weaker) supremum norm, and
hence so is its inverse (which is defined for all X € D). The map St is continuous with respect
to the rough path distance by the stability of rough integration given in Corollary The
composition of these two maps is then also continuous.

The second statement follows from the consistency of rough and stochastic integrals, as
given in Proposition (Strictly speaking this proposition was only stated for standard
Brownian motion, but here X is essentially just a Brownian motion under a linear map with
a drift, so this extension is trivial.) O

For more details on this topic, including further applications, see the article [DEM16].

10 Parameter uncertainty in stochastic filtering

In this section we shall discuss an application to stochastic filtering. No prior knowledge of
filtering theory is assumed, and we shall in any case restrict ourselves to a relatively simple
setting in order to avoid virtually all technical difficulties.

10.1 Stochastic filtering

In many applications, from finance and biology to engineering, defence and aerospace, one is
interested in the behaviour of a process evolving in time which cannot be observed directly,
and must therefore rely on partial observations in the presence of noise. The problem of
estimating the current state of such a hidden process from noisy observations is known as
stochastic filtering.

Suppose for instance that we are interested in the value of a stochastic process S, referred
to as the signal, but that we must work in the filtration generated by another process Y,
referred to as the observation process. We also suppose that the dynamics of Y are dependent
on the value of S, such as through a relationship of the form

dY; = h(S,) dt + dW,

for some observation function A and measurement noise W. It is clear from this relationship
that by observing Y over a given period of time one can infer information about S. In
short, the filtering problem is concerned with, at each time ¢, determining the best estimate
(typically in the sense of best mean square) for S; given ), := o(Ys : 0 < s < t); that is,
finding the best estimate for the current value of .S, given our past observations of Y.

An important special case is when the signal and observation are both diffusion processes
with linear dynamics. Let’s take an underlying filtered space (Q, F, (F¢)i>0). We suppose
that an R™-valued signal process S and an R?valued observation process Y satisfy the
following pair of linear equations

dsS; = ("yt + OétSt) dt + o d By, (101)
dY; = ¢Sy dt + dWy, (102)
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with the initial conditions Yy = 0 and Sy ~ N(uo,20) for some pg € R™ and 3y € S,
where S denotes the set of symmetric, positive definite m x m-matrices. Here B (resp. W)
is a standard R! (resp. R%)-valued Brownian motion, and ~: [0,7] — R™, a: [0,T] — R™*™
0:[0,T] = R™! and c: [0,T] — R¥™ are parameters. Here we include the case when the
signal noise and observation noise are correlated; we suppose that their quadratic covariation
is given by

d<B, W)t = Pt dt, (103)

for some correlation matrix p: [0,7] — R4 In the scalar case, the correlation should
naturally satisfy p?> < 1. The analogous assumption here is that the matrix I — pp' be
positive semi-definite, where I denotes the [ x [ identity matrix.

We shall denote by (V;)>0 the (completed) natural filtration generated by the observation
process Y. In this setting the signal and observation are both Gaussian processes, and in
fact it can be shown that the posterior distribution of the signal given our observations is
also Gaussian; see e.g. [BC09, Section 6.2]. That is, at each time ¢ > 0, we have that

St ’ Vi ~ N(Qt, Rt)

for some (random) mean vector
g = E[St | V1]

and covariance matrix
Ry =E[(St — q1) (St — a) T| V-

Moreover, the conditional mean and covariance satisfy the dynamics:

dgr = (v + auqe) dt + (thtT + oipt) (dYy — crqe dt), (10.4)
dR
Ttt = JtO';r + o Ry + RtatT — (RtC;r + O'tpt)(Cth + pz_O'tT) (105)

with go = po and Ry = Y. That is, the covariance R satisfies a matrix Riccati equation
and, given R, the mean ¢ satisfies a linear SDE driven by the observation process Y.

Given a stream of data corresponding to the observation process Y, one may thus simply
solve the equations f to compute the posterior distribution of the signal S. This
procedure (with linear Gaussian underlying dynamics) is known as the Kalman—Bucy filter,
and its impact on engineering and aerospace over the last 60 years cannot be overstated.

10.2 Parameter uncertainty

The filtering equations f involve various parameters so, naturally, in order to
run the filter one must first obtain the values of these parameters. In standard treatments
of stochastic filtering one often simply runs the filter using an estimate of the parameters.
However, this does not take into account the statistical uncertainty introduced by adopting
this estimate. Particularly when there is limited available data, resulting in a lack of precision
in the estimate, this should cast doubt as to the accuracy of the filter. We therefore now
turn our attention to parameter uncertainty.

We will focus on the simplest version of the problem, where the drift parameter ~ is
unknown. For simplicity, we shall assume that the other parameters, namely «, o0, c and p
are known and constant. We shall also suppose that the prior mean pg is unknown.
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Note that the equation for the posterior covariance does not depend on the un-
known parameter . Since the other parameters are constant in time, the solution of this
equation will converge as ¢t — oo to some (known) stationary value R. It is therefore con-
venient to assume for simplicity that ¥y = R, so that the posterior covariance is constant
and equal to its stationary value R = R,,. The remaining filtering equation is given by

dg; = (v + ag) dt + (Re' + ap)(dY; — cq; dt),

where we suppose that : [0,7] — R™ and gy = o € R™ are unknown.

To incorporate parameter uncertainty we adopt the following setup. Let S and Y be F;-
adapted processes. For each parameter choice (v, up), we let P7#0 be a probability measure
under which S and Y satisfy the dynamics (10.1)-(10.3) with the parameters (v, o). (In
particular, the processes B and W are not fixed, but depend on the choice of the parameters,
so that they have the law of a Brownian motion under each measure P7#0.)

Let v* and puj be some reference parameters. Then, for any choice of parameters 7, 1y,
we can consider the likelihood ratio
( dPsHo >
dIP7Y" Ho Y,

with respect to the observation filtration (V).cjo,r)- It is a classical result in filtering theory
(see e.g. [BCOY, Chapter 2]) that the so-called innovation process V', given in this setting by

dV; = dY; — cqi dt,

is a Vy-adapted Brownian motion under P7#0. Writing ¢* (resp. V*) for the posterior mean
(resp. innovation process) under the reference measure P7"#0, we have that

dV; = dV/" — c(qe — ;) dt.

Hence, by Girsanov’s theorem (see e.g. [CEL5, Chapter 15]), we can represent the likelihood
as a stochastic exponential, namely

dPsHo t 1 [t
_ = s — D d[/ e — s )2 d .
(dIP”Y*’“S )yt o (/0 o)AV =y /0 ol 0 S)

Substituting dV" = dY, — cq; ds, a short calculation yields that the negative log-likelihood
is then given by

dP7-Ho ¢ * L[ 2 12
—log <W>yt:_/0 c(qs—qs).dYtg+2/0 (\cqs\ — |eqi] )ds.

Since the reference parameters are taken to be fixed, they simply amount to an additive
constant in the above expression. That is,

dPHo t 1t
— log <W>yt = _/0 cqs - dY; + 2/0 lcgs|” ds + const. (10.6)

Since this constant does not depend on the choice of parameters 7, ug, it will not affect any
of our subsequent analysis, and for simplicity it will therefore be omitted.
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It will be useful later to interpret the stochastic integral appearing in ((10.6|) in the sense
of Stratonovich, rather than that of It6. We therefore make the transformation

¢ t
1
_/ qus'd)/s:_/ CQSOdn+§<CQaY>t
0 0
t 1 t
:—/ cqsodYs—}-2/ tr (C(RCT—}—Up))dS,
0 0
¢
:—/ cgs o dYs + const.
0

where tr(-) denotes the trace. In this simple setting, the additive constant here does not
depend in any way on the uncertain parameters -, g, so we can also simply omit this
constant henceforth. We have thus derived the representation:

dP7Ho t 1 [t ,
—log <M>yt = —/0 cqs o dYs + 2/0 legs|* ds. (10.7)

In the setting of parameter uncertainty, we do not know which parameter - is the correct
one. However, it seems sensible to suggest that the most “reasonable” parameter is the one
which minimizes the negative log-likelihood. We thus wish to formulate an optimization
procedure, in which we try to minimize the expression in over the set of all possible
parameters 7. We will actually modify this expression somewhat to also incorporate our
prior beliefs about which parameter values we believe are most plausible. We shall seek to
minimize a general expression of the form

t t
/ f(qs,%,%)der/ ¥(gs) o dYs + 9(q0, %), (10.8)
0 0

over the set of all Lipschitz continuous paths -, where we recall that the posterior mean ¢
satisfies
dg; = (¢ + ag;) dt + (Re + op)(dY; — cq; dt). (10.9)

Here ¢(q) = —cq, and we have absorbed the term %\cq|2 into the function f, which we
also allow to depend on the derivative % of v (which we recall is defined almost everywhere
since v is Lipschitz). This means in particular that we can encode, not only which values
of v we believe are reasonable, but also how quickly we believe they should be able to vary.
For example, if we believe that the parameter v should remain fairly constant in time, then
we can include a large penalty on the magnitude of 4.

10.3 A pathwise optimal control problem

Note that, since our inference will naturally depend on our observations, the optimization
procedure should be carried out in a pathwise manner, i.e. for each individual realization of
the observation process Y. We therefore need to be able to handle the stochastic integral
appearing in in a pathwise sense. To this end, we lift the observation process Y to a
rough path using Stratonovich integration. Under the reference measure P74, we let

t
Ys,t:/ sz,r®odyvra
s
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for all (s,t) € Ay, so that Y = (YY) € ‘590 *“ is almost surely a geometric rough path
for any « € (%, %) In this setting the measures P7#0 are all equivalent, so we immediately
have that Y coincides almost surely with the same integral defined under any other choice

of measure P7:H0,

It follows from (10.9)) that ¢ is (almost surely) a controlled path with respect to Y, with
Gubinelli derivative given by ¢’ = Re' + op. We then have that 1(q) = —cq is also a
controlled path, with derivative 1(q) = —c(Re" + op). By Proposition we have that

/ CU(a) 0 0, = / U Y,

almost surely.

For notational simplicity, let us write b(q,7) := v +aq— (Rc' +op)cq and ¢ = Re' +op,
so that equation (10.9) may be rewritten as

dg; = b(qs, ) dt + ¢ dY;. (10.10)

We can now formulate our procedure as the following (pathwise) optimal control prob-
lem. Let U be the space of all bounded measurable paths w: [0,7] — R™. We first fix an
(enhanced) observation path Y = Y (w) € ‘590 . In particular, since ¢ is just a constant,
we can interpret , not as an SDE, but simply as an ODE driven by the deterministic
path Y =Y (w).

We can then define the value function v: [0,T] x R™ x R™ — R by

t t
v(t,x,a)zuig{{{/o f(QS7787Us)d3+/(] w(qs)dYerg(qo,%)}, (10.11)

where we interpret the path u as a control, and where the state variables ¢ and ~y satisfy the
controlled dynamics

dqs == b(Qs; 78) dS + ¢d}/87 qt = T, (1012)
dvys = usds, M =a

For each posterior value x € R™ and parameter value a € R, the control problem above
seeks the minimum ‘cost’ associated with the trajectory of a parameter v and filter ¢, which
would be consistent with the observed path of Y, where the cost is derived from the negative
log-likelihood function. The value function v thus gives, at each time ¢ € [0,T], a measure
of the ‘unreasonability’ of different posterior values x and parameter values a.

In practice it would be impossible to directly compute the infimum in (10.11)). As is a
standard technique in control theory, we therefore instead consider the PDE satisfied by the
value function, which we can then try to solve.

The first step is to take a smooth approximation of the observation path Y, which is
close to Y in rough path topology.

Let n: [0,7] — R? be a smooth path. Recall that we can lift 7 in a canonical way to a
rough path n = (n,7®) by defining

(2

t
n t) ::/ ns,r®d77r (10.13)

)
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for (s,t) € Ajg7), where the integral exists in the Riemann—Stieltjes sense.

By replacing Y in our control problem by the smooth path 7, we obtain the approximate
control problem, in which we have the approximate value function

t t
v'(t,z,a) = inf { /O f(gs,vs,us)ds + /0 ¥(gs) dns + g(é]o,vo)}, (10.14)
where the state variables ¢ and -y satisfy the controlled dynamics
dgs = b(gs,7s) ds + ¢ dns, a =,
dvs = usds, Y =a

The PDE associated with this control problem is the Hamilton-Jacobi (HJ) equation

o'
% +b- Vo' + sup {u-Vau" — f}+ (¢ Voo =) =0 (10.15)
u€R™
with the initial condition

v"1(0,-,-) = g. (10.16)

Here 7 denotes the time derivative of 7, and V (resp. V,) denotes the gradient with respect
to the z (resp. a) variable.

Theorem 10.1. Under natural conditions on the functions f,g (local Lipschitz continuity,
with superlinear growth of f and asymptotic explosion of g), the approzimate value function

v (as defined in (10.14) ) is the unique solution of the HJ equation (10.15)—(10.16)).

This result is requires considerable work and careful analysis, and is beyond the scope of
this course. We will simply take it for granted.

Replacing the smooth path n by the rough path Y, we formally obtain the rough
Hamilton—Jacobi (rough HJ) equation

dv+b-Vyudt+ sup {u-Vev — f}dt+ (¢ Voo —1p)dY =0 (10.17)
u€ER™
with the initial condition
v(0,-,-) =g. (10.18)

We still need to say what we actually mean by a solution of such a rough PDE, which
we do with the following definition.

Definition 10.2. Given a smooth path 7, we write n = (7, 77(2)) for its canonical rough path
lift, with n(?) defined as in (T0.13). We write v for the unique solution of (10.15)—(T0.16)),
which, by Theorem is precisely the approximate value function, as defined in ((10.14]).
We say that a continuous function v solves the rough HJ equation f if

n
v — v as n — oo

locally uniformly, whenever (1"),>1 is a sequence of