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Abstract

These notes are based on a lecture course I gave at ETH Zürich in Spring semester
2021. They are intended to provide a gentle but rigorous introduction to the theory of
rough paths, with a particular focus on their integration theory and associated rough
differential equations, and how the theory relates to and enhances the field of stochastic
calculus.

The first motivation is to understand the limitations of classical notions of integration
to handle paths of very low regularity, and to see how the rough integral succeeds where
other notions fail. We then construct rough integrals and establish solutions of differential
equations driven by rough paths, as well as the continuity of these objects with respect to
the paths involved, and their consistency with stochastic integration and SDEs. Various
applications and extensions of the theory are then discussed.
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1 Introduction

Numerous real world phenomena require us to model and analyze systems of controlled1

differential equations of the form
dYt = f(Yt) dXt. (1.1)

Here f is some (typically nonlinear) function (also known as a “vector field”), X : [0, T ]→ Rd
is an input signal, and Y : [0, T ]→ Rm is the output/solution.

Of course, we haven’t yet given a precise meaning to the right-hand side of (1.1). If
the signal X is “nice”, let’s say at least absolutely continuous, then we have the natural
interpretation dXt = dXt

dt dt = Ẋt dt, and we obtain the very classical ODE

Ẏt = f(Yt)Ẋt.

In many applications, particularly in the context of systems affected by random noise,
as is commonplace in e.g. engineering and financial applications, the signal X is not so nice,
and in particular does not admit a classical derivative dXt

dt (at least not as a function in the
usual sense). We therefore need to be a bit cleverer in how we interpret the differential dXt.
A common first step is to rewrite the differential equation (1.1) as the integral equation

Yt = Y0 +

∫ t

0
f(Ys) dXs, (1.2)

and our central question becomes how we should define the integral
∫ t

0 f(Ys) dXs.

One way of getting around having to deal directly with complicated objects is to first
deal with simpler ones and then take the limit in a suitable topology.

In the context of integration, one might suggest that for general continuous paths X,Y ,
one could simply take an approximating sequence of smooth paths with Xn → X and
Y n → Y , and then define

∫ t
0 f(Ys) dXs by the limit limn→∞

∫ t
0 f(Y n

s ) dXn
s , since each of the

approximations
∫ t

0 f(Y n
s ) dXn

s is already well understood.
Although this is in principle possible, the problem is knowing in which topology to take

the limit. The obvious choice for continuous functions is to use the topology corresponding
to uniform convergence; that is, to take limits with respect to the supremum norm, so that
Xn → X is interpreted as sups∈[0,T ] |Xn

s −Xs| → 0 as n→∞. However, this is not sufficient,
as the following example demonstrates.

Example 1.1. For each n ≥ 1, define the functions Xn, Y n : [0, 2π]→ R by

Xn
t = −n−

1
3 cos(nt), Y n

t = n−
1
3 sin(nt).

Then ∫ 2π

0
Y n
t dXn

t =

∫ 2π

0
Y n
t Ẋ

n
t dt = n

1
3

∫ 2π

0
sin2(nt) dt

= n
1
3

∫ 2π

0

1

2

(
1− cos(2nt)

)
dt = n

1
3π.

1The description “controlled” differential equation is not particularly enlightening, but is quite common
in the literature. It simply refers to the fact that the equation is driven by a signal X, which then determines
the behaviour of the solution.
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Thus, we have that Xn → 0 and Y n → 0 uniformly, but
∫ 2π

0 Y n
t dXn

t → ∞ as n → ∞. In

particular, the map (X,Y ) 7→
∫ T

0 Yt dXt is not continuous with respect to the supremum
norm.

Given a smooth path X and some initial value y ∈ Rd, let Y be the solution of the
equation

Yt = y +

∫ t

0
f(Ys) dXs, t ∈ [0, T ].

Given the above example, it should not be surprising that the map X 7→ Y is also not
continuous in the supremum norm. Clearly, if this strategy is to work we would need a
topology considerably stronger than that of uniform convergence.

1.1 Riemann–Stieltjes integration

A sensible first attempt to define the integral in (1.2) is via Riemann–Stieltjes integration.
Here and throughout, we shall denote a partition of the time interval [0, T ] by π = {0 =
t0 < t1 < · · · < tN = T}. We shall denote the “mesh size” of a partition π by |π| =
max{|ti+1 − ti| : i = 0, 1, . . . , N − 1}.

Let πn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ≥ 1, be a sequence of partitions with
vanishing mesh size, i.e. such that |πn| → 0 as n→∞. For each n ≥ 1 and i = 0, 1, . . . , N−1,
let uni be an arbitrary point in the interval [tni , t

n
i+1]. The Riemann–Stieltjes integral of Y

against X, when it exists, is defined as∫ T

0
Ys dXs := lim

n→∞

Nn−1∑
i=0

Yuni (Xtni+1
−Xtni

),

where the limit does not depend on the choice of the sequence of partitions (πn)n≥1, or on
the choice of the intermediate times uni ∈ [tni , t

n
i+1].

If X and Y are two continuous paths, then the Riemann–Stieltjes integral of Y against
X exists, for example, whenever at least one of X or Y is Lipschitz continuous or, more
generally, of bounded variation over the interval [0, T ]. One could say: the integral exists
provided that at least one of X or Y is “nice”. The interested reader may see [Str11] for a
thorough explanation of Riemann–Stieltjes integration.

It is worth highlighting the fact that on each interval [tni , t
n
i+1] the intermediate time

uni ∈ [tni , t
n
i+1] may be chosen arbitrarily. It is quite straightforward to see why this should

be the case. Suppose for instance that X were Lipschitz continuous with Lipschitz constant
C, and let uni , v

n
i ∈ [tni , t

n
i+1]. Then∣∣∣∣Nn−1∑

i=0

(Yvni − Yuni )(Xtni+1
−Xtni

)

∣∣∣∣ ≤ C Nn−1∑
i=0

|Yvni − Yuni ||t
n
i+1 − tni |

≤ C
(Nn−1∑

i=0

|tni+1 − tni |
)

max
0≤i<Nn

|Yvni − Yuni |

= CT max
0≤i<Nn

|Yvni − Yuni | −→ 0 as n→∞,
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where the convergence holds since the mesh size |πn| → 0 and Y is uniformly continuous on
the compact interval [0, T ]. Thus,

lim
n→∞

Nn−1∑
i=0

Yvni (Xtni+1
−Xtni

) = lim
n→∞

Nn−1∑
i=0

Yuni (Xtni+1
−Xtni

) +

Nn−1∑
i=0

(Yvni − Yuni )(Xtni+1
−Xtni

)

= lim
n→∞

Nn−1∑
i=0

Yuni (Xtni+1
−Xtni

),

as desired.
For example, we have that∫ T

0
Ys dXs = lim

n→∞

Nn−1∑
i=0

Ytni (Xtni+1
−Xtni

) = lim
n→∞

Nn−1∑
i=0

Ytni+1
(Xtni+1

−Xtni
),

corresponding to choosing the left endpoint uni = tni and right endpoint uni = tni+1 respec-
tively. Intuitively, the path Y does not vary enough over the interval [tni , t

n
i+1] for the value of

the integral
∫ T

0 Ys dXs to be affected by whether we take the left endpoint, right endpoint, or
any other point in between. As we will see, this property is a luxury that we cannot expect
to hold in general for less regular paths X,Y , for which the choice of the intermediate time
uni will become crucial.

1.2 Young integration

In general we wish to be able to handle situations where neither X nor Y is particularly
nice. When considering paths of low regularity, it’s helpful to have a quantitative measure
of how irregular a given path is. For this purpose, we recall the notion of Hölder continuity.
For α ∈ (0, 1], we say that a path X : [0, T ] → Rd is α-Hölder continuous if there exists a
constant C such that

|Xt −Xs| ≤ C|t− s|α

for all s, t ∈ [0, T ] with s < t. Clearly, any Hölder continuous path is continuous, and saying
that a path is 1-Hölder continuous is the same as saying that it is Lipschitz continuous.

Theorem 1.2. Let α, β ∈ (0, 1] such that

α+ β > 1. (1.3)

Let X be α-Hölder continuous, and let Y be β-Hölder continuous. Let πn = {0 = tn0 < tn1 <
· · · < tnNn = T}, n ≥ 1, be a sequence of partitions with vanishing mesh size, i.e. such that
|πn| → 0 as n→∞. For each n ≥ 1 and i = 0, 1, . . . , N − 1, let uni be an arbitrary point in
the interval [tni , t

n
i+1]. Then the limit

∫ T

0
Ys dXs := lim

n→∞

Nn−1∑
i=0

Yuni (Xtni+1
−Xtni

) (1.4)

exists, and does not depend on the choice of the sequence of partitions (πn)n≥1, or on the
choice of the intermediate times uni ∈ [tni , t

n
i+1].
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A proof of Theorem 1.2 will be given in Section 5.

The limit in (1.4) is called the Young integral of Y against X. The key part of the
hypothesis of the above theorem is the inequality in (1.3). As we already observed above,
if either α = 1 or β = 1 then the limit in (1.4) exists as a Riemann–Stieltjes integral. The
point here then is that we can trade off the regularity of the paths X and Y to allow both
α < 1 and β < 1, provided that α+ β > 1.

If α = β (as is often the case in practice), then the inequality (1.3) becomes

α >
1

2
. (1.5)

Thus, Young integration is suitable when the underlying paths are α-Hölder continuous for
some α strictly greater than 1

2 .

We note again that here the choice of the intermediate time uni does not affect the value
of the integral. However, this relies on the fact that the paths X,Y are continuous. In
general this property fails to hold when we allow the paths X,Y to have jumps, i.e. when
we drop the continuity assumption, but we will restrict ourselves to continuous paths in this
course.

1.3 Stochastic integration

It is expected that the reader is already familiar with the fundamentals of stochastic calculus,
so we will not spend much time here to recall the relevant details. However, as the course
progresses we will recall the relevant concepts as and when they are needed, so a thorough
knowledge of the subject should not be essential.

One of the main motivations for considering paths of low regularity is the study of systems
under the influence of stochastic noise. In the most standard setting one supposes that the
system noise is generated by a Brownian motion W defined on some filtered probability space
(Ω,F , (Ft)0≤t≤T ,P). Recall that a (standard one-dimensional) Brownian motion is an R-
valued adapted stochastic processW with continuous trajectories and stationary independent
Gaussian increments, such that

Wt −Ws ∼ N(0, t− s) (1.6)

and Wt −Ws is independent of Fs for every s, t ∈ [0, T ] with s < t.
It follows easily from (1.6) and Kolmogorov’s continuity criterion that the trajectories

of Brownian motion are almost surely α-Hölder continuous for every α < 1
2 . On the other

hand, it can be shown that they are almost surely not α-Hölder continuous for any α ≥ 1
2 .

Recalling the condition (1.5) above, we see that Young integration is not capable of providing
an integration theory for Brownian motion.

A very satisfying resolution was provided by the introduction of Itô calculus, which has
become a cornerstone of stochastic analysis. Very briefly, given an L2-bounded continuous
martingale M , and a progressively measurable process Y which has sufficient integrability
(specifically such that E[

∫ T
0 |Ys|

2 d〈M〉s] < ∞, where 〈M〉 denotes the quadratic variation

of M), one can define the Itô integral
∫ T

0 Ys dMs as a limit in L2(P) of integrals of simple
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adapted processes against M . Extensions to more general integrators and integrands then
follow by localization arguments. For details, see one of the many available textbooks on
stochastic calculus.

Let X be a continuous semimartingale, Y be a left-continuous locally bounded adapted
process, and πn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ≥ 1, be a sequence of partitions with
vanishing mesh size. Then the Itô integral of Y against X can be expressed as the limit in
probability:

Nn−1∑
i=0

Ytni (Xtni+1
−Xtni

)
P−→
∫ T

0
Ys dXs as n→∞. (1.7)

The main point here for us is the fact that the Itô integral is constructed using probability. In
this sense, it is not a purely analytical theory. Moreover, the limit in (1.7) is only a limit in
probability, and does not in general hold almost surely. In other words stochastic integration
really is stochastic—it is not a “pathwise” theory.

Another important point here is the necessity of taking the left endpoint Ytni of Y in
(1.7). Taking a different choice of endpoint here will in general change the value of the
integral. Another common choice is to take the average of the left and right endpoints; that
is, to replace Ytni in (1.7) by 1

2(Ytni + Ytni+1
). This gives an alternative definition of stochastic

integral, known as the Stratonovich integral :∫ T

0
Ys ◦ dXs = lim

n→∞

Nn−1∑
i=0

1

2
(Ytni + Ytni+1

)(Xtni+1
−Xtni

), (1.8)

which exists as a limit in probability.
Note that∫ T

0
Ys ◦ dXs = lim

n→∞

Nn−1∑
i=0

1

2
(Ytni + Ytni+1

)(Xtni+1
−Xtni

)

= lim
n→∞

Nn−1∑
i=0

Ytni (Xtni+1
−Xtni

) +
1

2

Nn−1∑
i=0

(Ytni+1
− Ytni )(Xtni+1

−Xtni
)

=

∫ T

0
Ys dXs +

1

2
〈Y,X〉T ,

where 〈Y,X〉 is the quadratic covariation of Y and X. For example, if X = Y = W for a
Brownian motion W , then we have∫ T

0
Ws ◦ dWs =

∫ T

0
Ws dWs +

T

2
.

Thus, the answer to the question “What is the value of the integral of Y against X?”
depends crucially on which notion of integral one chooses. One should also recognise that
both these types of integral are perfectly valid; neither of them is the “correct” choice in
general, and the integral one chooses typically depends on the application one has in mind.
In financial and biological applications it is typically better from a modelling perspective to
choose the Itô integral, which also often proves useful due to the fact that it preserves the

8



martingale property. On the other hand, the Stratonovich integral is arguably more natural
from an abstract calculus perspective, as it satisfies the classical integration by parts and
chain rules, or “first order calculus”, which is not true of the Itô integral. We shall revisit
these ideas and explore them in more precise detail later in this course.

1.4 Rough integration

All of the integrals we have discussed above essentially start from the basic notion of con-
structing integrals as limits of “Riemann sums”. That is, we try to define the integral of a
path Y against another path X via

lim
|π|→0

∑
[s,t]∈π

Yu(Xt −Xs), (1.9)

where u ∈ [s, t], and the limit is taken over any sequence of partitions (πn)n≥1 with vanishing
mesh size. (Here we abuse notation slightly by writing [s, t] ∈ π, but the meaning should
be clear.) However, for general paths X,Y which do not satisfy the Young condition (1.3),
this limit may not exist, or the limit may depend on the choice of sequence of partitions, in
which case it is unclear that any particular limit is actually meaningful.

Moreover, we saw in the context of stochastic integration that even when the limit does
exist, it may depend crucially on how we select the intermediate points u ∈ [s, t]. Intuitively,
the paths X and Y vary so rapidly during the small time interval [s, t] that a simple Riemann
sum, as in (1.9), is not enough to capture these rapid variations. As we will see, there is, in
a certain sense, a lack of information. To resolve this, we will now look more closely at what
happens over a small time interval.

Let f : Rd → R be a smooth function, and let X = (X1, . . . , Xd) : [0, T ] → Rd be an
α-Hölder continuous path for some α ∈ (0, 1]. Suppose that we wish to integrate the path

f(X) against X itself. That is, we wish to give a meaning to
∫ T

0 f(Xr) dXr. Let [s, t] ⊂ [0, T ]
be a “small” time interval, and let r ∈ [s, t]. By Taylor expansion, we have that

f(Xr) = f(Xs) +Df(Xs)(Xr −Xs) + . . .

where Df denotes the gradient of f . Integrating with respect to X, we obtain∫ t

s
f(Xr) dXr = f(Xs)(Xt −Xs) +Df(Xs)

∫ t

s
(Xr −Xs)⊗ dXr + . . .

Note that, given two vectors x, y ∈ Rd, the notation x ⊗ y, known as the tensor product of
x and y, is used to denote the d × d-matrix with (i, j)-entry given by [x ⊗ y]ij = xiyj . For
clarity, we rewrite the above in component form: for j = 1, . . . , d, we have∫ t

s
f(Xr) dXj

r = f(Xs)(X
j
t −Xj

s ) +
d∑
i=1

∂if(Xs)

∫ t

s
(Xi

r −Xi
s) dXj

r + . . .

It turns out that, provided α > 1
3 , the higher order terms we have omitted in the

above expansion vanish upon applying lim|π|→0

∑
[s,t]∈π. In fact, if α > 1

2 (recall the Young
condition (1.5)), then one can show that

lim
|π|→0

∑
[s,t]∈π

∫ t

s
(Xr −Xs)⊗ dXr = 0. (1.10)
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In this case we simply obtain∫ T

0
f(Xr) dXr = lim

|π|→0

∑
[s,t]∈π

∫ t

s
f(Xr) dXr = lim

|π|→0

∑
[s,t]∈π

f(Xs)(Xt −Xs),

which we recognise as the definition of the Young integral of f(X) against X.

However, when α ≤ 1
2 the convergence in (1.10) does not necessarily hold, and this

“second order” term remains:∫ T

0
f(Xr) dXr = lim

|π|→0

∑
[s,t]∈π

∫ t

s
f(Xr) dXr

= lim
|π|→0

∑
[s,t]∈π

(
f(Xs)(Xt −Xs) +Df(Xs)

∫ t

s
(Xr −Xs)⊗ dXr

)

This suggests that, for α ∈ (1
3 ,

1
2 ], in order to compute the integral of f(X) against X, we

need as inputs both the path increments Xt−Xs as well as the integrals
∫ t
s (Xr−Xs)⊗dXr

for each pair of times s < t. We therefore make the definition:

Xs,t =:

∫ t

s
(Xr −Xs)⊗ dXr. (1.11)

Of course, for α ≤ 1
2 , the integral on the right-hand side is not generally understood (at

least without probability). However, as we will see, rough path theory will tell us precisely
the features of the integral which are actually necessary, and these features will be expressed
as conditions which must be satisfied by X. We should therefore think of the object X,
sometimes referred to as the “enhancement” or the “lift” of X, as providing a “candidate”
for the value of the integral. At first glance one may have presumed that the symbol =: in
(1.11) was a typo, and that the left-hand side should be defined by the right-hand side, but
this is not the case.

By a rough path, we mean the pair (X,X). But to be clear, when we come later to the
proper definition of a rough path we will abandon the equality in (1.11), and instead provide
analytical and algebraic conditions which must be satisfied by X. One should therefore just
think of (1.11) as motivation for the “information” encoded by X.

We observed earlier that if we define Y as the solution of the equation

Yt = y +

∫ t

0
f(Ys) dXs, t ∈ [0, T ], (1.12)

for a smooth path X, then the solution map X 7→ Y is not continuous. It turns out that if
we interpret the integral in (1.12) as a “rough integral” against the pair (X,X) (which we
will define properly later), then the solution map (X,X) 7→ Y is continuous with respect to
a suitable rough path topology.

Solving such a “rough differential equation” thus essentially involves finding the two
mappings:

X 7−→ (X,X) 7−→ Y.
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The first of these maps involves adding new information, and hence depends on the particular
problem one is trying to study. There is sometimes some work involved in constructing a
suitable rough path lift X, but, as we will see, there are many situations where this lift can
be obtained very naturally.

Given this lift, the second map—known as the Itô–Lyons map—is then continuous, and
in standard situations is even locally Lipschitz continuous.

2 Hölder spaces

2.1 Basic properties

For brevity, given a path X : [0, T ]→ Rd and a pair of times s, t ∈ [0, T ], we write

Xs,t = Xt −Xs

for the increment of X from time s to time t.
We write C = C([0, T ];Rd) for the space of continuous paths X : [0, T ] → Rd. We will

sometimes write ‖X‖∞ = supt∈[0,T ] |Xt| for the supremum norm.

Definition 2.1. For α ∈ (0, 1] we define the α-Hölder seminorm of a path X : [0, T ] → Rd
by

‖X‖α = sup
0≤s<t≤T

|Xs,t|
|t− s|α

.

We define the space of α-Hölder continuous paths as the family of paths X such that ‖X‖α <
∞. We denote this space by Cα = Cα([0, T ];Rd).

Note that ‖·‖α is only a seminorm, as it does not distinguish between additive constants.
We can obtain a genuine norm via the map

X 7→ |X0|+ ‖X‖α.

Equipped with this norm, Cα becomes a Banach space (i.e. a normed vector space such that
the norm is complete, meaning that every Cauchy sequence converges to a limit within the
space).

It is easy to see that if 0 < α < β ≤ 1 then Cβ ⊂ Cα, and that this inclusion is strict. It
turns out that the Hölder spaces Cα are not separable.

Lemma 2.2 (Lower semi-continuity). Let α ∈ (0, 1] and X : [0, T ]→ Rd. Let (Xn)n≥1 ⊂ Cα
be a sequence of α-Hölder continuous paths and assume that Xn → X pointwise. Then

‖X‖α ≤ lim inf
n→∞

‖Xn‖α.

Proof. Simply note that for all 0 ≤ s < t ≤ T , we have

|Xs,t|
|t− s|α

= lim inf
n→∞

|Xn
s,t|

|t− s|α
≤ lim inf

n→∞
‖Xn‖α,

and take the supremum over 0 ≤ s < t ≤ T .
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Lemma 2.3 (Interpolation). Let 0 < α < β ≤ 1 and let X : [0, T ]→ Rd. Then

‖X‖α ≤ ‖X‖
α
β

β

(
sup

0≤s<t≤T
|Xs,t|

)1−α
β
.

Proof. Note that

|Xs,t|
|t− s|α

=

(
|Xs,t|
|t− s|β

)α
β

|Xs,t|1−
α
β .

Taking the supremum over 0 ≤ s < t ≤ T , we obtain the desired inequality.

Lemma 2.4. Let 0 < α < β ≤ 1 and let X ∈ C be a continuous path. Let (Xn)n≥1 ⊂ Cβ be
a sequence of β-Hölder continuous paths and assume that supn≥1 ‖Xn‖β < ∞. If Xn → X
uniformly, then X ∈ Cβ, and ‖Xn −X‖α → 0 as n→∞.

Proof. By Lemma 2.3, we have that

‖Xn −X‖α ≤ ‖Xn −X‖
α
β

β

(
sup

0≤s<t≤T
|Xn

s,t −Xs,t|
)1−α

β
. (2.1)

By Lemma 2.2, we know that

‖X‖β ≤ lim inf
n→∞

‖Xn‖β ≤ sup
n≥1
‖Xn‖β <∞,

and hence that supn≥1 ‖Xn − X‖β < ∞. Since Xn → X uniformly, it follows that the
right-hand side of (2.1) tends to zero as n→∞.

Lemma 2.5 (Compactness). Let 0 < α < β ≤ 1. Let (Xn)n≥1 ⊂ Cβ be a sequence of
β-Hölder continuous paths and assume that

sup
n≥1

(
|Xn

0 |+ ‖Xn‖β
)
<∞. (2.2)

Then there exists a path X ∈ Cβ and a subsequence (nk)k≥1 such that ‖Xnk −X‖α → 0 as
k →∞.

Proof. It follows from (2.2) that the sequence of paths (Xn)n≥1 is uniformly bounded and
uniformly equicontinuous. It therefore follows from Arzelà–Ascoli (see e.g. [FV10, The-
orem 1.4]) that there exists a continuous path X and a subsequence (nk)k≥1 such that
Xnk → X uniformly. The result then follows from Lemma 2.4.

The result of Lemma 2.5 shows that Cβ is compactly embedded in Cα whenever 0 < α <
β ≤ 1. That is, any bounded subset of Cβ is relatively compact in Cα.

2.2 The closure of smooth paths

Definition 2.6. For α ∈ (0, 1], we define C0,α = C0,α([0, T ];Rd) to be the closure of the
space of smooth paths from [0, T ]→ Rd with respect to the α-Hölder seminorm.

It is clear that C0,α is a closed linear subspace of Cα, and thus is itself a Banach space.
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Proposition 2.7. Let α ∈ (0, 1) and let X : [0, T ] → Rd be a path. Then X ∈ C0,α if and
only if

lim
δ→0

sup
|t−s|<δ

|Xs,t|
|t− s|α

= 0. (2.3)

Proof. (=⇒) Suppose first that X ∈ C0,α. Let ε > 0. By the definition of C0,α, there exists
a smooth path Y such that ‖X − Y ‖α < ε

2 .
Since Y is smooth, it is Lipschitz continuous. Let L ≥ 0 be the Lipschitz constant of Y .

Let δ > 0 be sufficiently small such that Lδ1−α < ε
2 . (Note that this would not work for

α = 1.)
Then, for any s < t with |t− s| < δ, we have

|Xs,t|
|t− s|α

≤ |Xs,t − Ys,t|
|t− s|α

+
|Ys,t|
|t− s|α

≤ ‖X − Y ‖α + L|t− s|1−α

≤ ‖X − Y ‖α + Lδ1−α <
ε

2
+
ε

2
= ε.

Thus,

sup
|t−s|<δ

|Xs,t|
|t− s|α

≤ ε,

and we deduce that (2.3) holds.

(⇐=) Now suppose instead that (2.3) holds. Let ε > 0. By assumption, there exists a
δ > 0 such that

sup
|t−s|<δ

|Xs,t|
|t− s|α

< ε. (2.4)

We can assume without loss of generality that δ ≤ 1.
Let π = {0 = u0 < u1 < · · · < uN = T} be a partition of the interval [0, T ] with

equidistant points, so that ui = iT/N for each i = 0, 1, . . . , N , and such that the mesh size
|π| = |ui+1 − ui| < δ.

Consider the piecewise linear approximation of X, which is equal to X at each of the
points ui in the partition π, and linear on the interval [ui, ui+1] for each i = 0, 1, . . . , N − 1.
Note that this approximation is Lipschitz continuous with Lipschitz constant equal to

max
0≤i<N

|Xui,ui+1 |
|ui+1 − ui|

=
1

|π|
max

0≤i<N
|Xui,ui+1 |.

Note that we can smooth out this path in a small neighbourhood of each of the points ui in
π, whilst only increasing the Lipschitz constant by an arbitrarily small amount. Thus, there
exists a smooth path Y such that

• Yui = Xui for every i = 0, 1, . . . , N ,

• and the Lipschitz constant L of Y satisfies

L ≤
(

1

|π|
max

0≤i<N
|Xui,ui+1 |

)
+ ε.
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Since |ui+1 − ui| = |π| < δ for each i, it follows from (2.4) that

max
0≤i<N

|Xui,ui+1 |
|ui+1 − ui|α

< ε,

and hence that

L ≤
(

1

|π|1−α
max

0≤i<N

|Xui,ui+1 |
|ui+1 − ui|α

)
+ ε < ε

(
1

|π|1−α
+ 1

)
. (2.5)

Let 0 ≤ s < t ≤ T . Let j, k be such that s ∈ [uj , uj+1) and t ∈ (uk, uk+1]. In particular,
we must have that j ≤ k. We will deal with the cases j = k and j < k separately.

If j = k, then |t− s| ≤ |uj+1 − uj | = |π| < δ, so it follows immediately from (2.4) that

|Xs,t|
|t− s|α

< ε.

Moreover, using (2.5), we have

|Ys,t|
|t− s|α

≤ L|t− s|1−α ≤ ε
(

1

|π|1−α
+ 1

)
|t− s|1−α ≤ ε

(
1 + |t− s|1−α

)
≤ 2ε,

where we used the fact that |t− s|1−α ≤ |π|1−α < δ1−α ≤ 1. Hence, in this case we have

|Xs,t − Ys,t|
|t− s|α

≤ |Xs,t|
|t− s|α

+
|Ys,t|
|t− s|α

< ε+ 2ε = 3ε. (2.6)

If j < k, then we have

Xs,t − Ys,t = (Xs,uj+1 +Xuj+1,uk +Xuk,t)− (Ys,uj+1 + Yuj+1,uk + Yuk,t)

= Xs,uj+1 − Ys,uj+1 +Xuk,t − Yuk,t. (2.7)

Since uj ≤ s < uj+1 ≤ uk < t, we have that |uj+1 − s| < |t − s|, and |uj+1 − s| ≤
|uj+1 − uj | = |π| < δ. Thus, using (2.4), we have

|Xs,uj+1 |
|t− s|α

≤
|Xs,uj+1 |
|uj+1 − s|α

< ε.

Using (2.5), we also have

|Ys,uj+1 |
|t− s|α

≤ L|uj+1 − s|1−α < ε

(
1

|π|1−α
+ 1

)
|π|1−α = ε

(
1 + |π|1−α

)
≤ 2ε.

Dealing with the terms Xuk,t and Yuk,t similarly, we deduce from (2.7) that

|Xs,t − Ys,t|
|t− s|α

≤
|Xs,uj+1 |
|t− s|α

+
|Ys,uj+1 |
|t− s|α

+
|Xuk,t|
|t− s|α

+
|Yuk,t|
|t− s|α

< 6ε. (2.8)

It follows from (2.6) and (2.8) that ‖X − Y ‖α ≤ 6ε. Since Y is smooth and ε > 0 was
arbitrary, we have that X ∈ C0,α.

Example 2.8. Let α ∈ (0, 1) and let X : [0, T ] → R be the path given by Xt = tα. Then
X ∈ Cα, but X /∈ C0,α.
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Lemma 2.9. Let 0 < α < β ≤ 1. Then Cβ ⊂ C0,α.

Proof. Let X ∈ Cβ. Let δ > 0, and let s < t such that |t− s| < δ. Then

|Xs,t|
|t− s|α

=
|Xs,t|
|t− s|β

|t− s|β−α ≤ ‖X‖βδβ−α,

and we see that

lim
δ→0

sup
|t−s|<δ

|Xs,t|
|t− s|α

= 0.

By Proposition 2.7, we have that X ∈ C0,α.

We conclude that, for 0 < α < β ≤ 1, we have

Cβ ⊂ C0,α ⊂ Cα (2.9)

and that each of these inclusions is strict.

Remark 2.10. It turns out that the closure of smooth paths in C1 is equal to the space of con-
tinuously differentiable paths. The key to seeing this is to show that ‖X‖1 = supt∈[0,T ] |Ẋt|
for any continuously differentiable path X. It then follows that a sequence of smooth paths
is Cauchy with respect to the 1-Hölder norm X 7→ |X0| + ‖X‖1 if and only if it is Cauchy
with respect to the norm X 7→ |X0| + supt∈[0,T ] |Ẋt|, which we note is a norm on the space
of continuously differentiable paths.

2.3 Two-parameter functions

As well as paths defined on the interval [0, T ], we will also consider two-parameter functions
defined on

∆[0,T ] = {(s, t) ∈ [0, T ]2 : s ≤ t}.

We will denote by C2 = C2(∆[0,T ];E) the space of continuous functions from ∆[0,T ] → E,

where E will typically be either Rm or Rd×d.
The notion of Hölder continuity is also valid for such two-parameter functions. For

A : ∆[0,T ] → E, we similarly define

‖A‖α = sup
0≤s<t≤T

|As,t|
|t− s|α

.

We will denote the space of α-Hölder continuous functions on ∆[0,T ] by Cα2 .

To avoid confusion, we stress that if X is a path then Xs,t means the increment Xt−Xs,
but if A is a two-parameter function defined on ∆[0,T ] then As,t just means A evaluated at
the pair of times (s, t) ∈ ∆[0,T ].

Although a path which is α-Hölder continuous for some α > 1 is necessarily equal to
a constant, it is perfectly possible to have non-trivial functions A ∈ Cα2 for α > 1. Note,
however, that in this case we have∑

[s,t]∈π

|As,t| ≤ ‖A‖α
∑

[s,t]∈π

|t− s|α ≤ ‖A‖α
( ∑

[s,t]∈π

|t− s|
)
|π|α−1 = ‖A‖αT |π|α−1,

which vanishes upon letting the mesh size |π| → 0.

15



3 The space of rough paths

3.1 Basic definitions

Definition 3.1. For α ∈ (1
3 ,

1
2 ], an α-Hölder rough path (over Rd) is a pair X = (X,X), where

X : [0, T ]→ Rd is an α-Hölder continuous path, X : ∆[0,T ] → Rd×d is 2α-Hölder continuous,
and such that Chen’s relation:

Xs,t = Xs,u + Xu,t +Xs,u ⊗Xu,t (3.1)

holds for all 0 ≤ s ≤ u ≤ t ≤ T . We shall denote the space of α-Hölder rough paths by
C α = C α([0, T ];Rd).

Note that in component form, Chen’s relation states that

Xijs,t = Xijs,u + Xiju,t +Xi
s,uX

j
u,t (3.2)

for each 1 ≤ i, j ≤ d.

Thus, a rough path is an element X = (X,X) ∈ Cα×C2α
2 such that the algebraic condition

(3.1) holds. We will refer to X as the “lift” or “enhancement” of X, and think of a rough
path X as a path X which has been “lifted” or “enhanced” by the addition of X.

Let us briefly discuss this definition. First, we recall from the introduction that Young
integration provides an adequate integration theory for α-Hölder continuous paths when
α > 1

2 . We are therefore interested in cases when α ≤ 1
2 . As also indicated earlier, it will

turn out that the framework we focus on here is not sufficient to deal with the case when
α ≤ 1

3 , so we will restrict ourselves to α > 1
3 . This is not a worry for us, as many very

interesting and important situations fit nicely into the regime α ∈ (1
3 ,

1
2 ]. We will briefly

discuss extensions to α ≤ 1
3 later in Section 12.

As discussed in the introduction, one should think of Xs,t as postulating the value of the
integral ∫ t

s
Xs,r ⊗ dXr.

That is, the (i, j)-component Xijs,t corresponds to the integral
∫ t
s X

i
s,r dXj

r . Note that X is
more regular than X, assumed to be 2α-Hölder continuous. We will see examples later to
justify this condition, but for now it can be taken on trust that this is a sensible assumption.

A simple but important special case is when the path X is smooth. In this case we can
simply define Xs,t :=

∫ t
s Xs,r⊗dXr, with the integral being defined in the Riemann–Stieltjes

sense. It is then easy to verify that X and X do indeed satisfy Chen’s relation (3.1), and
thus that X := (X,X) is a rough path for any α ∈ (1

3 ,
1
2 ].

Definition 3.2. Given rough paths X = (X,X), X̃ = (X̃, X̃) ∈ C α, we define the α-Hölder
rough path distance by

‖X; X̃‖α = ‖X − X̃‖α + ‖X− X̃‖2α

= sup
0≤s<t≤T

|Xs,t − X̃s,t|
|t− s|α

+ sup
0≤s<t≤T

|Xs,t − X̃s,t|
|t− s|2α

.

16



Note that (X, X̃) 7→ ‖X; X̃‖α is a pseudometric; that is, it satisfies the usual conditions of
being a metric, except that ‖X; X̃‖α = 0 does not necessarily imply that X = X̃. However,
the map

(X, X̃) 7→ |X0 − X̃0|+ ‖X; X̃‖α
does define a genuine metric.

It is not hard to see that Cα × C2α
2 is a Banach space with norm (X,X) 7→ |X0|+ |||X|||α,

where
|||X|||α := ‖X‖α + ‖X‖2α.

Note however that since Chen’s relation (3.1) is nonlinear, the space of rough paths C α is not
even a vector space. Nevertheless, it is a closed subset of Cα × C2α

2 . The space C α equipped
with the metric (X, X̃) 7→ |X0 − X̃0|+ ‖X; X̃‖α is therefore a complete metric space.

Let (X,X) be a rough path, and let F ∈ C2α. Note that if we let X̃s,t = Xs,t + Fs,t for
all (s, t) ∈ ∆[0,T ], then the pair (X, X̃) still satisfies Chen’s relation, and is thus also a rough
path. We infer that, given a rough path (X,X), the enhancement X is never unique.

On the other hand, suppose now that both (X,X) and (X, X̃) are rough paths with the
same underlying path X, and let G = X− X̃. It then follows from Chen’s relation that

Gs,t = Gs,u +Gu,t

for s ≤ u ≤ t, so that in particular Gs,t = G0,t−G0,s for every s ≤ t. That is, Gs,t is actually
just the increment of the path given by t 7→ G0,t.

It follows that for any rough path (X,X), the enhancement X is determined up to the
addition of the increments of some path F ∈ C2α. The choice of F does matter, and there is
in general no obvious canonical choice. However, as we will see, there are important examples
where such a canonical choice does exist.

The fact that the enhancement X is not unique should not be too surprising, given the
discussion in the introduction. We think of Xs,t as postulating the value of the integral∫ t
s Xs,r⊗dXr. But recall that, particularly in the setting of stochastic integration, the value

of such an integral depends on the choice of the intermediate point in the definition of the
integral, and that therefore there are in general multiple different ways of defining such an
integral. For example, we saw that the Itô and Stratonovich integrals give two different
but equally valid interpretations of a stochastic integral. The choice of the enhancement X
corresponds, in a meaningful sense, to the choice of Itô, Stratonovich, or any other choice of
integral.

Note that, given knowledge of just the path t 7→ (X0,t,X0,t), we can reconstruct the entire
enhancement X via Chen’s relation: Xs,t = X0,t−X0,s−X0,s⊗Xs,t. In this sense, the “rough
path” (X,X) is indeed a genuine path, rather than just some two-parameter function.

3.2 Geometric rough paths

Chen’s relation (3.1) captures the basic additive structure that one would expect any reason-
able notion of integral to respect, but it doesn’t encode any form of integration by parts or
chain rule. We now seek an additional condition which will allow us to recover such classical
rules of calculus.
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Let X = (X1, . . . , Xd) : [0, T ] → Rd be a smooth path, and let Xs,t :=
∫ t
s Xs,r ⊗ dXr be

its canonical lift (with the integral being defined in the Riemann–Stieltjes sense), so that
X = (X,X) is a rough path. Applying integration by parts, we have

Xijs,t + Xjis,t =

∫ t

s
Xi
s,r dXj

r +

∫ t

s
Xj
s,r dXi

r = Xi
s,tX

j
s,t.

That is,

Sym(Xs,t) =
1

2
Xs,t ⊗Xs,t. (3.3)

The condition (3.3) is thus a consequence of classical “first order calculus”. This motivates
the following definition.

Definition 3.3. We define the space of weakly geometric α-Hölder rough paths C α
g as the

set of elements X = (X,X) ∈ C α such that (3.3) holds for all (s, t) ∈ ∆[0,T ].

Note that C α
g is a closed subset of C α, and hence is itself a complete metric space. We

also make the following alternative definition.

Definition 3.4. We define the space of geometric α-Hölder rough paths C 0,α
g as the closure

of canonical lifts of smooth paths with respect to the α-Hölder rough path distance.

To spell out this definition, X = (X,X) is a geometric rough path if and only if there
exists a sequence of smooth paths (Xn)n≥1 such that ‖Xn; X‖α → 0 as n → ∞, where
Xn = (Xn,Xn), and Xns,t =

∫ t
s X

n
s,r ⊗ dXn

r for all (s, t) ∈ ∆[0,T ].

It is clear that C 0,α
g ⊂ C α

g , and it turns out that this inclusion is strict. It can also be

shown that C β
g ⊂ C 0,α

g whenever 1
3 < α < β ≤ 1

2 . Recall the embeddings of Hölder spaces in
(2.9). In the rough path setting we have the analogous inclusions

C β
g ⊂ C 0,α

g ⊂ C α
g ⊂ C α, (3.4)

each of which is strict.

4 Brownian motion as a rough path

In this section will we exhibit an important example of a (random) rough path, and see in
particular how stochastic processes can be lifted to rough paths.

4.1 Kolmogorov criterion for rough paths

In the following we will write Lq for the standard Lebesgue space on the underlying proba-
bility space, so that ‖Xs,t‖Lq = E[|Xs,t|q]1/q. Recall that we say X̃ is a modification of X if,
for every t ∈ [0, T ], we have that X̃t = Xt almost surely.

Theorem 4.1. Let (X,X) : Ω× [0, T ]→ Rd×Rd×d be a measurable stochastic process which
almost surely satisfies Chen’s relation. Let q ≥ 2 and β > 1

q . Suppose that there exists a
constant C > 0 such that, for all (s, t) ∈ ∆[0,T ],

‖Xs,t‖Lq ≤ C|t− s|β, ‖Xs,t‖Lq/2 ≤ C|t− s|
2β. (4.1)
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Then, for all α ∈ [0, β− 1
q ), there exists a modification (X̃, X̃) of (X,X) and random variables

Kα ∈ Lq, Kα ∈ Lq/2 such that, for all (s, t) ∈ ∆[0,T ],

|X̃s,t| ≤ Kα|t− s|α, |X̃s,t| ≤ Kα|t− s|2α. (4.2)

In particular, if β − 1
q >

1
3 then, for every α ∈ (1

3 , β −
1
q ), we have that (X̃, X̃) ∈ C α.

Proof. Without loss of generality we may take T = 1. For each n ≥ 0, let Dn = { k2n : k =
0, 1, . . . , 2n − 1} denote the dyadic partition of the interval [0, 1) with mesh size 2−n. Let

Kn = max
t∈Dn

|Xt,t+2−n |, Kn = max
t∈Dn

|Xt,t+2−n |.

It follows from (4.1) that

E[Kq
n] ≤ E

[ ∑
t∈Dn

|Xt,t+2−n |q
]
≤
∑
t∈Dn

Cq2−nβq = Cq2−n(βq−1),

E[Kq/2
n ] ≤ E

[ ∑
t∈Dn

|Xt,t+2−n |q/2
]
≤
∑
t∈Dn

Cq/22−nβq = Cq/22−n(βq−1).

Fix s < t in ∪n≥0Dn. Choose m ≥ 0 such that 2−(m+1) < t − s ≤ 2−m. The interval [s, t]
can be expressed as the finite union of intervals of the form [u, v] ∈ Dn with n ≥ m+ 1 and
where no three intervals have the same length. In other words, we have a partition of [s, t]
of the form

s = u0 < u1 < · · · < uN = t,

where [ui, ui+1] ∈ Dn for some n ≥ m + 1, and for each fixed n ≥ m + 1 there are at most
two such intervals taken from Dn. It follows that

|Xs,t| ≤ max
0≤i<N

|Xs,ui+1 | ≤
N−1∑
i=0

|Xui,ui+1 | ≤ 2
∞∑

n=m+1

Kn,

and similarly,

|Xs,t| =
∣∣∣∣N−1∑
i=0

(
Xui,ui+1 +Xs,ui ⊗Xui,ui+1

)∣∣∣∣ ≤ N−1∑
i=0

(
|Xui,ui+1 |+ |Xs,ui ||Xui,ui+1 |

)
≤

N−1∑
i=0

|Xui,ui+1 |+
(

max
0≤i<N

|Xs,ui+1 |
)(N−1∑

i=0

|Xui,ui+1 |
)

≤ 2
∞∑

n=m+1

Kn +

(
2

∞∑
n=m+1

Kn

)2

.

We thus obtain

|Xs,t|
|t− s|α

≤ 2
∞∑

n=m+1

Kn

2−(m+1)α
≤ 2

∞∑
n=m+1

Kn

2−nα
≤ 2

∞∑
n=0

Kn

2−nα
=: Kα.

Since

‖Kα‖Lq ≤ 2

∞∑
n=0

E[Kq
n]1/q

2−nα
≤ 2

∞∑
n=0

C2
−n(β− 1

q
)

2−nα
= 2C

∞∑
n=0

2
−n(β− 1

q
−α)

<∞,
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we have that Kα ∈ Lq. Similarly,

|Xs,t|
|t− s|2α

≤ 2

∞∑
n=m+1

Kn

2−2(m+1)α
+

(
2

∞∑
n=m+1

Kn

2−(m+1)α

)2

≤ 2

∞∑
n=0

Kn

2−2nα
+K2

α =: Kα.

Since

‖Kα‖Lq/2 ≤ 2
∞∑
n=0

E[Kq/2
n ]2/q

2−2nα
+ E[Kq

α]2/q ≤ 2
∞∑
n=0

C2
−2n(β− 1

q
)

2−2nα
+ ‖Kα‖2Lq

= 2C
∞∑
n=0

2
−2n(β− 1

q
−α)

+ ‖Kα‖2Lq <∞,

we have that Kα ∈ Lq/2.

So far we have shown that (4.2) holds for (X,X) at every pair of times s < t in ∪n≥0Dn.
We now need to extend this to all times in between, which is where a modification is required.

For each t ∈ [0, 1], let (tk)k≥1 ⊂ ∪n≥0Dn be a sequence of times with tk → t as k → ∞.
It follows from the above that X is Hölder continuous on ∪n≥0Dn, and hence that the limit
X̃t := limk→∞Xtk exists. By Fatou’s lemma, we have

‖X̃t −Xt‖Lq ≤ lim inf
k→∞

‖Xtk −Xt‖Lq ≤ lim inf
k→∞

C|t− tk|β = 0,

so that X̃t = Xt almost surely. Thus, X̃ is indeed a modification of X. Moreover, assuming
sk → s and tk → t with sk, tk ∈ ∪n≥0Dn, we have

|X̃s,t| = lim
k→∞

|Xsk,tk | ≤ lim
k→∞

Kα|tk − sk|α = Kα|t− s|α. (4.3)

(This argument also implies that X̃t almost surely does not depend on the choice of the
sequence of times (tk)k≥1.)

For each pair 0 < s ≤ t < 1 (the cases with s = 0 or t = 1 may be dealt with similarly),
let (sk)k≥1 ⊂ ∪n≥0Dn and (tk)k≥1 ⊂ ∪n≥0Dn be sequences such that sk ↗ s and tk ↘ t as
k →∞, and define X̃s,t = limk→∞Xsk,tk . Since sk ≤ s ≤ t ≤ tk, Chen’s relation implies that

Xsk,tk − Xs,t = Xsk,s + Xt,tk +Xsk,s ⊗Xs,tk +Xs,t ⊗Xt,tk .

We then have

‖Xsk,tk − Xs,t‖Lq/2 = ‖Xsk,s + Xt,tk +Xsk,s ⊗Xs,tk +Xs,t ⊗Xt,tk‖Lq/2
≤ ‖Xsk,s‖Lq/2 + ‖Xt,tk‖Lq/2 + ‖Xsk,s‖Lq‖Xs,tk‖Lq + ‖Xs,t‖Lq‖Xt,tk‖Lq

≤ C|s− sk|2β + C|tk − t|2β + C2|s− sk|β|tk − s|β + C2|t− s|β|tk − t|β,

and, similarly to above, it follows from Fatou’s lemma that X̃s,t = Xs,t almost surely for
every (s, t), so that X̃ is a modification of X. Finally, we have that

|X̃s,t| = lim
k→∞

|Xsk,tk | ≤ lim
k→∞

Kα|tk − sk|2α = Kα|t− s|2α,

which, combined with (4.3), implies that (4.2) holds for (X̃, X̃) for all s < t.

Although in general (X̃, X̃) is a modification of (X,X), in practice one usually assumes
that, whenever it exists, such a modification has always been adopted. It is therefore usual
to keep the same notation (X,X), rather than introducing (X̃, X̃).
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4.2 Itô Brownian motion

Consider a d-dimensional standard Brownian motion B. We can enhance B by defining

BItô
s,t :=

∫ t

s
Bs,r ⊗ dBr, (s, t) ∈ ∆[0,T ], (4.4)

where the stochastic integral is understood in the sense of Itô. By the additivity of the
integral, it is easy to check that the pair (B,BItô) satisfies Chen’s relation. It remains to
use the Kolmogorov criterion for rough paths to check that (B,BItô) has the required Hölder
regularity.

Proposition 4.2. For any α ∈ (1
3 ,

1
2), we have that, almost surely,

B := (B,BItô) ∈ C α([0, T ];Rd).

Proof. Let q ≥ 2 and (s, t) ∈ ∆[0,T ]. We have

‖Bs,t‖Lq = ‖(t− s)
1
2B1‖Lq = ‖B1‖Lq |t− s|

1
2 .

Applying the Burkholder–Davis–Gundy inequality twice, we also have

E
[
|BItô
s,t |

q
2
]

= E
[∣∣∣∣ ∫ t

s
Bs,r ⊗ dBr

∣∣∣∣ q2] ≤ CqE[∣∣∣∣ ∫ t

s
|Bs,r|2 dr

∣∣∣∣ q4]
≤ CqE

[
sup
r∈[s,t]

|Bs,r|
q
2

]
|t− s|

q
4 ≤ C2

q |t− s|
q
2 ,

so that

‖BItô
s,t ‖Lq/2 ≤ C

4
q
q |t− s|.

We can therefore apply Theorem 4.1 with β = 1
2 , to deduce (possibly after taking a suitable

modification) that (B,BItô) ∈ Cα × C2α
2 for any α ∈ (0, 1

2 −
1
q ). By taking q →∞, it follows

that (B,BItô) ∈ C α for all α ∈ (1
3 ,

1
2).

To be explicit, this means that for almost every ω ∈ Ω, we have that

B(ω) = (B(ω),BItô(ω)) ∈ C α.

In other words, B is a random rough path, or a rough path-valued random variable. We
refer to B = (B,BItô) as (Itô enhanced) Brownian rough path.

An obvious question is whether B so defined is geometric. The answer, sadly, is no.
Indeed, Itô’s formula tells us that, for each 1 ≤ i, j ≤ d,

Bi
s,tB

j
s,t =

∫ t

s
Bi
s,rdB

j
r +

∫ t

s
Bj
s,rdB

i
r + 〈Bi, Bj〉s,t,

where, for a Brownian motion B, we have 〈Bi, Bj〉s,t = δij(t− s) (where δij is the Kronecker
delta). Thus,

Sym(BItô
s,t ) =

1

2

(
Bs,t ⊗Bs,t − (t− s)I

)
, (4.5)

where I denotes the d× d-identity matrix, and we see that (3.3) does not hold.
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4.3 Stratonovich Brownian motion

For one-dimensional continuous semimartingales, X,Y , the Stratonovich integral of Y against
X is defined by ∫ t

0
Ys ◦ dXs =

∫ t

0
Ys dXs +

1

2
〈Y,X〉t. (4.6)

Recall also the limit in (1.8). An advantage of Stratonovich integration is that it obeys “first
order calculus”. By this, we mean that it satisfies the classical integration by parts formula

XtYt = X0Y0 +

∫ t

0
Xs ◦ dYs +

∫ t

0
Ys ◦ dXs,

and chain rule/fundamental theorem of calculus

f(Xt) = f(X0) +

∫ t

0
Df(Xs) ◦ dXs.

As we will see in the next proposition, as a consequence it turns out that Stratonovich-
enhanced Brownian motion gives a rough path which is also geometric.

As above, let B be a d-dimensional standard Brownian motion. Instead of using Itô
integration, we can alternatively enhance B via

BStrat
s,t :=

∫ t

s
Bs,r ⊗ ◦ dBr, (s, t) ∈ ∆[0,T ].

It is again easy to see that the pair (B,BStrat) satisfies Chen’s relation. We also see from
(4.6) that

BStrat
s,t = BItô

s,t +
1

2
(t− s)I, (4.7)

which means in particular that

Sym(BStrat
s,t ) = Sym(BItô

s,t ) +
1

2
(t− s)I =

1

2
Bs,t ⊗Bs,t. (4.8)

Proposition 4.3. For any α ∈ (1
3 ,

1
2), we have that, almost surely,

B := (B,BStrat) ∈ C 0,α
g ([0, T ];Rd).

Proof. Since the function (s, t) 7→ 1
2(t − s)I is 1-Hölder continuous, it follows immediately

from (4.7) that the Hölder regularity of BItô is inherited by BStrat. We therefore have that
B = (B,BStrat) ∈ C α.

Let β ∈ (α, 1
2). It follows from (4.8) that B ∈ C β

g . Recalling the inclusions in (3.4), we

conclude that B ∈ C 0,α
g .

We refer to B = (B,BStrat) as (Stratonovich enhanced) Brownian rough path.

Recalling (4.5) and (4.8), it is worth noting that for both Itô and Stratonovich enhanced
Brownian rough paths, given the path t 7→ Bt, the symmetric part of the enhancement is
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immediately known. This is a general feature, whereby the “new information” encoded by
the rough path lift X is actually in its antisymmetric part, given, for 1 ≤ i, j ≤ d, by

Anti(Xs,t)ij =
1

2

(∫ t

s
Xi
s,r dXj

r −
∫ t

s
Xj
s,r dXi

r

)
,

which we recognise as the Lévy area of the two-dimensional path t 7→ (Xi
t , X

j
t ). In this sense,

a geometric rough path may be equivalently defined as a path X along with its Lévy area
Anti(X).

Since a 1 × 1-matrix is already symmetric, any one-dimensional path X ∈ Cα may be
readily lifted to a weakly geometric rough path by simply setting

Xs,t :=
1

2
(Xs,t)

2.

5 Integration

5.1 The sewing lemma

The following result may look at first glance like abstract nonsense, but it will actually turn
out to be a very useful tool for constructing integrals. Although this result is commonly
known as the sewing lemma, we will give it the recognition it deserves by calling it a theorem.

Theorem 5.1 (Sewing lemma). Let (E, ‖ ·‖) be a Banach space, and let A : ∆[0,T ] → E be a
continuous function. For each triplet 0 ≤ s ≤ u ≤ t ≤ T , write δAs,u,t := As,t −As,u −Au,t.
Suppose that there exist constants λ ≥ 0 and ε > 0 such that

‖δAs,u,t‖ ≤ λ|t− s|1+ε

for all 0 ≤ s ≤ u ≤ t ≤ T .
Then there exists a continuous path γ : [0, T ]→ E, with γ0 = 0, such that

‖γt − γs −As,t‖ ≤ Cλ|t− s|1+ε (5.1)

for all (s, t) ∈ ∆[0,T ], where the constant C depends only on ε. Moreover, for all (s, t) ∈
∆[0,T ], we have that

lim
|π|→0

∑
[u,v]∈π

Au,v = γt − γs,

where the limit is taken over any sequence of partitions π of the interval [s, t] with mesh size
|π| → 0.

Proof. Let (s, t) ∈ ∆[0,T ]. For each integer n ≥ 0, let {s = tn0 < tn1 < · · · < tn2n = t} be the

dyadic partition of [s, t], so that tni = s+ i
2n (t− s), which has mesh size |πn| = |tni+1 − tni | =

2−n|t− s|. Let

Ans,t =

2n−1∑
i=0

Atni ,tni+1
.
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For each n and each i, let uni be the midpoint of the interval [tni , t
n
i+1]. We have that

Ans,t −An+1
s,t =

2n−1∑
i=0

δAtni ,uni ,tni+1
,

and hence that

‖Ans,t −An+1
s,t ‖ ≤

2n−1∑
i=0

‖δAtni ,uni ,tni+1
‖ ≤

2n−1∑
i=0

λ|tni+1 − tni |1+ε

= λ|t− s|1+ε
2n−1∑
i=0

2−n(1+ε) = λ|t− s|1+ε2−nε.

We then have that
∞∑
n=k

‖Ans,t −An+1
s,t ‖ ≤ λ|t− s|1+ε

∞∑
n=k

2−nε = λ|t− s|1+ε 2−kε

1− 2−ε
−→ 0 as k → ∞,

from which it follows that (Ans,t)n≥0 is a Cauchy sequence. Since An takes values in a Banach
space, we have that the limit

Γs,t := lim
n→∞

Ans,t

exists. Since

‖Γs,t −Aks,t‖ =

∥∥∥∥ ∞∑
n=k

(Ans,t −An+1
s,t )

∥∥∥∥ ≤ λ|t− s|1+ε 2−kε

1− 2−ε
,

we see that the convergence Ans,t → Γs,t holds uniformly in (s, t) ∈ ∆[0,T ], and moreover that

‖Γs,t −As,t‖ ≤
λ|t− s|1+ε

1− 2−ε
. (5.2)

Since An is continuous, it follows from the uniform convergence that Γ is also continuous.
It follows from the above construction that

Γs,u + Γu,t = Γs,t (5.3)

for all dyadic times s ≤ u ≤ t, and it then follows by continuity that (5.3) holds for all times
s ≤ u ≤ t. We thus infer that Γ is really just the increments of a continuous path. That is,
if we define γt = Γ0,t for t ∈ [0, T ], then we have that

γt − γs = Γs,t for all (s, t) ∈ ∆[0,T ],

and in particular that γ0 = 0. The inequality (5.2) then reads

‖γt − γs −As,t‖ ≤
λ|t− s|1+ε

1− 2−ε
,

which implies (5.1). For any (s, t) ∈ ∆[0,T ] and any (not necessarily dyadic) partition π =
{s = t0 < t1 < · · · < tN = t} of [s, t], we then have∥∥∥∥γt − γs − N−1∑

i=0

Ati,ti+1

∥∥∥∥ =

∥∥∥∥N−1∑
i=0

(γti+1 − γti −Ati,ti+1)

∥∥∥∥ ≤ λ

1− 2−ε

N−1∑
i=0

|ti+1 − ti|1+ε

≤ λ

1− 2−ε
|t− s||π|ε,

and we deduce that
∑N−1

i=0 Ati,ti+1 → γt − γs as |π| → 0.
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5.2 Young integration

Proposition 5.2. Let X ∈ Cα and Y ∈ Cβ for some α, β ∈ (0, 1] with α+ β > 1. Then the
limit ∫ t

0
Yu dXu := lim

|π|→0

∑
[u,v]∈π

YuXu,v

exists for every t ∈ [0, T ], where the limit is taken over any sequence of partitions π of the
interval [0, t] with mesh size |π| → 0. This limit is called the Young integral of Y against
X, which moreover comes with the estimate∣∣∣∣ ∫ t

s
Yu dXu − YsXs,t

∣∣∣∣ ≤ C‖Y ‖β‖X‖α|t− s|α+β (5.4)

for all (s, t) ∈ ∆[0,T ], where the constant C depends only on α+ β.

Proof. Let As,t = YsXs,t, and let δAs,u,t = As,t −As,u −Au,t for s ≤ u ≤ t. We have

δAs,u,t = YsXs,t − YsXs,u − YuXu,t

= YsXu,t − YuXu,t

= −Ys,uXu,t,

and hence
|δAs,u,t| = |Ys,uXu,t| ≤ ‖Y ‖β‖X‖α|t− s|α+β.

By the sewing lemma (Theorem 5.1), there exists a continuous path γ =:
∫ ·

0 Yu dXu with the
desired properties.

The Young integral as defined in the previous proposition is given as a limit of left
endpoint Riemann sums. In this setting (in particular with continuous paths), the left
endpoint may be replaced by any other intermediate point without changing the value of the
integral, as shown in the next lemma.

Lemma 5.3. Let X ∈ Cα and Y ∈ Cβ for some α, β ∈ (0, 1] with α+ β > 1. For a partition
π and interval [u, v] ∈ π, let r ∈ [u, v] denote an arbitrary point in the interval [u, v]. The
Young integral of Y against X is equal to the limit∫ t

0
Yu dXu = lim

|π|→0

∑
[u,v]∈π

YrXu,v

for any t ∈ [0, T ].

Proof. We have ∣∣∣∣ ∑
[u,v]∈π

Yu,rXu,v

∣∣∣∣ ≤ ‖Y ‖β‖X‖α ∑
[u,v]∈π

|v − u|α+β

≤ ‖Y ‖β‖X‖αT |π|α+β−1 −→ 0

as |π| → 0. Thus

lim
|π|→0

∑
[u,v]∈π

YrXu,v = lim
|π|→0

( ∑
[u,v]∈π

YuXu,v +
∑

[u,v]∈π

Yu,rXu,v

)
=

∫ t

0
Yu dXu.

25



Combining the results of Proposition 5.2 and Lemma 5.3, we have proven Theorem 1.2.

Proposition 5.4. Let X, X̃ ∈ Cα and Y, Ỹ ∈ Cβ for some α, β ∈ (0, 1] with α+β > 1. Then
there exists a constant C, depending only on α, β and T , such that∥∥∥∥∫ ·

0
Yu dXu −

∫ ·
0
Ỹu dX̃u

∥∥∥∥
α

≤ C
((
|Y0 − Ỹ0|+ ‖Y − Ỹ ‖β

)
‖X‖α +

(
|Ỹ0|+ ‖Ỹ ‖β

)
‖X − X̃‖α

)
.

Proof. Let As,t = YsXs,t, Ãs,t = ỸsX̃s,t, ∆ = A− Ã, and δ∆s,u,t = ∆s,t −∆s,u −∆u,t. Then

δ∆s,u,t = δAs,u,t − δÃs,u,t = −
(
Ys,uXu,t − Ỹs,uX̃u,t

)
,

so that

|δ∆s,u,t| ≤
∣∣Ys,uXu,t − Ỹs,uX̃u,t

∣∣ ≤ |Ys,u − Ỹs,u||Xu,t|+ |Ỹs,u||Xu,t − X̃u,t|
≤
(
‖Y − Ỹ ‖β‖X‖α + ‖Ỹ ‖β‖X − X̃‖α

)
|t− s|α+β.

By the sewing lemma (Theorem 5.1), there exists a path γ and a constant C such that

|γt − γs −∆s,t| ≤ C
(
‖Y − Ỹ ‖β‖X‖α + ‖Ỹ ‖β‖X − X̃‖α

)
|t− s|α+β,

and, letting π denote a partition of the interval [s, t],

γt − γs = lim
|π|→0

∑
[u,v]∈π

∆u,v = lim
|π|→0

( ∑
[u,v]∈π

Au,v −
∑

[u,v]∈π

Ãu,v

)
=

∫ t

s
Yu dXu −

∫ t

s
Ỹu dX̃u.

Combining the above, we have that∣∣∣∣ ∫ t

s
Yu dXu −

∫ t

s
Ỹu dX̃u −

(
YsXs,t − ỸsX̃s,t

)∣∣∣∣
≤ C

(
‖Y − Ỹ ‖β‖X‖α + ‖Ỹ ‖β‖X − X̃‖α

)
|t− s|α+β. (5.5)

We also have∣∣YsXs,t − ỸsX̃s,t

∣∣ ≤ |Ys − Ỹs||Xs,t|+ |Ỹs||Xs,t − X̃s,t|
≤
(
‖Y − Ỹ ‖∞‖X‖α + ‖Ỹ ‖∞‖X − X̃‖α

)
|t− s|α. (5.6)

Combining (5.5) and (5.6) and noting the simple bounds ‖Ỹ ‖∞ ≤ |Ỹ0|+ T β‖Ỹ ‖β and ‖Y −
Ỹ ‖∞ ≤ |Y0 − Ỹ0|+ T β‖Y − Ỹ ‖β, it follows that∣∣∣∣ ∫ t

s
Yu dXu −

∫ t

s
Ỹu dX̃u

∣∣∣∣
≤ (1 + C)(1 + T β)

((
|Y0 − Ỹ0|+ ‖Y − Ỹ ‖β

)
‖X‖α +

(
|Ỹ0|+ ‖Ỹ ‖β

)
‖X − X̃‖α

)
|t− s|α,

and thus∥∥∥∥∫ ·
0
Yu dXu −

∫ ·
0
Ỹu dX̃u

∥∥∥∥
α

≤ (1 + C)(1 + T β)
((
|Y0 − Ỹ0|+ ‖Y − Ỹ ‖β

)
‖X‖α +

(
|Ỹ0|+ ‖Ỹ ‖β

)
‖X − X̃‖α

)
.
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As the next lemma shows, Young integration satisfies the classical integration by parts
formula.

Lemma 5.5. Let X ∈ Cα and Y ∈ Cβ for some α, β ∈ (0, 1] with α+ β > 1. Then

XTYT = X0Y0 +

∫ T

0
Xu dYu +

∫ T

0
Yu dXu.

Proof. Let π be a partition of the interval [0, T ]. We have∣∣∣∣ ∑
[s,t]∈π

Xs,tYs,t

∣∣∣∣ ≤ ‖X‖α‖Y ‖β ∑
[s,t]∈π

|t− s|α+β

≤ ‖X‖α‖Y ‖βT |π|α+β−1 −→ 0

as |π| → 0. Then

XTYT −X0Y0 = lim
|π|→0

∑
[s,t]∈π

(XtYt −XsYs)

= lim
|π|→0

∑
[s,t]∈π

(
XsYs,t + YsXs,t +Xs,tYs,t

)
=

∫ T

0
Xu dYu +

∫ T

0
Yu dXu.

We write C(Rd;R) for the space of continuous functions f : Rd → R. Given a function
f : Rd → R and k ∈ N, we write Dkf for the kth order derivative of f . For γ ∈ (0, 1], we
say that f is locally γ-Hölder continuous if, for every bounded subset K ⊂ Rd, there exists
a constant C such that |f(x)− f(y)| ≤ C|x− y|γ for all x, y ∈ K.

For k ∈ N and γ ∈ (0, 1], we write f ∈ Ck+γ = Ck+γ(Rd;R) whenever a function f
is k times continuously differentiable, and the kth order derivative Dkf is locally γ-Hölder
continuous.

Lemma 5.6. Let X ∈ Cα([0, T ];Rd) and f ∈ C1+γ(Rd;R) for some α, γ ∈ (0, 1], such that

α(1 + γ) > 1. Then
∫ T

0 Df(Xu) dXu is a well-defined Young integral, and

f(XT ) = f(X0) +

∫ T

0
Df(Xu) dXu.

The proof of Lemma 5.6 is left as an exercise. We conclude our discussion of Young
integration with the following lemma.

Lemma 5.7. Let X ∈ Cα and Y,K ∈ Cβ for some α, β ∈ (0, 1] with α + β > 1. Let
Z =

∫ ·
0 Ku dXu. Then Z ∈ Cα, and∫ T

0
Yu dZu =

∫ T

0
YuKu dXu.
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Proof. It follows from (5.4) that

|Zs,t| =
∣∣∣∣ ∫ t

s
Ku dXu −KsXs,t +KsXs,t

∣∣∣∣ ≤ C‖K‖β‖X‖α|t− s|α+β + ‖K‖∞‖X‖α|t− s|α,

and hence that ‖Z‖α ≤ C‖K‖β‖X‖αT β +‖K‖∞‖X‖α <∞, so we indeed have that Z ∈ Cα.

Since Y ∈ Cβ, the Young integral
∫ T

0 Yu dZu is then well-defined.
By repeated use of the estimate in (5.4), we have∫ t

s
Yu dZu = YsZs,t +O(|t− s|α+β)

= YsKsXs,t +O(|t− s|α+β)

=

∫ t

s
YuKu dXu +O(|t− s|α+β).

Taking lim|π|→0

∑
[s,t]∈π on both sides, we deduce the result.

Using • as formal notation for integration, the previous lemma states that

Y • (K •X) = (Y K) •X.

This property is therefore known as the associativity of Young integration.

5.3 Controlled paths

Let us recall some of the motivation discussed in the introduction. Given a sufficiently
smooth function f and a path X, a Taylor expansion tells us that

f(Xr) ' f(Xs) +Df(Xs)Xs,r,

and integrating with respect to X then gives∫ t

s
f(Xr) dXr ' f(Xs)Xs,t +Df(Xs)

∫ t

s
Xs,r ⊗ dXr.

This suggests that we might expect to be able to establish a limit of the form∫ T

0
f(Xr) dXr

?
= lim
|π|→0

∑
[s,t]∈π

f(Xs)Xs,t +Df(Xs)Xs,t. (5.7)

Indeed, we will soon prove that this limit does indeed exist, giving us a notion of “rough
integration”.

Notice however that the integrand here is not an arbitrary path, but is assumed to be a
given function of the path X. This is, unfortunately, a drawback of the theory; the space of
valid integrands is actually very restrictive. Happily, as we will see, this is rarely a problem in
practice. It is quite typical that the integrand one wishes to consider is of the required form
to allow for rough integration, including when considering solutions of differential equations
driven by rough paths.
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Having said that, we can do a bit better than explicit functions f of X. We now introduce
our space of valid integrands, namely the space of controlled paths.

In the following we will write e.g. L(Rd;Rm) for the space of linear functions from Rd →
Rm. Naturally, one is welcome to identify this space with the space of m× d-matrices, but
we do not wish to start worrying about such trivial issues as the order in which we write
products of variables.

Definition 5.8. Let α ∈ (1
3 ,

1
2 ] and X ∈ Cα([0, T ];Rd). We say that a pair (Y, Y ′) is a

controlled path (with respect to X), if Y ∈ Cα([0, T ];Rm), Y ′ ∈ Cα([0, T ];L(Rd;Rm)) and
RY ∈ C2α

2 ([0, T ];Rm), where RY : ∆[0,T ] → Rm is defined implicitly by

Ys,t = Y ′sXs,t +RYs,t, (s, t) ∈ ∆[0,T ]. (5.8)

We write D2α
X = D2α

X ([0, T ];Rm) for the space of controlled paths (with respect to X).

This definition essentially says that the path Y “looks like” X on very small time scales.
We call Y ′ the Gubinelli derivative of Y (with respect to X), and we call RY the remainder.

It is easy to see that, for a fixed X, the space D2α
X of controlled paths is a vector space.

In fact, it is a Banach space when equipped with the norm

‖Y, Y ′‖D2α
X

= |Y0|+ |Y ′0 |+ ‖Y ′‖α + ‖RY ‖2α.

Note however that the space D2α
X depends crucially on the choice of the path X.

Note that, given paths X and Y , the Gubinelli derivative Y ′, when it exists, is not unique
in general. For instance, if it happens that X ∈ C2α and Y ∈ C2α, then any continuous path
Y ′ would satisfy (5.8) with ‖RY ‖2α <∞. On the other hand, as shown in [FH20, Chapter 6],
if X is far from smooth, i.e. genuinely rough in all directions, then Y ′ is uniquely determined
by Y .

Recall that we write f ∈ Ck whenever a function f is k times continuously differentiable.
We will also write f ∈ Ckb when additionally f and all its derivatives up to order k are
uniformly bounded. Writing Dkf for the kth order derivative of f , we write ‖ · ‖Ckb for the

norm given by
‖f‖Ckb = ‖f‖∞ + ‖Df‖∞ + · · ·+ ‖Dkf‖∞.

Example 5.9. Let α ∈ (1
3 ,

1
2 ] and X ∈ Cα. Let f ∈ C2

b . Then the pair (f(X), Df(X)) is a
controlled path with respect to X. Indeed, it is clear that f(X) ∈ Cα and Df(X) ∈ Cα, and
we have ∣∣f(Xt)− f(Xs)−Df(Xs)Xs,t

∣∣ =

∣∣∣∣ ∫ 1

0

(
Df(Xs + rXs,t)−Df(Xs)

)
Xs,t dr

∣∣∣∣
≤ ‖f‖C2

b
|Xs,t|2 ≤ ‖f‖C2

b
‖X‖2α|t− s|2α,

which implies that ‖Rf(X)‖2α ≤ ‖f‖C2
b
‖X‖2α < ∞, where R

f(X)
s,t := f(Xt) − f(Xs) −

Df(Xs)Xs,t.
In fact, it is enough to take f ∈ C2, since the path X is bounded and, since f and its

derivatives are continuous, they are locally bounded, and hence bounded on the image of X.
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Example 5.10. Let α ∈ (1
3 ,

1
2 ] and X ∈ Cα. Let (Y, Y ′), (Z,Z ′) ∈ D2α

X be two controlled
paths. Then the product Y Z is a controlled path with Gubinelli derivative (Y Z)′ = Y Z ′ +
Y ′Z. Indeed, we have

RY Zs,t := (Y Z)s,t − (Y Z)′sXs,t

= YtZt − YsZs − (YsZ
′
s + Y ′sZs)Xs,t

= YsZs,t + Ys,tZs + Ys,tZs,t − (YsZ
′
s + Y ′sZs)Xs,t

= YsR
Z
s,t +RYs,tZs + Ys,tZs,t,

and hence
‖RY Z‖2α ≤ ‖Y ‖∞‖RZ‖2α + ‖RY ‖2α‖Z‖∞ + ‖Y ‖α‖Z‖α <∞.

5.4 Rough integration

Recall the proof of Proposition 5.2, in which we let As,t = YsXs,t, and saw that then δAs,u,t =
−Ys,uXu,t. This then meant that |δAs,u,t| ≤ ‖Y ‖β‖X‖α|t − s|α+β, and since α + β > 1, we
could then apply the sewing lemma. Clearly, if α+β ≤ 1 then this no longer works. However,
once we have lifted a path X to a rough path X = (X,X), we can get around this by using
the additional information encoded in the lift X.

Proposition 5.11. Let α ∈ (1
3 ,

1
2 ] and let X = (X,X) ∈ C α([0, T ];Rd) be a rough path.

Let (Y, Y ′) ∈ D2α
X ([0, T ];L(Rd;Rm)) be a controlled path and let RY be the corresponding

remainder term. Then the limit∫ t

0
Yu dXu := lim

|π|→0

∑
[u,v]∈π

YuXu,v + Y ′uXu,v

exists for every t ∈ [0, T ], where the limit is taken over any sequence of partitions π of the
interval [0, t] with mesh size |π| → 0. This limit is called the rough integral of (Y, Y ′) against
X, which moreover comes with the estimate∣∣∣∣ ∫ t

s
Yu dXu − YsXs,t − Y ′sXs,t

∣∣∣∣ ≤ C(‖RY ‖2α‖X‖α + ‖Y ′‖α‖X‖2α
)
|t− s|3α (5.9)

for all (s, t) ∈ ∆[0,T ], where the constant C depends only on α.

Proof. Let As,t = YsXs,t +Y ′sXs,t, and let δAs,u,t = As,t−As,u−Au,t for s ≤ u ≤ t. We have

δAs,u,t = As,t −As,u −Au,t
= YsXs,t − YsXs,u − YuXu,t + Y ′sXs,t − Y ′sXs,u − Y ′uXu,t
= YsXu,t − YuXu,t + Y ′s (Xs,t − Xs,u)− Y ′uXu,t
= −Ys,uXu,t + Y ′s (Xu,t +Xs,u ⊗Xu,t)− Y ′uXu,t
= (−Ys,u + Y ′sXs,u)Xu,t − Y ′s,uXu,t
= −RYs,uXu,t − Y ′s,uXu,t,

and hence

|δAs,u,t| = |RYs,uXu,t + Y ′s,uXu,t| ≤
(
‖RY ‖2α‖X‖α + ‖Y ′‖α‖X‖2α

)
|t− s|3α.

Since 3α > 1, it follows from the sewing lemma (Theorem 5.1) that there exists a continuous
path γ =:

∫ ·
0 Yu dXu with the desired properties.
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Remark 5.12. Note that the rough integral
∫
Y dX is really the integral of the pair (Y, Y ′)

against the rough path X = (X,X). However, the standard convention is to hide the
dependence on the Gubinelli derivative Y ′ in the notation. In practice Y ′ is generally always
clear from the context, so there is rarely any ambiguity in doing this. Nevertheless, one
should remember that the choice of Y ′ does generally matter.

Remark 5.13. In Proposition 5.11, the path Y is prescribed in take values in L(Rd;Rm).
Recalling Definition 5.8, we then have that the Gubinelli derivative Y ′ takes values in
L(Rd;L(Rd;Rm)). In particular, this means that the product Y ′X takes values in L(Rd;Rm),
consistent with Y , so that the relation Ys,t = Y ′sXs,t + RYs,t makes sense. However, here we

also identify the space L(Rd;L(Rd;Rm)) with L(Rd×d;Rm). This allows us to also make
sense of the product Y ′X, which then takes values in Rm.

We saw in Example 5.9 that for any function f ∈ C2, the pair (f(X), Df(X)) is a

controlled path. Hence, the rough integral
∫ T

0 f(Xr) dXr exists, and is given by the limit in
(5.7).

For any X = (X,X) ∈ C α and (Y, Y ′) ∈ D2α
X , the pair (Z,Z ′) := (

∫ ·
0 Yu dXu, Y ) is itself

another controlled path with respect to X. Indeed, with RZs,t := Zs,t − Z ′sXs,t, we see from
(5.9) that

|RZs,t| =
∣∣∣∣ ∫ t

s
Yu dXu − YsXs,t

∣∣∣∣
≤ |Y ′sXs,t|+ C

(
‖RY ‖2α‖X‖α + ‖Y ′‖α‖X‖2α

)
|t− s|3α

≤ ‖Y ′‖∞‖X‖2α|t− s|2α + C
(
‖RY ‖2α‖X‖α + ‖Y ′‖α‖X‖2α

)
|t− s|3α,

and hence that ‖RZ‖2α <∞.

In future we will denote RZ by R
∫ ·
0 Yu dXu .

Lemma 5.14. For some α ∈ (1
3 ,

1
2 ], let F ∈ C2α be a 2α-Hölder continuous path, and let

X = (X,X) ∈ C α and X̃ = (X̃, X̃) ∈ C α be two rough paths such that

X̃t = Xt, X̃s,t = Xs,t + Fs,t.

Let (Y, Y ′) ∈ D2α
X = D2α

X̃
. Then∫ T

0
Yu dX̃u =

∫ T

0
Yu dXu +

∫ T

0
Y ′u dFu.

The proof of Lemma 5.14 is left as an exercise.

Theorem 5.15 (Stability of rough integration). Let α ∈ (1
3 ,

1
2 ], and let X = (X,X) ∈ C α

and X̃ = (X̃, X̃) ∈ C α be rough paths. Let (Y, Y ′) ∈ D2α
X and (Ỹ , Ỹ ′) ∈ D2α

X̃
be controlled

paths, and let RY and RỸ be the corresponding remainder terms. There exists a constant C,
depending only on α and T , such that

‖Y − Ỹ ‖α ≤ C
((
|Y ′0 − Ỹ ′0 |+ ‖Y ′ − Ỹ ′‖α

)
‖X‖α

+
(
|Ỹ ′0 |+ ‖Ỹ ′‖α

)
‖X − X̃‖α + ‖RY −RỸ ‖2αTα

)
(5.10)
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and ∥∥R∫ ·
0 Yu dXu −R

∫ ·
0 Ỹu dX̃u

∥∥
2α
≤ C

((
|Y ′0 − Ỹ ′0 |+ ‖Y ′ − Ỹ ′‖α + ‖RY −RỸ ‖2α

)
|||X|||α

+
(
|Ỹ ′0 |+ ‖Ỹ ′‖α + ‖RỸ ‖2α

)
‖X; X̃‖α

)
. (5.11)

Proof. We have

|Ys,t − Ỹs,t| =
∣∣Y ′sXs,t +RYs,t − Ỹ ′sX̃s,t −RỸs,t

∣∣
≤ |Y ′s − Ỹ ′s ||Xs,t|+ |Ỹ ′s ||Xs,t − X̃s,t|+ |RYs,t −RỸs,t|

≤
(
‖Y ′ − Ỹ ′‖∞‖X‖α + ‖Ỹ ′‖∞‖X − X̃‖α

)
|t− s|α + ‖RY −RỸ ‖2α|t− s|2α,

so that

‖Y − Ỹ ‖α ≤ ‖Y ′ − Ỹ ′‖∞‖X‖α + ‖Ỹ ′‖∞‖X − X̃‖α + ‖RY −RỸ ‖2αTα,

which gives the estimate in (5.10).

Let As,t = YsXs,t + Y ′sXs,t, Ãs,t = ỸsX̃s,t + Ỹ ′s X̃s,t, ∆ = A − Ã, and δ∆s,u,t = ∆s,t −
∆s,u −∆u,t. Then

δ∆s,u,t = δAs,u,t − δÃs,u,t = −
(
RYs,uXu,t + Y ′s,uXu,t −RỸs,uX̃u,t − Ỹ ′s,uX̃u,t

)
,

so that

|δ∆s,u,t| =
∣∣RYs,uXu,t + Y ′s,uXu,t −RỸs,uX̃u,t − Ỹ ′s,uX̃u,t

∣∣
≤ |RYs,u −RỸs,u||Xu,t|+ |RỸs,u||Xu,t − X̃u,t|+ |Y ′s,u − Ỹ ′s,u||Xu,t|+ |Ỹ ′s,u||Xu,t − X̃u,t|

≤
(
‖RY −RỸ ‖2α‖X‖α + ‖RỸ ‖2α‖X − X̃‖α

+ ‖Y ′ − Ỹ ′‖α‖X‖2α + ‖Ỹ ′‖α‖X− X̃‖2α
)
|t− s|3α.

By the sewing lemma (Theorem 5.1), there exists a path γ and a constant C such that

|γt − γs −∆s,t| ≤ C
(
‖RY −RỸ ‖2α‖X‖α + ‖RỸ ‖2α‖X − X̃‖α

+ ‖Y ′ − Ỹ ′‖α‖X‖2α + ‖Ỹ ′‖α‖X− X̃‖2α
)
|t− s|3α

and, letting π denote a partition of the interval [s, t],

γt − γs = lim
|π|→0

∑
[u,v]∈π

∆u,v = lim
|π|→0

( ∑
[u,v]∈π

Au,v −
∑

[u,v]∈π

Ãu,v

)
=

∫ t

s
Yu dXu −

∫ t

s
Ỹu dX̃u.

Combining the above, we have that∣∣∣∣ ∫ t

s
Yu dXu −

∫ t

s
Ỹu dX̃u −

(
YsXs,t + Y ′sXs,t − ỸsX̃s,t − Ỹ ′s X̃s,t

)∣∣∣∣
≤ C

(
‖RY −RỸ ‖2α‖X‖α + ‖RỸ ‖2α‖X − X̃‖α

+ ‖Y ′ − Ỹ ′‖α‖X‖2α + ‖Ỹ ′‖α‖X− X̃‖2α
)
|t− s|3α. (5.12)
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We also have

|Y ′sXs,t − Ỹ ′s X̃s,t| ≤ |Y ′s − Ỹ ′s ||Xs,t|+ |Ỹ ′s ||Xs,t − X̃s,t|
≤
(
‖Y ′ − Ỹ ′‖∞‖X‖2α + ‖Ỹ ′‖∞‖X− X̃‖2α

)
|t− s|2α. (5.13)

Combining (5.12) and (5.13), we have

∣∣R∫ ·
0 Yu dXu

s,t −R
∫ ·
0 Ỹu dX̃u

s,t

∣∣ =

∣∣∣∣ ∫ t

s
Yu dXu − YsXs,t −

∫ t

s
Ỹu dX̃u + ỸsX̃s,t

∣∣∣∣
≤
(
‖Y ′ − Ỹ ′‖∞‖X‖2α + ‖Ỹ ′‖∞‖X− X̃‖2α

)
|t− s|2α

+ C
(
‖RY −RỸ ‖2α‖X‖α + ‖RỸ ‖2α‖X − X̃‖α

+ ‖Y ′ − Ỹ ′‖α‖X‖2α + ‖Ỹ ′‖α‖X− X̃‖2α
)
|t− s|3α,

and hence that∥∥R∫ ·
0 Yu dXu −R

∫ ·
0 Ỹu dX̃u

∥∥
2α
≤
(
‖Y ′ − Ỹ ′‖∞‖X‖2α + ‖Ỹ ′‖∞‖X− X̃‖2α

)
+ C

(
‖RY −RỸ ‖2α‖X‖α + ‖RỸ ‖2α‖X − X̃‖α

+ ‖Y ′ − Ỹ ′‖α‖X‖2α + ‖Ỹ ′‖α‖X− X̃‖2α
)
Tα,

which gives the estimate in (5.11) for a new constant C.

Corollary 5.16. Let α ∈ (1
3 ,

1
2 ], and let X = (X,X) ∈ C α and X̃ = (X̃, X̃) ∈ C α be rough

paths. Let (Y, Y ′) ∈ D2α
X and (Ỹ , Ỹ ′) ∈ D2α

X̃
be controlled paths, and let RY and RỸ be the

corresponding remainder terms. There exists a constant C, depending only on α and T , such
that ∥∥∥∥∫ ·

0
Yu dXu −

∫ ·
0
Ỹu dX̃u

∥∥∥∥
α

≤ C
(
1 + ‖X‖α + ‖X̃‖α

)(
‖Ỹ , Ỹ ′‖D2α

X̃
‖X; X̃‖α

+
(
|Y0 − Ỹ0|+ |Y ′0 − Ỹ ′0 |+ ‖Y ′ − Ỹ ′‖α + ‖RY −RỸ ‖2α

)
|||X|||α

)
.

Proof. Since (
∫ ·

0 Yu dXu, Y ) ∈ D2α
X and (

∫ ·
0 Ỹu dX̃u, Ỹ ) ∈ D2α

X̃
are controlled paths, we have∣∣∣∣ ∫ t

s
Yu dXu −

∫ t

s
Ỹu dX̃u

∣∣∣∣ =
∣∣YsXs,t +R

∫ ·
0 Yu dXu

s,t − ỸsX̃s,t −R
∫ ·
0 Ỹu dX̃u

s,t

∣∣
≤ |Ys − Ỹs||Xs,t|+ |Ỹs||Xs,t − X̃s,t|+

∣∣R∫ ·
0 Yu dXu

s,t −R
∫ ·
0 Ỹu dX̃u

s,t

∣∣
≤
(
‖Y − Ỹ ‖∞‖X‖α + ‖Ỹ ‖∞‖X − X̃‖α

)
|t− s|α +

∥∥R∫ ·
0 Yu dXu −R

∫ ·
0 Ỹu dX̃u

∥∥
2α
|t− s|2α,

so that∥∥∥∥∫ ·
0
Yu dXu −

∫ ·
0
Ỹu dX̃u

∥∥∥∥
α

≤ ‖Y − Ỹ ‖∞‖X‖α + ‖Ỹ ‖∞‖X − X̃‖α +
∥∥R∫ ·

0 Yu dXu −R
∫ ·
0 Ỹu dX̃u

∥∥
2α
Tα. (5.14)
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Since Ỹt = Ỹ0 + Ỹ0,t, we have |Ỹt| ≤ |Ỹ0|+ |Ỹ0,t| ≤ |Ỹ0|+ ‖Ỹ ‖αTα, so that

‖Ỹ ‖∞ ≤ |Ỹ0|+ ‖Ỹ ‖αTα,

and similarly
‖Y − Ỹ ‖∞ ≤ |Y0 − Ỹ0|+ ‖Y − Ỹ ‖αTα.

It is also easy to see from Ỹs,t = Ỹ ′sX̃s,t +RỸs,t that

‖Ỹ ‖α ≤ (|Ỹ ′0 |+ ‖Ỹ ′‖αTα)‖X̃‖α + ‖RỸ ‖2αTα.

Substituting these estimates along with (5.10) and (5.11) into (5.14), we deduce the desired
inequality.

6 Further topics in rough integration

In this section we will see how rough path theory allows various results from stochastic
calculus to be recovered in a pathwise sense, without the use of probability.

6.1 Associativity

We have seen how one can define the rough integral of a controlled path (Y, Y ′) against a
rough path X. Recalling the definition of controlled paths, this amounts to saying that we
know how to integrate a path that “locally looks like X” against X itself. One may then
point out that, since any two controlled paths (with respect to X) both locally look like
X, they actually look locally like each other, which suggests that it should be possible to
integrate controlled paths against each other. This is indeed the case, as the next proposition
shows.

Proposition 6.1. Let X = (X,X) ∈ C α be a rough path, and let (Y, Y ′), (Z,Z ′) ∈ D2α
X be

two controlled paths with remainders RY and RZ respectively. Then the limit∫ t

0
Yu dZu := lim

|π|→0

∑
[u,v]∈π

YuZu,v + Y ′uZ
′
uXu,v

exists for every t ∈ [0, T ], where the limit is taken over any sequence of partitions π of the
interval [0, t] with mesh size |π| → 0. Moreover, we have the estimate∣∣∣∣ ∫ t

s
Yu dZu − YsZs,t − Y ′sZ ′sXs,t

∣∣∣∣ ≤ C(‖Y ′‖∞‖Z ′‖α‖X‖2α + ‖Y ‖α‖RZ‖2α (6.1)

+ ‖RY ‖2α‖Z ′‖∞‖X‖α + ‖Y ′Z ′‖α‖X‖2α
)
|t− s|3α

for all (s, t) ∈ ∆[0,T ], where the constant C depends only on α.

Proof. Let As,t = YsZs,t + Y ′sZ
′
sXs,t and define δAs,u,t = As,t − As,u − Au,t. Using Chen’s

relation (3.1), one can show that

δAs,u,t = −Y ′sZ ′s,uXs,u ⊗Xu,t − Ys,uRZu,t −RYs,uZ ′uXu,t − (Y ′Z ′)s,uXu,t,
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so that

|δAs,u,t| ≤
(
‖Y ′‖∞‖Z ′‖α‖X‖2α + ‖Y ‖α‖RZ‖2α

+ ‖RY ‖2α‖Z ′‖∞‖X‖α + ‖Y ′Z ′‖α‖X‖2α
)
|t− s|3α.

By the sewing lemma (Theorem 5.1), there exists a continuous path γ =:
∫ ·

0 Yu dZu with the
desired properties.

We exhibited in Lemma 5.7 the associativity of Young integration. We can now give a
corresponding result for rough integration.

Proposition 6.2. Let X = (X,X) be a rough path and let (Y, Y ′), (K,K ′) ∈ D2α
X be two

controlled paths, so that in particular the rough integral
∫ ·

0 Ku dXu exists by Proposition 5.11,
and the pair (Z,Z ′) := (

∫ ·
0 Ku dXu,K) ∈ D2α

X is also a controlled path. Then∫ ·
0
Yu dZu =

∫ ·
0
YuKu dXu,

where on the left-hand side we have the integral of (Y, Y ′) against (Z,Z ′) as defined in
Proposition 6.1, and on the right-hand side we have the rough integral of (Y K, (Y K)′) against
X.

Proof. Recall from Example 5.10 that the product Y K is itself a controlled path with Gu-
binelli derivative (Y K)′ = Y K ′ + Y ′K. It follows from (5.9) that

Zs,t =

∫ t

s
Ku dXu = KsXs,t +K ′sXs,t +O(|t− s|3α)

and ∫ t

s
YuKu dXu = YsKsXs,t + (Y K)′sXs,t +O(|t− s|3α).

Similarly, by (6.1), we have∫ t

s
Yu dZu = YsZs,t + Y ′sZ

′
sXs,t +O(|t− s|3α).

We then calculate∫ t

s
Yu dZu = YsZs,t + Y ′sZ

′
sXs,t +O(|t− s|3α)

= Ys
(
KsXs,t +K ′sXs,t

)
+ Y ′sKsXs,t +O(|t− s|3α)

= YsKsXs,t +
(
YsK

′
s + Y ′sKs

)
Xs,t +O(|t− s|3α)

= YsKsXs,t + (Y K)′sXs,t +O(|t− s|3α)

=

∫ t

s
YuKu dXu +O(|t− s|3α).

Taking lim|π|→0

∑
[s,t]∈π on both sides, we obtain

∫ T
0 Yu dZu =

∫ T
0 YuKu dXu.
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Any controlled path with respect to a rough path can itself be lifted in a canonical way
to a rough path. Indeed, let X = (X,X) ∈ C α be a rough path, and let (Z,Z ′) ∈ D2α

X be a
controlled path. Define

Zs,t :=

∫ t

s
Zs,u dZu, (s, t) ∈ ∆[0,T ], (6.2)

where the integral is defined in the sense of Proposition 6.1. It is easy to see that the pair
(Z,Z) satisfies Chen’s relation, and it follows from the estimate in (6.1) that Z is 2α-Hölder
continuous. Thus, the pair Z = (Z,Z) is another rough path.

Notice that, if Z is the rough path defined above, then we can integrate a controlled path
Y either with respect to Z as in Proposition 6.1, or against Z as in Proposition 5.11. The
next lemma shows that these two different notions of rough integral coincide.

Lemma 6.3. Let X = (X,X) ∈ C α be a rough path. Let (Z,Z ′) ∈ D2α
X be a controlled path,

and let Z = (Z,Z) be the canonical rough path lift of Z, as defined in (6.2). Let (Y, Y ′) ∈ D2α
Z

be a controlled path with respect to Z. Then (Y, Y ′Z ′) ∈ D2α
X is a controlled path with respect

to X, and, moreover, we have that∫ ·
0
Yu dZu =

∫ ·
0
Yu dZu,

where on the left-hand side we have the rough integral of (Y, Y ′) against Z, and on the right-
hand side we have the integral of (Y, Y ′Z ′) against (Z,Z ′) as defined in Proposition 6.1.

Proof. We have that Zs,t = Z ′sXs,t +RZs,t and Ys,t = Y ′sZs,t +RYs,t. Then

Ys,t − Y ′sZ ′sXs,t = Ys,t − Y ′s (Zs,t −RZs,t) = RYs,t + Y ′sR
Z
s,t.

Since the right-hand side is 2α-Hölder continuous, we see that (Y, Y ′Z ′) ∈ D2α
X .

Similarly to the proof of Proposition 6.2, using the estimates in (5.9) and (6.1), we have∫ t

s
Yu dZu = YsZs,t + Y ′sZs,t +O(|t− s|3α)

= YsZs,t + Y ′sZ
′
sZ
′
sXs,t +O(|t− s|3α)

=

∫ t

s
Yu dZu +O(|t− s|3α).

Taking lim|π|→0

∑
[s,t]∈π on both sides, we obtain

∫ T
0 Yu dZu =

∫ T
0 Yu dZu.

6.2 The bracket of a rough path

An important object in stochastic calculus is the quadratic variation of a stochastic process.
Rough paths do not generally admit quadratic variation (although there are cases when they
do). However, there is a corresponding object in rough path theory which plays the same
role that the quadratic variation does in stochastic calculus. This object is called the bracket
of a rough path.
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Definition 6.4. Let X = (X,X) ∈ C α be a rough path, and let Sym(X) denote the sym-
metric part of X. The bracket of X is defined as the path [X] : [0, T ]→ Rd×d given by

[X]t := X0,t ⊗X0,t − 2 Sym(X0,t).

Lemma 6.5. Let X = (X,X) ∈ C α. Then

[X]s,t = Xs,t ⊗Xs,t − 2 Sym(Xs,t)

for all (s, t) ∈ ∆[0,T ]. In particular, we have that [X] ∈ C2α.

The proof of Lemma 6.5 is left as an exercise.

Example 6.6. Recall that a rough path X = (X,X) is said to be weakly geometric if it
satisfies the equality

Sym(Xs,t) =
1

2
Xs,t ⊗Xs,t.

We therefore see that a rough path X is weakly geometric if and only if [X]t = 0 for all
t ∈ [0, T ].

Example 6.7. Let B be a Brownian motion, and let B = (B,BItô) be the Itô lift of B, as
defined in (4.4). Recall from (4.5) that the symmetric part of the Itô enhancement is given
by

Sym(BItô
s,t ) =

1

2

(
Bs,t ⊗Bs,t − (t− s)I

)
.

Thus,
[B]s,t = (t− s)I.

At least in the case of Itô Brownian rough path, we see that the bracket of Brownian motion
does in fact coincide with its quadratic variation.

Lemma 6.8. Let X = (X,X) ∈ C α be a rough path and let (K,K ′) ∈ D2α
X . Recall that

(Z,Z ′) := (
∫ ·

0 Ku dXu,K) ∈ D2α
X . Let Z = (Z,Z) be the canonical rough path lift of Z, as

defined in (6.2), so that in particular the bracket [Z] of Z exists. Then

[Z] =

∫ ·
0

(Ku ⊗Ku) d[X]u,

where the integral on the right-hand side is a Young integral.

Proof. Since [X] is 2α-Hölder continuous,∫ T

0
(Ku ⊗Ku) d[X]u = lim

|π|→0

∑
[s,t]∈π

(Ks ⊗Ks)[X]s,t

exists as a Young integral. We have

[Z]s,t = Zs,t ⊗ Zs,t − 2 Sym(Zs,t)
= (KsXs,t +K ′sXs,t)⊗ (KsXs,t +K ′sXs,t)− 2(Z ′s ⊗ Z ′s) Sym(Xs,t) +O(|t− s|3α)

= (KsXs,t)⊗ (KsXs,t)− 2(Ks ⊗Ks) Sym(Xs,t) +O(|t− s|3α)

= (Ks ⊗Ks)[X]s,t +O(|t− s|3α).

Taking lim|π|→0

∑
[s,t]∈π on both sides, we obtain [Z]T =

∫ T
0 (Ku ⊗Ku) d[X]u.
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Abusing notation slightly, one could rewrite the result of Lemma 6.8 as[ ∫ ·
0
Ku dXu

]
t

=

∫ t

0
K2
u d[X]u,

giving us an analogous result to the well-known formula for the quadratic variation of Itô
integrals.

6.3 The Itô formula for rough paths

One of the most useful results in stochastic calculus is Itô’s formula, which plays the role of
the chain rule/fundamental theorem of calculus. In the setting of rough paths, we have the
following analogous result.

Proposition 6.9. Let X = (X,X) ∈ C α be a rough path, and let f ∈ C3. Then

f(XT ) = f(X0) +

∫ T

0
Df(Xu) dXu +

1

2

∫ T

0
D2f(Xu) d[X]u,

where the first integral on the right-hand side is the rough integral of (Df(X), D2f(X))
against X, and the second integral is the Young integral of D2f(X) against the bracket [X].

Proof. Since X is bounded, we may assume without loss of generality that f ∈ C3
b . Since

Df ∈ C2
b , we have that the pair (Df(X), D2f(X)) is indeed a controlled path with respect

to X. We have

f(Xt)− f(Xs) = Df(Xs)Xs,t +
1

2
D2f(Xs)(Xs,t ⊗Xs,t) +Rs,t

= Df(Xs)Xs,t +D2f(Xs)Xs,t +
1

2
D2f(Xs)(Xs,t ⊗Xs,t)

−D2f(Xs)Xs,t +Rs,t,

where

Rs,t :=

∫ 1

0

∫ 1

0

(
D2f(Xs + r1r2Xs,t)−D2f(Xs)

)
(Xs,t ⊗Xs,t)r1 dr2 dr1.

Note that
|Rs,t| ≤ ‖f‖C3

b
|Xs,t|3 ≤ ‖f‖C3

b
‖X‖3α|t− s|3α,

so that lim|π|→0

∑
[s,t]∈π |Rs,t| = 0.

Recall that the contraction of a symmetric matrix with an antisymmetric matrix is zero.
That is, if A is symmetric and B is antisymmetric, then

∑
i,j A

ijBij = −
∑

i,j A
jiBji =

−
∑

i,j A
ijBij , which implies that

∑
i,j A

ijBij = 0.

Since the Hessian matrix D2f(Xs) is symmetric, it therefore kills the antisymmetric part
of X. Thus,

D2f(Xs)Xs,t = D2f(Xs) Sym(Xs,t).

By Lemma 6.5, we then have that

f(Xt)− f(Xs) =
(
Df(Xs)Xs,t +D2f(Xs)Xs,t

)
+

1

2
D2f(Xs)[X]s,t +Rs,t.

Taking lim|π|→0

∑
[s,t]∈π on both sides, we deduce the result.
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Remark 6.10. In Proposition 6.9, and also in Proposition 6.11 below, it is actually enough
to take f ∈ C

1
α

+ε for any ε > 0. This can be shown by using the more general notion of
(β, γ)-controlled paths introduced in the second exercise sheet.

Proposition 6.11. Let X = (X,X) ∈ C α be a rough path, and suppose that (Y, Y ′) ∈ D2α
X

and (Y ′, Y ′′) ∈ D2α
X are controlled paths. Suppose further that

Yt = Y0 +

∫ t

0
Y ′s dXs + Γt

for all t ∈ [0, T ], for some path Γ ∈ C2α. Let f ∈ C3. Then

f(YT ) = f(Y0) +

∫ T

0
Df(Yu)Y ′u dXu +

∫ T

0
Df(Yu) dΓu +

1

2

∫ T

0
D2f(Yu)(Y ′u ⊗ Y ′u) d[X]u.

The proof of Proposition 6.11 is left as an exercise.

6.4 The rough exponential

In this section we shall see our first example of a rough differential equation (RDE).
In the following, we will write ‖X‖α,[s,t] for the α-Hölder seminorm over the interval [s, t],

i.e. sups≤u<v≤t |Xu,v|/|v − u|α. We also define ‖X‖2α,[s,t] and |||X|||α,[s,t] similarly.

Proposition 6.12. Let β ∈ (1
3 ,

1
2 ], and let X = (X,X) ∈ C β be rough path over R (so that

in particular X is real-valued) such that X0 = 0. Let

Vt = exp
(
Xt −

1

2
[X]t

)
, t ∈ [0, T ]. (6.3)

Then V is the unique solution to the linear rough differential equation

Vt = 1 +

∫ t

0
Vu dXu. (6.4)

By a solution to (6.4) we mean a path V ∈ Cβ([0, T ];R) such that (V, V ) ∈ D2β
X , and such

that the equation holds with the integral defined as the rough integral of (V, V ) against X.

Proof. Applying the Itô formula of Proposition 6.11 with Y = X− 1
2 [X], Y ′ = 1 and f = exp,

we obtain

Vt = 1 +

∫ t

0
Vu dXu −

1

2

∫ t

0
Vu d[X]u +

1

2

∫ t

0
Vu d[X]u

= 1 +

∫ t

0
Vu dXu

so that V does indeed satisfy (6.4).

We now turn to proving uniqueness. Suppose that (Ṽ , Ṽ ) ∈ D2β
X were another solution of

(6.4). Let α ∈ (1
3 , β). Since α < β, it is clear that X ∈ C α, (V, V ) ∈ D2α

X and (Ṽ , Ṽ ) ∈ D2α
X .

In the following we will let . denote inequality up to a multiplicative constant which
may depend on α, T and ‖X‖α.
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By Corollary 5.16, we have

‖V − Ṽ ‖α =

∥∥∥∥∫ ·
0
Vu dXu −

∫ ·
0
Ṽu dXu

∥∥∥∥
α

.
(
‖V − Ṽ ‖α + ‖RV −RṼ ‖2α

)
|||X|||α.

By the estimate in (5.11), we have

‖RV −RṼ ‖2α =
∥∥R∫ ·

0 Vu dXu −R
∫ ·
0 Ṽu dXu

∥∥
2α

.
(
‖V − Ṽ ‖α + ‖RV −RṼ ‖2α

)
|||X|||α.

Combining these inequalities, we have that

‖V − Ṽ ‖α + ‖RV −RṼ ‖2α ≤ C
(
‖V − Ṽ ‖α + ‖RV −RṼ ‖2α

)
|||X|||α (6.5)

for some constant C. Note that

|||X|||α,[0,t] = ‖X‖α,[0,t] + ‖X‖2α,[0,t] ≤ ‖X‖β,[0,t]tβ−α + ‖X‖2β,[0,t]t2(β−α).

Therefore, by taking the terminal time t = t0 > 0 sufficiently small, we can ensure that
C|||X|||α,[0,t0] < 1. It then follows from (6.5) that V = Ṽ on the interval [0, t0].

Since the constant C in (6.5) does not depend on the initial condition V0 = Ṽ0, we
can simply infer from the same argument that uniqueness also holds over the next interval
[t0, 2t0], and so on, to deduce uniqueness over the entire original interval [0, T ].

We call the path V defined in (6.3) the rough exponential of X.

Corollary 6.13. Suppose that X = (X,X) ∈ C α and (K,K ′) ∈ D2α
X are such that the rough

integral
∫ ·

0 Ku dXu takes values in R. Let V be the path given by

Vt = exp

(∫ t

0
Ku dXu −

1

2

∫ t

0
(Ku ⊗Ku) d[X]u

)
, t ∈ [0, T ].

Then V is the unique solution of the rough differential equation

Vt = 1 +

∫ t

0
VuKu dXu, t ∈ [0, T ].

The proof Corollary 6.13 is left as an exercise.

7 Differential equations

In the previous section we saw our first example of a rough differential equation. In this
section we shall study such equations in a more general setting. It is useful to first consider
the case where the driving path is regular enough to allow for Young integration, before
moving on to study equations driven by rough paths.

Throughout this section we will use the symbol . to mean an inequality up to a multi-
plicative constant which may depend on α, T and ‖f‖Ckb (for k = 2 or 3).
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7.1 Young differential equations

Lemma 7.1. Let α ∈ (0, 1] and f ∈ C2
b . Then there exists a constant C, depending only on

α, T and ‖f‖C2
b
, such that

‖f(Y )− f(Ỹ )‖α ≤ C
(
1 + ‖Y ‖α + ‖Ỹ ‖α

)(
|Y0 − Ỹ0|+ ‖Y − Ỹ ‖α

)
holds for all Y, Ỹ ∈ Cα.

Proof. ∣∣f(Y )s,t − f(Ỹ )s,t
∣∣

=

∣∣∣∣ ∫ 1

0
Df(Ỹt + r(Yt − Ỹt))(Yt − Ỹt) dr −

∫ 1

0
Df(Ỹs + r(Ys − Ỹs))(Ys − Ỹs) dr

∣∣∣∣
. |(Y − Ỹ )s,t|+ (|Ys,t|+ |Ỹs,t|)‖Y − Ỹ ‖∞,

so that

‖f(Y )− f(Ỹ )‖α . ‖Y − Ỹ ‖α + (‖Y ‖α + ‖Ỹ ‖α)‖Y − Ỹ ‖∞
.
(
1 + ‖Y ‖α + ‖Ỹ ‖α

)(
|Y0 − Ỹ0|+ ‖Y − Ỹ ‖α

)
.

Theorem 7.2. Let β ∈ (1
2 , 1] and let X ∈ Cβ([0, T ];Rd). Let f ∈ C2

b (Rm;L(Rd;Rm)), and
let y ∈ Rm. There exists a unique path Y ∈ Cβ([0, T ];Rm) which satisfies

Yt = y +

∫ t

0
f(Ys) dXs (7.1)

for all t ∈ [0, T ].

Proof. Let α ∈ (1
2 , β). Define the map Mt : Cα([0, t];Rm)→ Cα([0, t];Rm) by

Mt(Y ) = y +

∫ ·
0
f(Ys) dXs.

Let
Bt = {Y ∈ Cα([0, t];Rm) : Y0 = y, ‖Y ‖α,[0,t] ≤ 1}

which, being a closed subset of the Banach space Cα, is a complete metric space.

Invariance: Let Y ∈ Bt. Using the estimate in (5.4), we have

‖Mt(Y )‖α =

∥∥∥∥∫ ·
0
f(Ys) dXs

∥∥∥∥
α

.
(
‖f(Y )‖∞‖X‖α + ‖f(Y )‖α‖X‖α

)
. (1 + ‖Y ‖α)‖X‖α ≤ 2‖X‖α.

Thus,
‖Mt(Y )‖α,[0,t] ≤ C1‖X‖α,[0,t] ≤ C1‖X‖β,[0,t]tβ−α

for some constant C1. Choosing t = t1 > 0 sufficiently small so that C1‖X‖β,[0,T ]t
β−α
1 ≤ 1,

we then have that ‖Mt1(Y )‖α,[0,t1] ≤ 1. Since Mt1(Y )0 = y, it follows that the set Bt1 is
invariant under the map Mt1 . That is, Mt1 : Bt1 → Bt1 .

41



Contraction: Let Y, Ỹ ∈ Bt. Using Proposition 5.4 and Lemma 7.1, we have

‖Mt(Y )−Mt(Ỹ )‖α =

∥∥∥∥∫ ·
0
f(Ys) dXs −

∫ ·
0
f(Ỹs) dXs

∥∥∥∥
α

. ‖f(Y )− f(Ỹ )‖α‖X‖α . ‖Y − Ỹ ‖α‖X‖α.

This gives

‖Mt(Y )−Mt(Ỹ )‖α,[0,t] ≤ C2‖Y − Ỹ ‖α,[0,t]‖X‖α,[0,t] ≤ C2‖Y − Ỹ ‖α,[0,t]‖X‖β,[0,t]tβ−α,

for some constant C2. Taking t = t2 ∈ (0, t1] sufficiently small so that C2‖X‖β,[0,T ]t
β−α
2 ≤ 1

2 ,
we obtain

‖Mt2(Y )−Mt2(Ỹ )‖α,[0,t2] ≤
1

2
‖Y − Ỹ ‖α,[0,t2].

Thus, the mapMt2 is a contraction on Bt2 . By the Banach fixed point theorem, there exists
a unique fixed point. That is, there exists a unique Y ∈ Cα which satisfies (7.1) over the
time interval [0, t2].

Since the constants C1, C2 above did not depend on the initial condition, we can then
simply apply this argument over the next interval [t2, 2t2], and so on. By pasting these
solutions together, we deduce the existence of a unique solution Y over the entire interval
[0, T ].

So far we only have that Y ∈ Cα. However, since X ∈ Cβ, it follows from (7.1) and (5.4)
that Y ∈ Cβ. Since any solution in Cβ is automatically also in Cα, our solution Y is also
unique in Cβ.

Proposition 7.3. Let β ∈ (1
2 , 1] and f ∈ C2

b . Let X, X̃ ∈ Cβ and y, ỹ ∈ Rm, and let Y and

Ỹ be the (unique) solutions of (7.1) with the data (y,X) and (ỹ, X̃) respectively. Let M > 0
be a constant such that ‖X‖β, ‖X̃‖β ≤M . Then, for any α ∈ (1

2 , β), there exists a constant
CM > 0, depending on α, T, ‖f‖C2

b
and M , such that

‖Y − Ỹ ‖α ≤ CM
(
|y − ỹ|+ ‖X − X̃‖α

)
.

Proof. Recall from the proof of Theorem 7.2 that the local solution Y over the time interval
[0, t2] is an element of the set Bt2 , which means in particular that ‖Y ‖α,[0,t2] ≤ 1. Similarly,

we have that ‖Ỹ ‖α,[0,t̃2] ≤ 1 for some t̃2 > 0.

By Proposition 5.4, for any t ∈ (0, t2 ∧ t̃2], we then have

‖Y − Ỹ ‖α =

∥∥∥∥∫ ·
0
f(Ys) dXs −

∫ ·
0
f(Ỹs) dX̃s

∥∥∥∥
α

.
(
|f(Y0)− f(Ỹ0)|+ ‖f(Y )− f(Ỹ )‖α

)
‖X‖α +

(
|f(ỹ) + ‖f(Ỹ )‖α

)
‖X − X̃‖α

.
(
|Y0 − Ỹ0|+ ‖Y − Ỹ ‖α

)
‖X‖α + ‖X − X̃‖α.

This means that

‖Y − Ỹ ‖α,[0,t] ≤ C3

((
|Y0 − Ỹ0|+ ‖Y − Ỹ ‖α,[0,t]

)
‖X‖β,[0,t]tβ−α + ‖X − X̃‖α,[0,t]

)
for some constant C3.
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Choosing t = t3 ∈ (0, t2 ∧ t̃2] sufficiently small so that C3‖X‖β,[0,T ]t
β−α
3 ≤ 1

2 and rear-
ranging, we deduce that

‖Y − Ỹ ‖α,[0,t3] . |Y0 − Ỹ0|+ ‖X − X̃‖α,[0,t3].

It follows that there exists a δ > 0, depending on α, T, ‖f‖C2
b

and M , such that, for any

interval [s, t] ⊂ [0, T ] with |t− s| ≤ δ, we have

‖Y − Ỹ ‖α,[s,t] . |Ys − Ỹs|+ ‖X − X̃‖α,[s,t]. (7.2)

Take a partition π of the interval [0, T ] with mesh size |π| ≤ δ. The estimate in (7.2) then
holds over every interval [s, t] ∈ π, and by combining these estimates one can deduce that
the same estimate holds over the entire interval [0, T ].

7.2 Functions of controlled paths

Lemma 7.4. Let α ∈ (1
3 ,

1
2 ] and X ∈ Cα. Let f ∈ C2

b . For any (Y, Y ′) ∈ D2α
X , the pair(

f(Y ), Df(Y )Y ′
)
∈ D2α

X

is a controlled path. Moreover, we have the estimates

‖Df(Y )Y ′‖α ≤ C
(
1 + |Y ′0 |+ ‖Y ′‖α + ‖RY ‖2α

)2(
1 + ‖X‖α

)
,

‖Rf(Y )‖2α ≤ C
(
1 + |Y ′0 |+ ‖Y ′‖α + ‖RY ‖2α

)2(
1 + ‖X‖α

)2
,

where the constant C depends on α, T and ‖f‖C2
b
.

Proof. We have∣∣Df(Yt)Y
′
t −Df(Ys)Y

′
s

∣∣ ≤ |Df(Yt)||Y ′s,t|+ |Df(Yt)−Df(Ys)||Y ′s |
. |Y ′s,t|+ |Ys,t||Y ′s |

so that

‖Df(Y )Y ′‖α . ‖Y ′‖α + ‖Y ‖α‖Y ′‖∞
. ‖Y ′‖α +

(
‖Y ′‖∞‖X‖α + ‖RY ‖2α

)
‖Y ′‖∞

. ‖Y ′‖α +
(
(|Y ′0 |+ ‖Y ′‖α)‖X‖α + ‖RY ‖2α

)(
|Y ′0 |+ ‖Y ′‖α

)
.
(
1 + |Y ′0 |+ ‖Y ′‖α + ‖RY ‖2α

)2(
1 + ‖X‖α

)
,

which gives the first estimate.

We also have

R
f(Y )
s,t := f(Yt)− f(Ys)−Df(Ys)Y

′
sXs,t

= f(Yt)− f(Ys)−Df(Ys)(Ys,t −RYs,t)

=

∫ 1

0

∫ 1

0
D2f(Ys + r1r2Ys,t)Y

⊗2
s,t r1 dr2 dr1 +Df(Ys)R

Y
s,t,

so that ∣∣Rf(Y )
s,t

∣∣ . |Ys,t|2 + |RYs,t|.
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Then

‖Rf(Y )‖2α . ‖Y ‖2α + ‖RY ‖2α
.
(
‖Y ′‖∞‖X‖α + ‖RY ‖2α

)2
+ ‖RY ‖2α

.
(
1 + |Y ′0 |+ ‖Y ′‖α + ‖RY ‖2α

)2(
1 + ‖X‖α

)2
,

which gives the second estimate.

Lemma 7.5. Let α ∈ (1
3 ,

1
2 ], X, X̃ ∈ Cα, (Y, Y ′) ∈ D2α

X , (Ỹ , Ỹ ′) ∈ D2α
X̃

and f ∈ C3
b . Let

M > 0 be a constant such that ‖X‖α ≤ M , ‖X̃‖α ≤ M , |Y ′0 | + ‖Y ′‖α + ‖RY ‖2α ≤ M and

|Ỹ ′0 |+ ‖Ỹ ′‖α + ‖RỸ ‖2α ≤M . We have that∥∥Df(Y )Y ′ −Df(Ỹ )Ỹ ′
∥∥
α

≤ C
(
|Y0 − Ỹ0|+ |Y ′0 − Ỹ ′0 |+ ‖Y ′ − Ỹ ′‖α + ‖RY −RỸ ‖2α + ‖X − X̃‖α

)
,

and ∥∥Rf(Y ) −Rf(Ỹ )
∥∥

2α

≤ C
(
|Y0 − Ỹ0|+ |Y ′0 − Ỹ ′0 |+ ‖Y ′ − Ỹ ′‖α + ‖RY −RỸ ‖2α + ‖X − X̃‖α

)
,

where the constant C depends on α, T, ‖f‖C3
b

and M .

Proof. In the following we shall allow the multiplicative constant indicated by the symbol .
to also depend on M .

We have ∣∣(Df(Y )Y ′ −Df(Ỹ )Ỹ ′
)
s,t

∣∣
≤
∣∣(Df(Y )(Y ′ − Ỹ ′)

)
s,t

∣∣+
∣∣((Df(Y )−Df(Ỹ ))Ỹ ′

)
s,t

∣∣
≤ |Df(Yt)(Y

′ − Ỹ ′)s,t|+ |Df(Y )s,t(Y
′
s − Ỹ ′s )|

+ |(Df(Yt)−Df(Ỹt))Ỹ
′
s,t|+ |(Df(Y )−Df(Ỹ ))s,tỸ

′
s |

and hence ∥∥Df(Y )Y ′ −Df(Ỹ )Ỹ ′
∥∥
α

≤ ‖Df(Y )‖∞‖Y ′ − Ỹ ′‖α + ‖Df(Y )‖α‖Y ′ − Ỹ ′‖∞
+ ‖Df(Y )−Df(Ỹ )‖∞‖Ỹ ′‖α + ‖Df(Y )−Df(Ỹ )‖α‖Ỹ ′‖∞

. ‖Y ′ − Ỹ ′‖α + ‖Y ′ − Ỹ ′‖∞ + ‖Y − Ỹ ‖∞ + ‖Df(Y )−Df(Ỹ )‖α.

By Lemma 7.1, we have

‖Df(Y )−Df(Ỹ )‖α . |Y0 − Ỹ0|+ ‖Y − Ỹ ‖α,

and by (5.10) we have

‖Y − Ỹ ‖α . |Y ′0 − Ỹ ′0 |+ ‖Y ′ − Ỹ ′‖α + ‖X − X̃‖α + ‖RY −RỸ ‖2α. (7.3)

Putting this together, we obtain the first estimate.

44



We also have∣∣Rf(Y )
s,t −Rf(Ỹ )

s,t

∣∣
=
∣∣f(Y )s,t −Df(Ys)Y

′
sXs,t − f(Ỹ )s,t +Df(Ỹs)Ỹ

′
sX̃s,t

∣∣
=
∣∣f(Y )s,t −Df(Ys)(Ys,t −RYs,t)− f(Ỹ )s,t +Df(Ỹs)(Ỹs,t −RỸs,t)

∣∣
≤
∣∣f(Y )s,t −Df(Ys)Ys,t − f(Ỹ )s,t +Df(Ỹs)Ỹs,t

∣∣+
∣∣Df(Ys)R

Y
s,t −Df(Ỹs)R

Ỹ
s,t

∣∣
=

∣∣∣∣ ∫ 1

0

∫ 1

0
D2f(Ys + r1r2Ys,t)Y

⊗2
s,t r1 dr2 dr1 −

∫ 1

0

∫ 1

0
D2f(Ỹs + r1r2Ỹs,t)Ỹ

⊗2
s,t r1 dr2 dr1

∣∣∣∣
+
∣∣Df(Ys)R

Y
s,t −Df(Ỹs)R

Ỹ
s,t

∣∣
. ‖Y − Ỹ ‖∞|Ys,t|2 + |Y ⊗2

s,t − Ỹ
⊗2
s,t |+

∣∣Df(Ys)R
Y
s,t −Df(Ỹs)R

Ỹ
s,t

∣∣
≤ ‖Y − Ỹ ‖∞|Ys,t|2 + |Ys,t||Ys,t − Ỹs,t|+ |Ys,t − Ỹs,t||Ỹs,t|

+ |Df(Ys)−Df(Ỹs)||RYs,t|+ |Df(Ỹs)||RYs,t −RỸs,t|,

so that ∥∥Rf(Y ) −Rf(Ỹ )
∥∥

2α
. ‖Y − Ỹ ‖∞‖Y ‖2α + (‖Y ‖α + ‖Ỹ ‖α)‖Y − Ỹ ‖α

+ ‖Y − Ỹ ‖∞‖RY ‖2α + ‖RY −RỸ ‖2α
. |Y0 − Ỹ0|+ ‖Y − Ỹ ‖α + ‖RY −RỸ ‖2α.

Using (7.3) again, we obtain the second estimate.

Lemma 7.6. Let α ∈ (1
3 ,

1
2 ] and X = (X,X) ∈ C α. Let f ∈ C2

b . For any (Y, Y ′) ∈ D2α
X , the

pair (∫ ·
0
f(Yu) dXu, f(Y )

)
∈ D2α

X

is a controlled path. Moreover, we have the estimates

‖f(Y )‖α ≤ C
(
(|Y ′0 |+ ‖Y ′‖α)‖X‖α + ‖RY ‖2αTα

)
,∥∥R∫ ·

0 f(Yu) dXu
∥∥

2α
≤ C

(
1 + |Y ′0 |+ ‖Y ′‖α + ‖RY ‖2α

)2(
1 + ‖X‖α

)2|||X|||α,
where the constant C depends on α, T and ‖f‖C2

b
.

Proof. The first estimate follows easily from the Lipschitz continuity of f and the relation
Ys,t = Y ′sXs,t +RYs,t.

By Lemma 7.4, we know that the pair (f(Y ), Df(Y )Y ′) is a controlled path, and hence
by Proposition 5.11 that the rough integral

∫ ·
0 f(Yu) dXu exists. Moreover, it follows from

the estimate in (5.9) that∣∣R∫ ·
0 f(Yu) dXu

s,t

∣∣ =

∣∣∣∣ ∫ t

s
f(Yu) dXu − f(Ys)Xs,t

∣∣∣∣
. |Df(Ys)Y

′
sXs,t|+

(
‖Rf(Y )‖2α‖X‖α + ‖Df(Y )Y ′‖α‖X‖2α

)
|t− s|3α,

and hence, using the estimates in Lemma 7.4,∥∥R∫ ·
0 f(Yu) dXu

∥∥
2α

. ‖Y ′‖∞‖X‖2α + ‖Rf(Y )‖2α‖X‖α + ‖Df(Y )Y ′‖α‖X‖2α

.
(
1 + |Y ′0 |+ ‖Y ′‖α + ‖RY ‖2α

)2(
1 + ‖X‖α

)2(‖X‖α + ‖X‖2α
)
,

which gives the second estimate.
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Lemma 7.7. Let α ∈ (1
3 ,

1
2 ] and X = (X,X), X̃ = (X̃, X̃) ∈ C α. Let (Y, Y ′) ∈ D2α

X and

(Ỹ , Ỹ ′) ∈ D2α
X̃

, and f ∈ C3
b . Let M > 0 be a constant such that ‖X‖α ≤ M , ‖X̃‖α ≤ M ,

|Y ′0 |+ ‖Y ′‖α + ‖RY ‖2α ≤M and |Ỹ ′0 |+ ‖Ỹ ′‖α + ‖RỸ ‖2α ≤M . Then

‖f(Y )− f(Ỹ )‖α

≤ C
(
|Y0 − Ỹ0|+

(
|Y ′0 − Ỹ ′0 |+ ‖Y ′ − Ỹ ′‖α

)
‖X‖α + ‖RY −RỸ ‖2αTα + ‖X − X̃‖α

)
,

and∥∥R∫ ·
0 f(Yu) dXu −R

∫ ·
0 f(Ỹu) dX̃u

∥∥
2α

≤ C
((
|Y0 − Ỹ0|+ |Y ′0 − Ỹ ′0 |+ ‖Y ′ − Ỹ ′‖α + ‖RY −RỸ ‖2α + ‖X − X̃‖α

)
|||X|||α + ‖X; X̃‖α

)
where the constant C depends on α, T, ‖f‖C3

b
and M .

Proof. In the following we shall allow the multiplicative constant indicated by the symbol .
to also depend on M .

By Lemma 7.1, we have that

‖f(Y )− f(Ỹ )‖α .
(
1 + ‖Y ‖α + ‖Ỹ ‖α

)(
|Y0 − Ỹ0|+ ‖Y − Ỹ ‖α

)
. |Y0 − Ỹ0|+ ‖Y − Ỹ ‖α.

By (5.10), we have

‖Y − Ỹ ‖α .
(
|Y ′0 − Ỹ ′0 |+ ‖Y ′ − Ỹ ′‖α

)
‖X‖α + ‖X − X̃‖α + ‖RY −RỸ ‖2αTα.

Combining these two inequalities, we obtain the first estimate.

By (5.11), we have∥∥R∫ ·
0 f(Yu) dXu −R

∫ ·
0 f(Ỹu) dX̃u

∥∥
2α

.
(
|Df(Y0)Y ′0 −Df(Ỹ0)Ỹ ′0 |+ ‖Df(Y )Y ′ −Df(Ỹ )Ỹ ′‖α + ‖Rf(Y ) −Rf(Ỹ )‖2α

)
|||X|||α

+
(
|Df(Ỹ0)Ỹ ′0 |+ ‖Df(Ỹ )Ỹ ′‖α + ‖Rf(Ỹ )‖2α

)
‖X; X̃‖α.

We know from Lemma 7.4 that the norms ‖Df(Ỹ )Ỹ ′‖α and ‖Rf(Ỹ )‖2α are both bounded by(
1 + |Ỹ ′0 |+ ‖Ỹ ′‖α + ‖RỸ ‖2α

)2(
1 + ‖X̃‖α

)2
. 1,

and we know from Lemma 7.5 that the norms
∥∥Df(Y )Y ′−Df(Ỹ )Ỹ ′

∥∥
α

and
∥∥Rf(Y )−Rf(Ỹ )

∥∥
2α

can both be estimated by

|Y0 − Ỹ0|+ |Y ′0 − Ỹ ′0 |+ ‖Y ′ − Ỹ ′‖α + ‖RY −RỸ ‖2α + ‖X − X̃‖α.

Substituting these estimates into the above, we obtain the desired inequality.
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7.3 Rough differential equations

We are now ready to establish existence and uniqueness of solutions to RDEs of the form

dYt = f(Yt) dXt

for sufficiently regular vector fields f .

Theorem 7.8. Let β ∈ (1
3 ,

1
2 ] and let X = (X,X) ∈ C β([0, T ];Rd) be a rough path. Let

f ∈ C3
b (Rm;L(Rd;Rm)), and let y ∈ Rm. There exists a unique controlled path (Y, Y ′) ∈ D2β

X

such that Y ′ = f(Y ), and such that

Yt = y +

∫ t

0
f(Ys) dXs (7.4)

for all t ∈ [0, T ].

Proof. Let α ∈ (1
3 , β). Define the map Mt : D2α

X ([0, t];Rm)→ D2α
X ([0, t];Rm) by

Mt(Y, Y
′) =

(
y +

∫ ·
0
f(Ys) dXs, f(Y )

)
,

which we know defines a controlled path by Lemma 7.6. Let

Bt =
{

(Y, Y ′) ∈ D2α
X ([0, t];Rm) : Y0 = y, Y ′0 = f(y), ‖Y, Y ′‖X,α,[0,t] ≤ 1

}
,

where
‖Y, Y ′‖X,α = ‖Y ′‖α + ‖RY ‖2α.

Since Bt a closed subset of the Banach space D2α
X , it is a complete metric space with the

metric induced by the norm ‖· , ·‖X,α. Note that the path s 7→ (y + f(y)X0,s, f(y)) is an
element of Bt, so the set Bt is nonempty.

Let M = 1+‖f‖C3
b

+‖X‖α,[0,T ]. Note that, if (Y, Y ′) ∈ Bt, then |Y ′0 |+‖Y ′‖α+‖RY ‖2α =

|f(y)|+ ‖Y, Y ′‖X,α ≤ ‖f‖C3
b

+ 1 ≤M , so that the hypotheses of Lemma 7.7 are satisfied. In

the following we shall allow the multiplicative constant indicated by the symbol . to also
depend on M .

Invariance: Let (Y, Y ′) ∈ Bt. By Lemma 7.6, we have

‖Mt(Y, Y
′)‖X,α = ‖f(Y )‖α +

∥∥R∫ ·
0 f(Ys) dXs

∥∥
2α

. (|Y ′0 |+ ‖Y ′‖α)‖X‖α + ‖RY ‖2αtα

+
(
1 + |Y ′0 |+ ‖Y ′‖α + ‖RY ‖2α

)2(
1 + ‖X‖α

)2|||X|||α
. |||X|||α + tα,

so that
‖Mt(Y, Y

′)‖X,α,[0,t] ≤ C1

(
|||X|||α,[0,t] + tα

)
for some constant C1. Then

‖Mt(Y, Y
′)‖X,α,[0,t] ≤ C1

(
‖X‖α,[0,t] + ‖X‖2α,[0,t] + tα

)
≤ C1

(
‖X‖β,[0,t]tβ−α + ‖X‖2β,[0,t]t2(β−α) + tα

)
.
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Choosing t = t1 > 0 sufficiently small, we can ensure that ‖Mt1(Y, Y ′)‖X,α,[0,t1] ≤ 1 for all
(Y, Y ′) ∈ Bt1 . Thus, the set Bt1 is invariant under the map Mt1 .

Contraction: Let (Y, Y ′), (Ỹ , Ỹ ′) ∈ Bt for some t ∈ (0, t1]. By Lemma 7.7, we have∥∥Mt(Y, Y
′)−Mt(Ỹ , Ỹ

′)
∥∥
X,α

= ‖f(Y )− f(Ỹ )‖α +
∥∥R∫ ·

0 f(Ys) dXs −R
∫ ·
0 f(Ỹs) dX̃s

∥∥
2α

.
(
‖Y ′ − Ỹ ′‖α + ‖RY −RỸ ‖2α

)(
|||X|||α + tα

)
,

so that ∥∥Mt(Y, Y
′)−Mt(Ỹ , Ỹ

′)
∥∥
X,α,[0,t]

≤ C2

(
‖Y ′ − Ỹ ′‖α,[0,t] + ‖RY −RỸ ‖2α,[0,t]

)(
|||X|||α,[0,t] + tα

)
for some constant C2. Then∥∥Mt(Y, Y

′)−Mt(Ỹ , Ỹ
′)
∥∥
X,α,[0,t]

≤ C2

(
‖Y ′ − Ỹ ′‖α,[0,t] + ‖RY −RỸ ‖2α,[0,t]

)(
‖X‖β,[0,t]tβ−α + ‖X‖2β,[0,t]t2(β−α) + tα

)
.

Choosing t = t2 ∈ (0, t1] sufficiently small, we can then ensure that∥∥Mt2(Y, Y ′)−Mt2(Ỹ , Ỹ ′)
∥∥
X,α,[0,t2]

≤ 1

2

∥∥(Y, Y ′)− (Ỹ , Ỹ ′)
∥∥
X,α,[0,t2]

.

The map Mt2 is therefore a contraction on Bt2 . The unique fixed point of this map is then
the unique element (Y, Y ′) ∈ D2α

X of the RDE over the interval [0, t2] satisfying Y ′ = f(Y ).

Since the constants C1, C2 above did not depend on the initial condition, we can then
simply apply this argument over the next interval [t2, 2t2], and so on. By pasting these
solutions together, we deduce the existence of a unique solution (Y, Y ′) ∈ D2α

X over the
entire interval [0, T ].

So far we only have that (Y, Y ′) ∈ D2α
X . However, since X ∈ C β, we actually have that

(Y, Y ′) ∈ D2β
X . Indeed, since Ys,t = Y ′sXs,t +RYs,t and X ∈ Cβ, we see that Y ∈ Cβ, and since

Y ′ = f(Y ) and f is Lipschitz, we then have that Y ′ ∈ Cβ. Moreover, by (5.9) we have that

|RYs,t| = |Ys,t − Y ′sXs,t| =
∣∣∣∣ ∫ t

s
f(Yu) dXu − f(Ys)Xs,t

∣∣∣∣
. ‖Df(Y )Y ′‖∞|Xs,t|+O(|t− s|3α),

and since X ∈ C2β
2 , we see that RY ∈ C2β

2 . Since D2β
X ⊂ D2α

X , we have that the solution

(Y, Y ′) is also the unique solution in D2β
X satisfying Y ′ = f(Y ).

Suppose that we have fixed a vector field f and an initial condition y. The previous
theorem shows that, given a rough path X, we can assign a unique (in a suitable sense)
solution (Y, Y ′) to the corresponding rough differential equation. The solution map

X 7−→ (Y, Y ′)

in the context of rough paths is known as the Itô–Lyons map.
We now come to a version of what is arguably the most important result in the theory:

the continuity of the Itô–Lyons map.
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Theorem 7.9. Let β ∈ (1
3 ,

1
2 ] and f ∈ C3

b . Let X = (X,X), X̃ = (X̃, X̃) ∈ C β and

y, ỹ ∈ Rm, and let (Y, Y ′) ∈ D2β
X and (Ỹ , Ỹ ′) ∈ D2β

X̃
be the solutions of the RDE (7.4)

given by Theorem 7.8 with the data (y,X) and (ỹ, X̃) respectively. Let M > 0 be a constant
such that |||X|||β, |||X̃|||β ≤ M . Then, for any α ∈ (1

3 , β), there exists a constant CM > 0,
depending on α, T, ‖f‖C3

b
and M , such that

‖Y − Ỹ ‖α + ‖Y ′ − Ỹ ′‖α + ‖RY −RỸ ‖2α ≤ CM
(
|y − ỹ|+ ‖X; X̃‖α

)
.

Proof. Recall from the proof of Theorem 7.8 that the local solution (Y, Y ′) of the RDE over
the time interval [0, t2] is an element of Bt2 , which means in particular that ‖Y, Y ′‖X,α,[0,t2] ≤
1. Similarly, we have that ‖Ỹ , Ỹ ′‖X,α,[0,t2] ≤ 1 for some t̃2 > 0. In the following we shall
allow the multiplicative constant indicated by the symbol . to also depend on M .

By Lemma 7.7, for any t ∈ (t2 ∧ t̃2], we have that

‖Y ′ − Ỹ ′‖α = ‖f(Y )− f(Ỹ )‖α
. |Y0 − Ỹ0|+

(
|Y ′0 − Ỹ ′0 |+ ‖Y ′ − Ỹ ′‖α

)
‖X‖α + ‖RY −RỸ ‖2αtα + ‖X − X̃‖α

and

‖RY −RỸ ‖2α =
∥∥R∫ ·

0 f(Yu) dXu −R
∫ ·
0 f(Ỹu) dX̃u

∥∥
2α

.
(
|Y0 − Ỹ0|+ |Y ′0 − Ỹ ′0 |+ ‖Y ′ − Ỹ ′‖α + ‖RY −RỸ ‖2α + ‖X − X̃‖α

)
|||X|||α + ‖X; X̃‖α.

Noting that |Y ′0 − Ỹ ′0 | = |f(Y0)− f(Ỹ0)| . |Y0 − Ỹ0|, we then have

‖Y ′ − Ỹ ′‖α + ‖RY −RỸ ‖2α

≤ C3

(
|Y0 − Ỹ0|+

(
‖Y ′ − Ỹ ′‖α + ‖RY −RỸ ‖2α

)(
|||X|||α + tα

)
+ ‖X; X̃‖α

)
for some constant C3. We have that

|||X|||α,[0,t] + tα ≤ ‖X‖β,[0,t]tβ−α + ‖X‖2β,[0,t]t2(β−α) + tα.

Choosing t = t3 ∈ (t2 ∧ t̃2] sufficiently small such that

C3

(
‖X‖β,[0,t3]t

β−α
3 + ‖X‖2β,[0,t3]t

2(β−α)
3 + tα3

)
≤ 1

2

and rearranging, we obtain

‖Y ′ − Ỹ ′‖α,[0,t3] + ‖RY −RỸ ‖2α,[0,t3] . |Y0 − Ỹ0|+ ‖X; X̃‖α,[0,t3].

It then follows from the estimate in (5.10) that

‖Y − Ỹ ‖α,[0,t3] . |Y0 − Ỹ0|+ ‖X; X̃‖α,[0,t3].

It follows that there exists a δ > 0, depending on α, T, ‖f‖C3
b

and M , such that, for any

interval [s, t] ⊂ [0, T ] with |t− s| ≤ δ, we have

‖Y ′ − Ỹ ′‖α,[s,t] + ‖RY −RỸ ‖2α,[s,t] . |Y0 − Ỹ0|+ ‖X; X̃‖α,[s,t], (7.5)

‖Y − Ỹ ‖α,[s,t] . |Y0 − Ỹ0|+ ‖X; X̃‖α,[s,t]. (7.6)

Take a partition π of the interval [0, T ] with mesh size |π| ≤ δ. The estimates in (7.5) and
(7.6) then hold over every interval [s, t] ∈ π, and by combining the estimates on different
intervals one can deduce that the same estimates hold over the entire interval [0, T ].
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8 Consistency with stochastic calculus

8.1 Stochastic integration

Recall from Section 4 that a d-dimensional Brownian motion B can be lifted to a random
rough path B = (B,B). As always, the enhancement B is not unique, but we have two
important examples, namely the Itô and Stratonovich enhancements. Let us first consider
the Itô enhancement:

BItô
s,t =

∫ t

s
Bs,r ⊗ dBr, (s, t) ∈ ∆[0,T ].

We recall from Proposition 4.2 that B(ω) = (B(ω),BItô(ω)) ∈ C α for almost every ω ∈ Ω.
The following result shows that rough and stochastic integrals against Itô Brownian motion
coincide whenever both are well-defined.

Proposition 8.1. Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space. Let α ∈ (1
3 ,

1
2)

and let B = BItô = (B,B) = (B,BItô) be an Ft-adapted Itô enhanced Brownian rough
path, so that B ∈ C α almost surely. Let (Y, Y ′) be an adapted stochastic process such that
(Y (ω), Y ′(ω)) ∈ D2α

B(ω) for almost every ω ∈ Ω. Then∫ T

0
Yu dBu =

∫ T

0
Yu dBu (8.1)

almost surely.

It is helpful to make the dependence on ω explicit here. The equality in (8.1) means
that, for almost every ω ∈ Ω, we have that∫ T

0
Yu(ω) dBu(ω) =

(∫ T

0
Yu dBu

)
(ω),

where, by Proposition 5.11, we have that∫ T

0
Yu(ω) dBu(ω) = lim

|π|→0

∑
[s,t]∈π

Ys(ω)Bs,t(ω) + Y ′s (ω)Bs,t(ω). (8.2)

Proof of Proposition 8.1. Let (πn)n≥1 be a sequence of partitions with |πn| → 0 as n→∞.
Recall that the Itô integral against Brownian motion can be written as the limit in probability∑

[s,t]∈πn
YsBs,t

P−→
∫ T

0
Yu dBu as n→∞.

There then exists a subsequence (nk)k≥1 such that∑
[s,t]∈πnk

YsBs,t →
∫ T

0
Yu dBu as k →∞

almost surely. Combining this with (8.2), we have that∑
[s,t]∈πnk

Y ′sBs,t →
∫ T

0
Yu dBu −

∫ T

0
Yu dBu as k →∞ (8.3)
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almost surely.
Since the Itô integral

∫ ·
0 Bu ⊗ dBu is a martingale, we can use the orthogonality of mar-

tingale increments. That is, for [u, v], [s, t] ∈ π with v ≤ s, we have that E[Y ′uBu,vY ′sBs,t] =
E[E[Y ′uBu,vY ′sBs,t | Fs]] = E[Y ′uBu,vY ′sE[Bs,t | Fs]] = 0. For any partition π, we then have that

E
[∣∣∣∣ ∑

[s,t]∈π

Y ′sBs,t
∣∣∣∣2] =

∑
[s,t]∈π

E
[
|Y ′sBs,t|2

]
.

Let us assume for the moment that ‖Y ′‖L∞(Ω×[0,T ]) ≤ M for some constant M > 0. Recall
from the proof of Proposition 4.2 that E[|Bs,t|2] ≤ C|t− s|2 for a constant C. Then

E
[∣∣∣∣ ∑

[s,t]∈π

Y ′sBs,t
∣∣∣∣2] =

∑
[s,t]∈π

E
[
|Y ′sBs,t|2

]
≤ CM2

∑
[s,t]∈π

|t− s|2 ≤ CM2T |π|. (8.4)

Applying this with π = πnk , we have that∑
[s,t]∈πnk

Y ′sBs,t
L2(P)−−−→ 0 as k →∞.

We also know from (8.3) that this sequence of random variables converges almost surely. It
follows that these limits must be equal almost surely.

If ‖Y ′‖L∞(Ω×[0,T ]) is not finite then we can use a localization argument: Let M > 0 and
define the stopping time τM = T ∧ inf{t ∈ [0, T ] : |Y ′t | ≥M}. Applying the argument above
with the stopped processes (Y ′)τM and BτM = (BτM ,BτM ), we deduce that

∫ τM
0 Yu dBu =∫ τM

0 Yu dBu almost surely. Since τM → T as M → ∞ almost surely, the result then follows
upon letting M →∞.

We now turn our attention to Stratonovich enhanced Brownian motion B = (B,BStrat),
where

BStrat
s,t =

∫ t

s
Bs,r ⊗ ◦ dBr, (s, t) ∈ ∆[0,T ].

Recall that Stratonovich integration is related to Itô integration by the relation∫ T

0
Ys ◦ dXs =

∫ T

0
Ys dXs +

1

2
〈Y,X〉T (8.5)

for semimartingales X,Y , where the limit in probability∑
[s,t]∈π

Ys,tXs,t
P−→ 〈Y,X〉T as |π| → 0,

is the quadratic covariation of Y and X.
By Proposition 4.3, we know that, almost surely, B = (B,BStrat) ∈ C 0,α

g is a geometric
rough path. Let us also recall the following useful equalities:

BStrat
s,t = BItô

s,t +
1

2
(t− s)I, (8.6)

and

Sym(BStrat
s,t ) = Sym(BItô

s,t ) +
1

2
(t− s)I =

1

2
Bs,t ⊗Bs,t. (8.7)

Similarly to the Itô case above, we now show that rough and stochastic integrals against
Stratonovich Brownian motion coincide whenever both integrals are well-defined.
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Proposition 8.2. Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space. Let α ∈ (1
3 ,

1
2) and

let B = BStrat = (B,B) = (B,BStrat) be an Ft-adapted Stratonovich enhanced Brownian
rough path, so that B ∈ C 0,α

g almost surely. Let (Y, Y ′) be an adapted stochastic process such
that (Y (ω), Y ′(ω)) ∈ D2α

B(ω) for almost every ω ∈ Ω. Then∫ T

0
Yu dBu =

∫ T

0
Yu ◦ dBu

almost surely.

Proof. The main step is to identify the quadratic covariation of Y and B. Recalling that
Ys,t = Y ′sBs,t +RYs,t, and using (8.7), we have that

Ys,tBs,t = Y ′s (Bs,t ⊗Bs,t) +RYs,tBs,t

= 2Y ′s Sym(BItô
s,t ) + Y ′s (t− s) +RYs,tBs,t.

By the proof of Proposition 8.1, specifically (8.4), we saw that
∑

[s,t]∈π Y
′
sBItô

s,t
P−→ 0 as |π| → 0.

It is easy to see that the same argument applies to the symmetric part Sym(BItô), so that∑
[s,t]∈π

Y ′s Sym(BItô
s,t )

P−→ 0 as |π| → 0.

We have that ∑
[s,t]∈π

Y ′s (t− s) →
∫ T

0
Y ′u du as |π| → 0,

almost surely, and that∣∣∣∣ ∑
[s,t]∈π

RYs,tBs,t

∣∣∣∣ ≤ ‖RY ‖2α‖B‖α ∑
[s,t]∈π

|t−s|3α ≤ ‖RY ‖2α‖B‖αT |π|3α−1 → 0 as |π| → 0

almost surely. Putting this all together, we have that∑
[s,t]∈π

Ys,tBs,t
P−→
∫ T

0
Y ′u du as |π| → 0,

so that

〈Y,B〉T =

∫ T

0
Y ′u du.

Applying Lemma 5.14 with Ft = 1
2 tI, in view of (8.6), we have that∫ T

0
Yu dBStrat

u =

∫ T

0
Yu dBItô

u +
1

2

∫ T

0
Y ′u du.

Thus, by Proposition 8.1 and (8.5), we then have∫ T

0
Yu dBStrat

u =

∫ T

0
Yu dBu +

1

2
〈Y,B〉T =

∫ T

0
Yu ◦ dBu.
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8.2 Stochastic differential equations

Given the consistency of rough and stochastic integrals shown above, it is straightforward
to deduce consistency of rough and stochastic differential equations.

Proposition 8.3. Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space. Let f ∈ C3
b , α ∈

(1
3 ,

1
2), and y ∈ L2(P). Let B be a d-dimensional Brownian motion.

(i) If BItô = (B,BItô) ∈ C α is Itô enhanced Brownian rough path, and (Y, Y ′) is the
solution of the RDE

dYt = f(Yt) dBItô
t , Y0 = y,

as given in Theorem 7.8, then Y is the unique strong solution of the Itô SDE

dYt = f(Yt) dBt, Y0 = y.

(ii) Similarly, if BStrat = (B,BStrat) ∈ C 0,α
g is Stratonovich enhanced Brownian rough path,

and (Y, Y ′) is the solution of the RDE

dYt = f(Yt) dBStrat
t , Y0 = y,

as given in Theorem 7.8, then Y is the unique strong solution of the Stratonovich SDE

dYt = f(Yt) ◦ dBt, Y0 = y.

Proof. Since the Itô integral
∫ ·

0 Bu ⊗ dBu is adapted to the natural filtration generated by
B, we have in particular that BItô

s,r is σ(Bu : 0 ≤ u ≤ r)-measurable. It follows that

σ(Bs,BItô
s,r : 0 ≤ s ≤ r ≤ t) = σ(Bu : 0 ≤ u ≤ t).

The continuity of the Itô–Lyons map (Theorem 7.9) tells us that the map

(B,BItô) 7−→ (Y, Y ′)

is continuous (with respect to suitable Hölder norms). It follows that the solution (Y, Y ′) is
also adapted to the natural filtration generated by B.

By Proposition 8.1, we then have that

Yt = y +

∫ t

0
f(Ys) dBItô

s = y +

∫ t

0
f(Ys) dBs,

so that Y does indeed solve the Itô SDE.

The proof in the Stratonovich case is the same, using Proposition 8.2 to conclude.

9 Pathwise stability of likelihood estimators

In this section we shall see one of the earliest applications of rough path theory to statistics.
We will see how rough paths can be used to obtain pathwise stability of maximum likelihood
estimators for diffusion processes.
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Let V be a finite-dimensional vector space, let Σ ∈ Rd×d, and let h : Rd → L(V;Rd) be a
Lipschitz continuous map. Consider the stochastic dynamics:

dXt = h(Xt)Adt+ Σ dWt (9.1)

with X0 = x0. Here, A ∈ V is a parameter, W is a d-dimensional Brownian motion, and
x0 ∈ Rd is a (deterministic) initial value. We assume that Σ is nondegenerate, so that

C = ΣΣ>

is a positive definite symmetric matrix.

We are interested in estimating the parameter A by observing the process X up to some
time T . We therefore consider the Maximum Likelihood Estimator (MLE) ÂT , which we
can think of as a function on pathspace:

ÂT : C([0, T ];Rd)→ V.

That is, given any observed path X(ω) = (Xt(ω))t∈[0,T ], we have a corresponding estimate

ÂT (X(ω)) ∈ V.

9.1 The classical MLE

Let’s derive the MLE. Let P0 be a probability measure under which W is a d-dimensional
standard Brownian motion, and define the process X by

Xt = x0 + ΣWt

for t ∈ [0, T ]. For each A ∈ V and t ∈ [0, T ], let

fAt = Σ−1h(Xt)A

and

WA
t = Wt −

∫ t

0
fAs ds.

By Girsanov’s theorem (see e.g. [CE15, Chapter 15]), we have that WA is a Brownian motion
under the measure PA defined via the Radon–Nikodym derivative:

dPA

dP0
= exp

(∫ T

0
(fAs )> dWs −

1

2

∫ T

0
|fAs |2 ds

)
. (9.2)

In particular, we then have that

dXt = Σ dWt

= Σ(fAt dt+ dWA
t )

= h(Xt)Adt+ Σ dWA
t ,

so that X has the desired dynamics under PA.
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The Radon–Nikodym derivative in (9.2) is precisely the likelihood function that we wish
to maximize. We have

log
dPA

dP0
=

∫ T

0
(h(Xs)A)>(Σ−1)> dWs −

1

2

∫ T

0
|Σ−1h(Xs)A|2 ds

=

∫ T

0
(h(Xs)A)>C−1 dXs −

1

2

∫ T

0
(h(Xs)A)>C−1h(Xs)Ads.

We wish to find the value of A which maximizes this expression. This is essentially just a
case of finding the stationary point of a quadratic equation, and it is straightforward to see
that the MLE ÂT is characterized by the relation:

IT ÂT = ST ,

where

ST =

∫ T

0
h(Xs)

>C−1 dXs ∈ V∗ (9.3)

and

IT =

∫ T

0
h(Xs)

>C−1h(Xs) ds ∈ L(V;V∗).

Here we write V∗ for the dual space of V, and the integral in (9.3) should be interpreted as
an Itô integral. Thus, provided that IT is invertible, the MLE is then given by

ÂT = I−1
T ST ∈ V. (9.4)

Example 9.1. Suppose that W and X are 1-dimensional, V = R, Σ = σ > 0, and h is just
the identity map on R, so that the underlying dynamics are given by

dXt = AXt dt+ σ dWt

with X0 = x0 ∈ R. In this case, we have that

IT = σ−2

∫ T

0
X2
s ds,

and

ST = σ−2

∫ T

0
Xs dXs =

σ−2

2
(X2

T − x2
0 − 〈X〉T ) =

σ−2

2
(X2

T − x2
0 − σ2T ), (9.5)

so that, by (9.4), the MLE is given by

ÂT =
X2
T − x2

0 − σ2T

2
∫ T

0 X2
s ds

. (9.6)

Note that this expression is well-defined provided that the path of X is not identically zero
(which is actually impossible if x0 6= 0 by continuity).

In the simple case of Example 9.1 we have the explicit expression (9.6) for the MLE.
Moreover, note that in this case the MLE is a continuous function on pathspace with respect
to the supremum norm. This means that if two observation paths X and X̃ are close, in
the sense that the distance supt∈[0,T ] |Xt − X̃t| is small, then the difference between the
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corresponding MLEs |ÂT (X) − ÂT (X̃)| will also be small. This stability property is very
desirable. In particular, it means that in practice any small errors in our observations of X
will not result in a large error in our estimation of the parameter A.

Unfortunately, pathwise stability with respect to the supremum norm does not hold in
general. The fact that it holds in the example above is essentially because things tend to be
nice when working in 1-dimension. We will see below an explicit example where this stability
fails. An interesting question then arises: can we recover pathwise stability of the MLE with
respect to a different topology? As we will see, it turns out that this stability can indeed be
recovered if we consider the observation path X as a rough path.

To make our discussion rigorous, we should start by checking that the MLE as derived
above is well-defined.

Lemma 9.2. Define

Rh =
{
X ∈ C([0, T ];Rd) : ∀A ∈ V with A 6= 0, ∃t ∈ [0, T ] such that h(Xt)A 6= 0

}
.

We claim that IT = IT (X) is invertible for any X ∈ Rh.
In particular, if P0(X ∈ Rh) = 1, then the MLE ÂT = ÂT (X) = I−1

T (X)ST (X) (as given
in (9.4)) is almost surely well-defined.

Proof. Let A ∈ V with A 6= 0. We have that

IT (A,A) =

∫ T

0
(h(Xs)A)>C−1(h(Xs)A) ds ≥ 0.

Since C is positive definite by assumption, this expression is equal to zero if and only if
h(Xs)A = 0 for all s ∈ [0, T ]. Hence, for any X ∈ Rh, IT is non-degenerate (i.e. has
trivial kernel), and is therefore also invertible by standard results on bilinear forms over
finite-dimensional spaces.

9.2 Lack of continuity for the classical MLE

Example 9.3. Suppose that W and X = (X1, X2)> are 2-dimensional, V = R2×2, Σ is the
2× 2-identity matrix, and h is the identity map on R2, so that the underlying dynamics are
given by

dXt = AXt dt+ dWt

with X0 = x0 ∈ R2. In this case, the MLE ÂT satisfies the relation

IT (ÂT , ·) = ST .

That is, ÂT ∈ R2×2 satisfies

IT (ÂT , H) = ST (H) for all H ∈ R2×2,

where the functionals IT and ST are given, for any A,H ∈ R2×2, by

IT (A,H) =

∫ T

0
X>s H

>AXs ds
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and

ST (H) =

∫ T

0
X>s H

> dXs.

Whenever the path X is such that IT is invertible, the MLE can thus be computed by
inverting IT . In particular (after a slightly tedious calculation), the upper-left component of
ÂT is then given by

Â1,1
T =

1

UT

(∫ T

0
(X2

s )2 ds

∫ T

0
X1
s dX1

s −
∫ T

0
X1
sX

2
s ds

∫ T

0
X2
s dX1

s

)
,

where

UT =

∫ T

0
(X1

s )2 ds

∫ T

0
(X2

s )2 ds−
(∫ T

0
X1
sX

2
s ds

)2

.

Since the variable UT is defined in terms of simple Lebesgue integrals, it is clearly continuous
in the path X with respect to the supremum norm. One can see that the integral

∫ T
0 X1

s dX1
s

is a continuous function of X1 using Itô’s formula, similarly to the calculation in (9.5). Thus,
all the integrals in the expression for Â1,1

T are continuous functions of X, with the exception

of the last integral, namely
∫ T

0 X2
s dX1

s . We will now exhibit a sequence of paths (Xn)n≥1

which converge uniformly to a limiting path X for which IT is invertible, such that the
integral

∫ T
0 Xn,2

s dXn,1
s diverges as n→∞.

Let X : [0, 1] → R2 be the path which starts at the origin, and moves, at constant
speed, anticlockwise along the edges of the square with corners (0, 0), (1, 0), (1, 1) and
(0, 1), finishing back at the origin. Note that X ∈ Rh, so that IT (X) is invertible and the
corresponding MLE is well-defined by Lemma 9.2.

We now attach a fast spinning loop at the end of this path as follows. For each integer
n ≥ 2, we let

Xn
t = X n

n−1
t, t ∈ [0, (n− 1)/n],

Xn
t =

1

n

(
cos(2πn4(t− n−1

n ))− 1
sin(2πn4(t− n−1

n ))

)
, t ∈ [(n− 1)/n, 1].

Note in particular that Xn
0 = Xn

n−1
n

= Xn
1 = (0, 0)>. We can therefore split up the integral

as ∫ 1

0
Xn,2
s dXn,1

s =

∫ n−1
n

0
Xn,2

0,s dXn,1
s +

∫ 1

n−1
n

Xn,2
n−1
n
,s

dXn,1
s .

In particular, recalling the discussion in Section 4.3, we notice that the two integrals on the
right-hand side above are equal to (minus) the Lévy area traced out by the path Xn over
the corresponding time intervals. The first integral is hence simply (minus) the area of the
unit square, i.e. ∫ n−1

n

0
Xn,2

0,s dXn,1
s = −1.

Similarly, the second integral is simply (minus) the area of a circle with radius 1/n, multiplied
by n3, which is the number of times that this circle is traced out by the path Xn. That is,∫ 1

n−1
n

Xn,2
n−1
n
,s

dXn,1
s = −πn,
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so that ∫ 1

0
Xn,2
s dXn,1

s = −1− πn.

Thus, we have that Xn → X uniformly as n→∞, but

|Â1,1
T (Xn)− Â1,1

T (X)| −→ ∞ as n −→ ∞.

9.3 Stability via rough paths

Clearly then, if we want to restore pathwise stability then we need a stronger topology. We
will now see how rough path theory comes to the rescue. To gain access to our theory,
we need to assume a bit more regularity on the underlying dynamics. Specifically, we will
henceforth assume that h ∈ C2

b (Rd;L(V;Rd)).
Let X be the (unique) solution of the SDE (9.1). As we saw in Section 9.1, X can simply

be defined by X = x0 + ΣW , where W is a Brownian motion under the reference measure
P0, and then for any A ∈ V, X has the desired dynamics under the corresponding measure
PA.

We now define a rough path lift for X via Itô integration. That is, we let

Xs,t =

∫ t

s
Xs,r ⊗ dXr (9.7)

for all (s, t) ∈ ∆[0,T ], where the integral is defined in the sense of Itô under the measure P0.
We then know that the pair X = (X,X) ∈ C α is almost surely an α-Hölder rough path for
any α ∈ (1

3 ,
1
2).

Note that since, for any parameter A ∈ V, the measure PA is equivalent to P0, the
stochastic integral in (9.7) is almost surely equal to the same integral defined under PA.

Let
D =

{
(X,X) ∈ C α : X ∈ Rh

}
.

It is then clear that, if P0(X ∈ Rh) = 1, then P0(X ∈ D) = 1.

Recall the bilinear form IT , which we may consider as a map from Rh → L(V;V∗), given
by

IT (X) =

∫ T

0
h(Xs)

>C−1h(Xs) ds.

We now define the map ST : D→ V∗, given by

ST (X,X) =

∫ T

0
h(Xs)

>C−1 dXs,

where the integral is defined as the (deterministic) rough integral against X = (X,X). Note
that, since h ∈ C2

b , it is clear that the integrand is a controlled path with respect to X, so
that this integral is well-defined.

We can now define a “robust MLE” as the map ÂT : D→ V given by

ÂT (X,X) = I−1
T (X)ST (X,X).
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Proposition 9.4. The map ÂT defined above is a continuous map from D→ V with respect
to the α-Hölder rough path distance.

Moreover, writing X = (X,X) for the Itô rough path lift of X as in (9.7), we have that

P0(ÂT (X) = ÂT (X)) = 1.

Proof. The map IT is clearly continuous with respect to the (weaker) supremum norm, and
hence so is its inverse (which is defined for all X ∈ D). The map ST is continuous with respect
to the rough path distance by the stability of rough integration given in Corollary 5.16. The
composition of these two maps is then also continuous.

The second statement follows from the consistency of rough and stochastic integrals, as
given in Proposition 8.1. (Strictly speaking this proposition was only stated for standard
Brownian motion, but here X is essentially just a Brownian motion under a linear map with
a drift, so this extension is trivial.)

For more details on this topic, including further applications, see the article [DFM16].

10 Parameter uncertainty in stochastic filtering

In this section we shall discuss an application to stochastic filtering. No prior knowledge of
filtering theory is assumed, and we shall in any case restrict ourselves to a relatively simple
setting in order to avoid virtually all technical difficulties.

10.1 Stochastic filtering

In many applications, from finance and biology to engineering, defence and aerospace, one is
interested in the behaviour of a process evolving in time which cannot be observed directly,
and must therefore rely on partial observations in the presence of noise. The problem of
estimating the current state of such a hidden process from noisy observations is known as
stochastic filtering.

Suppose for instance that we are interested in the value of a stochastic process S, referred
to as the signal, but that we must work in the filtration generated by another process Y ,
referred to as the observation process. We also suppose that the dynamics of Y are dependent
on the value of S, such as through a relationship of the form

dYt = h(St) dt+ dWt,

for some observation function h and measurement noise W . It is clear from this relationship
that by observing Y over a given period of time one can infer information about S. In
short, the filtering problem is concerned with, at each time t, determining the best estimate
(typically in the sense of best mean square) for St given Yt := σ(Ys : 0 ≤ s ≤ t); that is,
finding the best estimate for the current value of S, given our past observations of Y .

An important special case is when the signal and observation are both diffusion processes
with linear dynamics. Let’s take an underlying filtered space (Ω,F , (Ft)t≥0). We suppose
that an Rm-valued signal process S and an Rd-valued observation process Y satisfy the
following pair of linear equations

dSt = (γt + αtSt) dt+ σt dBt, (10.1)

dYt = ctSt dt+ dWt, (10.2)
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with the initial conditions Y0 = 0 and S0 ∼ N(µ0,Σ0) for some µ0 ∈ Rm and Σ0 ∈ Sm+ ,
where Sm+ denotes the set of symmetric, positive definite m×m-matrices. Here B (resp. W )
is a standard Rl (resp. Rd)-valued Brownian motion, and γ : [0, T ]→ Rm, α : [0, T ]→ Rm×m,
σ : [0, T ]→ Rm×l and c : [0, T ]→ Rd×m are parameters. Here we include the case when the
signal noise and observation noise are correlated; we suppose that their quadratic covariation
is given by

d〈B,W 〉t = ρt dt, (10.3)

for some correlation matrix ρ : [0, T ] → Rl×d. In the scalar case, the correlation should
naturally satisfy ρ2 ≤ 1. The analogous assumption here is that the matrix I − ρρ> be
positive semi-definite, where I denotes the l × l identity matrix.

We shall denote by (Yt)t≥0 the (completed) natural filtration generated by the observation
process Y . In this setting the signal and observation are both Gaussian processes, and in
fact it can be shown that the posterior distribution of the signal given our observations is
also Gaussian; see e.g. [BC09, Section 6.2]. That is, at each time t ≥ 0, we have that

St | Yt ∼ N(qt, Rt)

for some (random) mean vector
qt = E[St | Yt]

and covariance matrix
Rt = E[(St − qt)(St − qt)>| Yt].

Moreover, the conditional mean and covariance satisfy the dynamics:

dqt = (γt + αtqt) dt+ (Rtc
>
t + σtρt)(dYt − ctqt dt), (10.4)

dRt
dt

= σtσ
>
t + αtRt +Rtα

>
t − (Rtc

>
t + σtρt)(ctRt + ρ>t σ

>
t ) (10.5)

with q0 = µ0 and R0 = Σ0. That is, the covariance R satisfies a matrix Riccati equation
and, given R, the mean q satisfies a linear SDE driven by the observation process Y .

Given a stream of data corresponding to the observation process Y , one may thus simply
solve the equations (10.4)–(10.5) to compute the posterior distribution of the signal S. This
procedure (with linear Gaussian underlying dynamics) is known as the Kalman–Bucy filter,
and its impact on engineering and aerospace over the last 60 years cannot be overstated.

10.2 Parameter uncertainty

The filtering equations (10.4)–(10.5) involve various parameters so, naturally, in order to
run the filter one must first obtain the values of these parameters. In standard treatments
of stochastic filtering one often simply runs the filter using an estimate of the parameters.
However, this does not take into account the statistical uncertainty introduced by adopting
this estimate. Particularly when there is limited available data, resulting in a lack of precision
in the estimate, this should cast doubt as to the accuracy of the filter. We therefore now
turn our attention to parameter uncertainty.

We will focus on the simplest version of the problem, where the drift parameter γ is
unknown. For simplicity, we shall assume that the other parameters, namely α, σ, c and ρ
are known and constant. We shall also suppose that the prior mean µ0 is unknown.
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Note that the equation for the posterior covariance (10.5) does not depend on the un-
known parameter γ. Since the other parameters are constant in time, the solution of this
equation will converge as t→∞ to some (known) stationary value R∞. It is therefore con-
venient to assume for simplicity that Σ0 = R∞, so that the posterior covariance is constant
and equal to its stationary value R = R∞. The remaining filtering equation is given by

dqt = (γt + αqt) dt+ (Rc> + σρ)(dYt − cqt dt),

where we suppose that γ : [0, T ]→ Rm and q0 = µ0 ∈ Rm are unknown.

To incorporate parameter uncertainty we adopt the following setup. Let S and Y be Ft-
adapted processes. For each parameter choice (γ, µ0), we let Pγ,µ0 be a probability measure
under which S and Y satisfy the dynamics (10.1)–(10.3) with the parameters (γ, µ0). (In
particular, the processes B and W are not fixed, but depend on the choice of the parameters,
so that they have the law of a Brownian motion under each measure Pγ,µ0 .)

Let γ∗ and µ∗0 be some reference parameters. Then, for any choice of parameters γ, µ0,
we can consider the likelihood ratio (

dPγ,µ0

dPγ∗,µ∗0

)
Yt

with respect to the observation filtration (Yt)t∈[0,T ]. It is a classical result in filtering theory
(see e.g. [BC09, Chapter 2]) that the so-called innovation process V , given in this setting by

dVt = dYt − cqt dt,

is a Yt-adapted Brownian motion under Pγ,µ0 . Writing q∗ (resp. V ∗) for the posterior mean
(resp. innovation process) under the reference measure Pγ∗,µ∗0 , we have that

dVt = dV ∗t − c(qt − q∗t ) dt.

Hence, by Girsanov’s theorem (see e.g. [CE15, Chapter 15]), we can represent the likelihood
as a stochastic exponential, namely(

dPγ,µ0

dPγ∗,µ∗0

)
Yt

= exp

(∫ t

0
c(qs − q∗s) · dV ∗s −

1

2

∫ t

0
|c(qs − q∗s)|2 ds

)
.

Substituting dV ∗s = dYs − cq∗s ds, a short calculation yields that the negative log-likelihood
is then given by

− log

(
dPγ,µ0

dPγ∗,µ∗0

)
Yt

= −
∫ t

0
c(qs − q∗s) · dYs +

1

2

∫ t

0

(
|cqs|2 − |cq∗s |2

)
ds.

Since the reference parameters are taken to be fixed, they simply amount to an additive
constant in the above expression. That is,

− log

(
dPγ,µ0

dPγ∗,µ∗0

)
Yt

= −
∫ t

0
cqs · dYs +

1

2

∫ t

0
|cqs|2 ds+ const. (10.6)

Since this constant does not depend on the choice of parameters γ, µ0, it will not affect any
of our subsequent analysis, and for simplicity it will therefore be omitted.
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It will be useful later to interpret the stochastic integral appearing in (10.6) in the sense
of Stratonovich, rather than that of Itô. We therefore make the transformation

−
∫ t

0
cqs · dYs = −

∫ t

0
cqs ◦ dYs +

1

2
〈cq, Y 〉t

= −
∫ t

0
cqs ◦ dYs +

1

2

∫ t

0
tr
(
c(Rc> + σρ)

)
ds,

= −
∫ t

0
cqs ◦ dYs + const.

where tr(·) denotes the trace. In this simple setting, the additive constant here does not
depend in any way on the uncertain parameters γ, µ0, so we can also simply omit this
constant henceforth. We have thus derived the representation:

− log

(
dPγ,µ0

dPγ∗,µ∗0

)
Yt

= −
∫ t

0
cqs ◦ dYs +

1

2

∫ t

0
|cqs|2 ds. (10.7)

In the setting of parameter uncertainty, we do not know which parameter γ is the correct
one. However, it seems sensible to suggest that the most “reasonable” parameter is the one
which minimizes the negative log-likelihood. We thus wish to formulate an optimization
procedure, in which we try to minimize the expression in (10.7) over the set of all possible
parameters γ. We will actually modify this expression somewhat to also incorporate our
prior beliefs about which parameter values we believe are most plausible. We shall seek to
minimize a general expression of the form∫ t

0
f(qs, γs, γ̇s) ds+

∫ t

0
ψ(qs) ◦ dYs + g(q0, γ0), (10.8)

over the set of all Lipschitz continuous paths γ, where we recall that the posterior mean q
satisfies

dqt = (γt + αqt) dt+ (Rc> + σρ)(dYt − cqt dt). (10.9)

Here ψ(q) = −cq, and we have absorbed the term 1
2 |cq|

2 into the function f , which we
also allow to depend on the derivative γ̇ of γ (which we recall is defined almost everywhere
since γ is Lipschitz). This means in particular that we can encode, not only which values
of γ we believe are reasonable, but also how quickly we believe they should be able to vary.
For example, if we believe that the parameter γ should remain fairly constant in time, then
we can include a large penalty on the magnitude of γ̇.

10.3 A pathwise optimal control problem

Note that, since our inference will naturally depend on our observations, the optimization
procedure should be carried out in a pathwise manner, i.e. for each individual realization of
the observation process Y . We therefore need to be able to handle the stochastic integral
appearing in (10.8) in a pathwise sense. To this end, we lift the observation process Y to a
rough path using Stratonovich integration. Under the reference measure Pγ∗,µ∗0 , we let

Ys,t =

∫ t

s
Ys,r ⊗ ◦ dYr,
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for all (s, t) ∈ ∆[0,T ], so that Y = (Y,Y) ∈ C 0,α
g is almost surely a geometric rough path

for any α ∈ (1
3 ,

1
2). In this setting the measures Pγ,µ0 are all equivalent, so we immediately

have that Y coincides almost surely with the same integral defined under any other choice
of measure Pγ,µ0 .

It follows from (10.9) that q is (almost surely) a controlled path with respect to Y , with
Gubinelli derivative given by q′ = Rc> + σρ. We then have that ψ(q) = −cq is also a
controlled path, with derivative ψ(q)′ = −c(Rc> + σρ). By Proposition 8.2, we have that∫ t

0
ψ(qs) ◦ dYs =

∫ t

0
ψ(qs) dYs

almost surely.

For notational simplicity, let us write b(q, γ) := γ+αq− (Rc>+σρ)cq and φ = Rc>+σρ,
so that equation (10.9) may be rewritten as

dqt = b(qt, γt) dt+ φ dYt. (10.10)

We can now formulate our procedure as the following (pathwise) optimal control prob-
lem. Let U be the space of all bounded measurable paths u : [0, T ] → Rm. We first fix an
(enhanced) observation path Y = Y(ω) ∈ C 0,α

g . In particular, since φ is just a constant,
we can interpret (10.10), not as an SDE, but simply as an ODE driven by the deterministic
path Y = Y (ω).

We can then define the value function v : [0, T ]× Rm × Rm → R by

v(t, x, a) = inf
u∈U

{∫ t

0
f(qs, γs, us) ds+

∫ t

0
ψ(qs) dYs + g(q0, γ0)

}
, (10.11)

where we interpret the path u as a control, and where the state variables q and γ satisfy the
controlled dynamics

dqs = b(qs, γs) ds+ φ dYs, qt = x, (10.12)

dγs = us ds, γt = a.

For each posterior value x ∈ Rm and parameter value a ∈ Rm, the control problem above
seeks the minimum ‘cost’ associated with the trajectory of a parameter γ and filter q, which
would be consistent with the observed path of Y , where the cost is derived from the negative
log-likelihood function. The value function v thus gives, at each time t ∈ [0, T ], a measure
of the ‘unreasonability’ of different posterior values x and parameter values a.

In practice it would be impossible to directly compute the infimum in (10.11). As is a
standard technique in control theory, we therefore instead consider the PDE satisfied by the
value function, which we can then try to solve.

The first step is to take a smooth approximation of the observation path Y , which is
close to Y in rough path topology.

Let η : [0, T ] → Rd be a smooth path. Recall that we can lift η in a canonical way to a
rough path η = (η, η(2)) by defining

η
(2)
s,t :=

∫ t

s
ηs,r ⊗ dηr (10.13)
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for (s, t) ∈ ∆[0,T ], where the integral exists in the Riemann–Stieltjes sense.

By replacing Y in our control problem by the smooth path η, we obtain the approximate
control problem, in which we have the approximate value function

vη(t, x, a) = inf
u∈U

{∫ t

0
f(qs, γs, us) ds+

∫ t

0
ψ(qs) dηs + g(q0, γ0)

}
, (10.14)

where the state variables q and γ satisfy the controlled dynamics

dqs = b(qs, γs) ds+ φ dηs, qt = x,

dγs = us ds, γt = a.

The PDE associated with this control problem is the Hamilton–Jacobi (HJ) equation

∂vη

∂t
+ b · ∇xvη + sup

u∈Rm
{u · ∇avη − f}+ (φ · ∇xvη − ψ)η̇ = 0 (10.15)

with the initial condition
vη(0, · , ·) = g. (10.16)

Here η̇ denotes the time derivative of η, and ∇x (resp. ∇a) denotes the gradient with respect
to the x (resp. a) variable.

Theorem 10.1. Under natural conditions on the functions f, g (local Lipschitz continuity,
with superlinear growth of f and asymptotic explosion of g), the approximate value function
vη (as defined in (10.14)) is the unique solution of the HJ equation (10.15)–(10.16).

This result is requires considerable work and careful analysis, and is beyond the scope of
this course. We will simply take it for granted.

Replacing the smooth path η by the rough path Y, we formally obtain the rough
Hamilton–Jacobi (rough HJ) equation

dv + b · ∇xv dt+ sup
u∈Rm

{u · ∇av − f} dt+ (φ · ∇xv − ψ) dY = 0 (10.17)

with the initial condition
v(0, · , ·) = g. (10.18)

We still need to say what we actually mean by a solution of such a rough PDE, which
we do with the following definition.

Definition 10.2. Given a smooth path η, we write η = (η, η(2)) for its canonical rough path
lift, with η(2) defined as in (10.13). We write vη for the unique solution of (10.15)–(10.16),
which, by Theorem 10.1, is precisely the approximate value function, as defined in (10.14).
We say that a continuous function v solves the rough HJ equation (10.17)–(10.18) if

vη
n −→ v as n −→ ∞

locally uniformly, whenever (ηn)n≥1 is a sequence of smooth paths such that ηn → Y with
respect to the α-Hölder rough path distance, i.e. ‖ηn; Y‖α → 0 as n→∞.
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By the uniqueness of limits, if such a solution of (10.17)–(10.18) exists, then it is unique.
Moreover, note that, since the rough path Y is geometric, there certainly exists such a
sequence of smooth paths (ηn)n≥1.

Theorem 10.3. Under suitable conditions on the functions f, g, the value function v solves
the rough HJ equation (10.17)–(10.18) in the sense of Definition 10.2.

Moreover, writing v = vY, the map from C 0,α
g → R given by Y 7→ vY(t, x, a) is locally

uniformly continuous with respect to the α-Hölder rough path distance, locally uniformly in
(t, x, a).

Sketch of proof. Let Z = (Z,Z) ∈ C α be another rough path. Let us write qY (resp. qZ) for
the solution of (10.12) driven by Y (resp. Z), and write vY (resp. vZ) for the corresponding
value function, as defined in (10.11).

For any (t, x, a), we have that

|vY(t, x, a)− vZ(t, x, a)|

≤ sup
u∈U

∣∣∣∣ ∫ t

0

(
f(qYs , γs, us)− f(qZs , γs, us)

)
ds

+

∫ t

0
ψ(qYs ) dYs −

∫ t

0
ψ(qZs ) dZs + g(qY0 , γ0)− g(qZ0 , γ0)

∣∣∣∣
. sup

u∈U

{∫ t

0
|qYs − qZs |ds+

∣∣∣∣ ∫ t

0
ψ(qYs ) dYs −

∫ t

0
ψ(qZs ) dZs

∣∣∣∣+ |qY0 − qZ0 |
}
.

By the stability of rough integration and differential equations, we deduce that

|vY(t, x, a)− vZ(t, x, a)| . ‖Y; Z‖α.

Taking a sequence of smooth paths (ηn)n≥1 such that ‖ηn; Y‖α → 0 as n → ∞, the
required convergence follows by taking Z = ηn in the above. The stated continuity of the
value function with respect to the driving rough path is also immediate from the above.

In this section we have demonstrated how one can give meaning to a rough PDE, and
seen an example of how such an equation arises in an application to statistics. For further
details on this topic in a more general setting, see Section 4 of the article [AC20].

11 The stochastic sewing lemma

In Section 5.1 we introduced a basic version of the sewing lemma. Due to its usefulness, this
result has been generalized in several ways (e.g. sewing lemmas for discontinuous paths, and
nonlinear sewing lemmas). In this section we will study a recent and powerful version of the
result, known as the stochastic sewing lemma.

11.1 Proof of the stochastic sewing lemma

A key ingredient in the stochastic sewing lemma is the following observation. Let (Ω,F ,P)
be a probability space, and let Z1, . . . , Zn be a finite sequence of Rd-valued random variables
in Lm = Lm(Ω,F ,P) for some m ∈ [2,∞). Suppose that we are given a filtration (Fi)i=1,...,n
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such that, for each i, the variables Z1, . . . , Zi−1 are all Fi-measurable. Suppose that we wish
to estimate the sum

S =

n∑
i=1

Zi.

Rather than estimating this directly, let us first write

S = S1 + S2

where

S1 =

n∑
i=1

EFiZi, and S2 =

n∑
i=1

(Zi − EFiZi).

We simply estimate S1 as

‖S1‖Lm ≤
n∑
i=1

‖EFiZi‖Lm . (11.1)

However, the martingale structure of S2 allows us to do better. We have

‖S2‖Lm = E
[∣∣∣∣ n∑

i=1

(Zi − EFiZi)
∣∣∣∣m]1

m

≤ CmE
[( n∑

i=1

|Zi − EFiZi|2
)m

2
]1
m

= Cm

∥∥∥∥ n∑
i=1

|Zi − EFiZi|2
∥∥∥∥ 1

2

Lm/2
≤ Cm

( n∑
i=1

‖Zi − EFiZi‖2Lm
)1

2

≤ Cm
( n∑
i=1

(
‖Zi‖Lm + ‖EFiZi‖Lm

)2)1
2

≤ 2Cm

( n∑
i=1

‖Zi‖2Lm
)1

2

, (11.2)

where we have used the Burkholder–Davis–Gundy (BDG) inequality, Minkowski’s inequality2

(i.e. the triangle inequality for Lm spaces), and the contraction property of conditional
expectations with respect to the Lm norm.

We thus have the estimate

‖S‖Lm ≤
n∑
i=1

‖EFiZi‖Lm + 2Cm

( n∑
i=1

‖Zi‖2Lm
)1

2

. (11.3)

This estimate will be used multiple times in the proof of the stochastic sewing lemma.

Theorem 11.1 (Stochastic sewing lemma). Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability
space, and let m ≥ 2. Let A : ∆[0,T ] → Lm be a continuous map, such that, for all s ≤ t,
As,s = 0 and As,t is Ft-adapted. Suppose that, for some constants λ1, λ2 ≥ 0 and ε1, ε2 > 0,
we have that

‖EsδAs,u,t‖Lm ≤ λ1|t− s|1+ε1 , (11.4)

‖δAs,u,t‖Lm ≤ λ2|t− s|
1
2

+ε2 , (11.5)

for all 0 ≤ s ≤ u ≤ t ≤ T , where Es denotes the conditional expectation at time s, and as
usual δAs,u,t := As,t −As,u −Au,t.

Then there exists a unique (up to modifications) stochastic process γ = (γt)t∈[0,T ] such
that

2This requires m
2
≥ 1, which is why we assumed that m ≥ 2.
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(i) γ0 = 0, and γ is Ft-adapted and Lm-integrable,

(ii) and there exist constants C1, C2 such that

‖γt − γs −As,t‖Lm ≤ C1|t− s|1+ε1 + C2|t− s|
1
2

+ε2 , (11.6)

‖Es(γt − γs −As,t)‖Lm ≤ C1|t− s|1+ε1 (11.7)

for all (s, t) ∈ ∆[0,T ].

The constants C1, C2 may be taken to be λ1(1−2−ε1)−1 and 2Cmλ2(1−2−ε2)−1 respectively.
Moreover, for every (s, t) ∈ ∆[0,T ], we have that

lim
|π|→0

∑
[u,v]∈π

Au,v = γt − γs,

where the limit exists in Lm, and is taken over any sequence of partitions π of the interval
[s, t] with mesh size |π| → 0.

Proof. Step 1. Let us fix an interval [s, t] ⊆ [0, T ]. For each n ≥ 1, let πn = {s = tn0 <
tn1 < . . . < tn2n = t} be the dyadic partition of the interval [s, t], which we note has mesh size
|πn| = 2−n(t− s).

For each n ≥ 1, we define

Ans,t =

2n−1∑
i=0

Atni ,tni+1
.

For each n and each i, let uni be the midpoint of [tni , t
n
i+1]. We then have

Ans,t −An+1
s,t =

2n−1∑
i=0

δAtni ,uni ,tni+1

=
2n−1∑
i=0

Etni δAtni ,uni ,tni+1
+

2n−1∑
i=0

(δAtni ,uni ,tni+1
− Etni δAtni ,uni ,tni+1

) =: In1 + In2 , (11.8)

where, by an application of the estimates (11.1) and (11.2), we have

‖In1 ‖Lm ≤
2n−1∑
i=0

‖Etni δAtni ,uni ,tni+1
‖Lm ,

‖In2 ‖Lm ≤ 2Cm

( 2n−1∑
i=0

‖δAtni ,uni ,tni+1
‖2Lm

) 1
2

.

We can then use the bounds in (11.4) and (11.5) to obtain

‖In1 ‖Lm ≤ λ1

2n−1∑
i=0

|tni+1 − tni |1+ε1

= λ1|t− s|1+ε1

2n−1∑
i=0

2−n(1+ε1) = λ1|t− s|1+ε12−nε1 , (11.9)
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and

‖In2 ‖Lm ≤ 2Cmλ2

( 2n−1∑
i=0

|tni+1 − tni |1+2ε2

) 1
2

= 2Cmλ2|t− s|
1
2

+ε2

( 2n−1∑
i=0

2−n(1+2ε2)

) 1
2

= 2Cmλ2|t− s|
1
2

+ε22−nε2 .

We thus have that

‖Ans,t −An+1
s,t ‖Lm ≤ λ1|t− s|1+ε12−nε1 + 2Cmλ2|t− s|

1
2

+ε22−nε2 .

It follows that (Ans,t)n≥1 is a Cauchy sequence, so that the limit

Γs,t := lim
n→∞

Ans,t

exists in Lm, and satisfies

‖Γs,t −As,t‖Lm ≤
∞∑
n=0

‖Ans,t −An+1
s,t ‖Lm

≤ λ1

1− 2−ε1
|t− s|1+ε1 +

2Cmλ2

1− 2−ε2
|t− s|

1
2

+ε2 . (11.10)

It is clear that Γs,t is Ft-measurable. Moreover, since EsIn2 = 0, we see from (11.8) that

Es(Ans,t −An+1
s,t ) = EsIn1 ,

and it then follows from (11.9) that

‖Es(Γs,t −As,t)‖Lm ≤
∞∑
n=0

‖Es(Ans,t −An+1
s,t )‖Lm =

∞∑
n=0

‖EsIn1 ‖Lm

≤
∞∑
n=0

‖In1 ‖Lm ≤
λ1

1− 2−ε1
|t− s|1+ε1 . (11.11)

Step 2. Existence: It is straightforward to see that An is a continuous function from
∆[0,T ] → Lm, and that the convergence Ans,t → Γs,t (in Lm) is uniform on ∆[0,T ]. It therefore
follows that Γ is itself a continuous function from ∆[0,T ] → Lm.

It follows from the above construction that

Γs,u + Γu,t = Γs,t (11.12)

for all dyadic times s ≤ u ≤ t, and it then follows by continuity that (11.12) holds for all
times s ≤ u ≤ t. We thus infer that Γ is really just the increments of a continuous path.
That is, if we define γt = Γ0,t for all t ∈ [0, T ], then we have that

γt − γs = Γs,t for all (s, t) ∈ ∆[0,T ],
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and in particular that γ0 = 0. It is also clear that γt is Ft-measurable, and that γ : [0, T ]→
Lm is continuous, so that γ satisfies condition (i). The inequalities in (11.10) and (11.11)
now read

‖γt − γs −As,t‖Lm ≤
λ1

1− 2−ε1
|t− s|1+ε1 +

2Cmλ2

1− 2−ε2
|t− s|

1
2

+ε2 , (11.13)

‖Es(γt − γs −As,t)‖Lm ≤
λ1

1− 2−ε1
|t− s|1+ε1 , (11.14)

which imply the bounds (11.6)–(11.7), so that γ satisfies condition (ii).

Step 3. Uniqueness: Let γ̄ be another Ft-adapted process satisfying the conditions (i)
and (ii), and let ζ = γ − γ̄. Then ζ satisfies

‖ζt − ζs‖Lm ≤ C̃|t− s|
1
2

+ε̃, (11.15)

‖Es(ζt − ζs)‖Lm ≤ C̃|t− s|1+ε̃ (11.16)

for all (s, t) ∈ ∆[0,T ], for some constants C̃ ≥ 0 and ε̃ > 0.
Fix a t ∈ [0, T ]. For each integer n ≥ 1, let {0 = tn0 < tn1 < . . . < tn2n = t} be the dyadic

partition of the interval [0, t]. Then

ζt =
2n−1∑
i=0

(ζtni+1
− ζtni ).

Applying the estimate in (11.3), we obtain

‖ζt‖Lm ≤
2n−1∑
i=0

‖Etni (ζtni+1
− ζtni )‖Lm + 2Cm

( 2n−1∑
i=0

‖ζtni+1
− ζtni ‖

2
Lm

)1
2

.

Using the bounds in (11.15)–(11.16), we then have that

‖ζt‖Lm .
2n−1∑
i=0

2−n(1+ε̃) +

( 2n−1∑
i=0

2−n(1+2ε̃)

)1
2

. 2−nε̃.

Letting n→∞, we have that ‖ζt‖Lm = 0, so that γt = γ̄t almost surely.

Step 4. Convergence of Riemann sums: Let (s, t) ∈ ∆[0,T ] and let π = {s = t0 < t1 <
· · · < tN = t} be any (not necessarily dyadic) partition of [s, t]. Writing

γt − γs −
N−1∑
i=0

Ati,ti+1 =

N−1∑
i=0

(γti+1 − γti −Ati,ti+1)

and applying the estimate in (11.3), followed by those in (11.13)–(11.14), we obtain∥∥∥∥γt − γs − N−1∑
i=0

Ati,ti+1

∥∥∥∥
Lm

≤
2n−1∑
i=0

‖Eti(γti+1 − γti −Ati,ti+1)‖Lm + 2Cm

( 2n−1∑
i=0

‖γti+1 − γti −Ati,ti+1‖2Lm
)1

2

.
N−1∑
i=0

|ti+1 − ti|1+ε1 +

(N−1∑
i=0

|ti+1 − ti|2+2ε1 + |ti+1 − ti|1+2ε2

)1
2

. |π|ε1 + |π|
1
2

+ε1 + |π|ε2 ,
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and we deduce that
∑N−1

i=0 Ati,ti+1 → γt − γs in Lm as |π| → 0.

11.2 Relation to Itô calculus

Example 11.2. Let B be a standard Brownian motion in Rd with respect to a filtration
(Ft)t∈[0,T ]. Suppose that f : Rd → L(Rd;R) is β-Hölder continuous for some β ∈ (0, 1].

Letting As,t = f(Bs)Bs,t, we have that

δAs,u,t = −f(B)s,uBu,t.

Using the independence of Brownian increments, we see that, for every m ≥ 2,

‖δAs,u,t‖Lm = ‖f(B)s,u‖Lm‖Bu,t‖Lm

≤ ‖f‖
Cβb
‖Bs,u‖βLβm‖Bu,t‖Lm

= ‖f‖
Cβb
‖B1‖βLβm |u− s|

β
2 ‖B1‖Lm |t− u|

1
2

. |t− s|
1
2

+β
2 .

Moreover, it is clear that
EsδAs,u,t = 0.

We therefore have that A satisfies (11.4) and (11.5), and we have in particular that λ1 = 0
and ε2 = β

2 . Thus, by the stochastic sewing lemma (Theorem 11.1), the integral∫ t

0
f(Br) dBr := lim

|π|→0

∑
[u,v]∈π

f(Bu)Bu,v

exists in Lm along any (deterministic) sequence of partitions of [0, t] with vanishing mesh
size. Moreover, we have that∥∥∥∥∫ t

s
f(Br) dBr − f(Bs)Bs,t

∥∥∥∥
Lm

. |t− s|
1
2

+β
2

and

Es
∫ t

s
f(Br) dBr = 0.

In particular, the last line above shows that
∫ ·

0 f(Br) dBr is a martingale.
Finally, we have the additional insight that, for any given ε > 0,

∫ ·
0 f(Br) dBr is actually

the unique Ft-adapted Lm-integrable process γ, with γ0 = 0, such that

‖γt − γs − f(Bs)Bs,t‖Lm . |t− s|1+ε + |t− s|
1
2

+β
2 ,

‖Es(γt − γs)‖Lm . |t− s|1+ε

for all (s, t) ∈ ∆[0,T ].

Example 11.3. Let M be an L4-integrable Ft-adapted martingale in Rd, and assume that

‖Ms,u ⊗Mu,t‖L2 ≤ C|t− s|
1
2

+ε (11.17)
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for all s ≤ u ≤ t, for some constants C, ε > 0. (For Brownian motion, this condition is
satisfied with ε = 1

2 .)
Let As,t = Ms,t ⊗Ms,t. Then

δAs,u,t = Ms,t ⊗Ms,t −Ms,u ⊗Ms,u −Mu,t ⊗Mu,t

= (Ms,u +Mu,t)⊗ (Ms,u +Mu,t)−Ms,u ⊗Ms,u −Mu,t ⊗Mu,t

= Ms,u ⊗Mu,t +Mu,t ⊗Ms,u.

We then have immediately from (11.17) that

‖δAs,u,t‖L2 ≤ 2C|t− s|
1
2

+ε,

and we also see that
EsδAs,u,t = 0.

Thus, by the stochastic sewing lemma (Theorem 11.1), there exists an Ft-adapted process,
which we denote by 〈M〉, such that 〈M〉0 = 0, and such that

‖〈M〉s,t −Ms,t ⊗Ms,t‖L2 . |t− s|
1
2

+ε

and
Es〈M〉s,t = Es(Ms,t ⊗Ms,t) (11.18)

for all (s, t) ∈ ∆[0,T ]. Moreover, we have that the limit

〈M〉t = lim
|π|→0

∑
[u,v]∈π

Mu,v ⊗Mu,v

exists in L2 along any (deterministic) sequence of partitions of [0, t] with vanishing mesh size,
from which we deduce, as the notation suggests, that 〈M〉 is indeed the quadratic variation
of M .

Since Es(Ms,t⊗Ms,t) = Es(Mt⊗Mt−Ms⊗Ms), it follows from (11.18) that the process
M ⊗M − 〈M〉 is a martingale.

11.3 A rough stochastic integral

Suppose we are given a Brownian motion B and a deterministic (rough) path X, and that
we wish to define the integral of f(B + X) against X. If the function f is nonlinear, then
neither rough nor stochastic integration alone is able to handle such an integral. We will
now see how the stochastic sewing lemma can bring both worlds together to define a suitable
notion of integral.

Proposition 11.4. Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space and let α ∈ (1
3 ,

1
2 ].

Let X = (X,X) ∈ C α be a rough path, and let B be an Ft-adapted Brownian motion. Let
m ≥ 2 and f ∈ C2

b . Then the limit∫ t

0
f(Br +Xr) dXr := lim

|π|→0

∑
[u,v]∈π

f(Bu +Xu)Xu,v +Df(Bu +Xu)Xu,v
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exists in Lm for every t ∈ [0, T ]. Moreover,
∫ ·

0 f(Br + Xr) dXr is the unique Ft-adapted
Lm-integrable process, started at zero, such that the estimates∥∥∥∥∫ t

s
f(Br +Xr) dXr − f(Bs +Xs)Xs,t −Df(Bs +Xs)Xs,t

∥∥∥∥
Lm

. |t− s|2α

and ∥∥∥∥Es(∫ t

s
f(Br +Xr) dXr − f(Bs +Xs)Xs,t −Df(Bs +Xs)Xs,t

)∥∥∥∥
Lm

. |t− s|3α

hold for all (s, t) ∈ ∆[0,T ].

Proof. Let
As,t = f(Bs +Xs)Xs,t +Df(Bs +Xs)Xs,t.

Then

δAs,u,t = As,t −As,u −Au,t
= f(Bs +Xs)Xs,t +Df(Bs +Xs)Xs,t
− f(Bs +Xs)Xs,u −Df(Bs +Xs)Xs,u
− f(Bu +Xu)Xu,t −Df(Bu +Xu)Xu,t

= −f(B +X)s,uXu,t +Df(Bs +Xs)(Xs,t − Xs,u)−Df(Bu +Xu)Xu,t
= −f(B +X)s,uXu,t +Df(Bs +Xs)(Xu,t +Xs,u ⊗Xu,t)−Df(Bu +Xu)Xu,t
= −

(
f(B +X)s,u −Df(Bs +Xs)Xs,u

)
Xu,t −Df(B +X)s,uXu,t.

We have that

‖f(B +X)s,u‖Lm ≤ ‖f‖C1
b
‖Bs,u +Xs,u‖Lm ≤ ‖f‖C1

b

(
‖Bs,u‖Lm + |Xs,u|

)
≤ ‖f‖C1

b

(
‖B1‖Lm |u− s|

1
2 + ‖X‖α|u− s|α

)
. |t− s|α

It then follows from the above that

‖δAs,u,t‖Lm . |t− s|2α.

Since 2α > 1
2 , we have that (11.5) holds.

To obtain (11.4) we need to be a bit sneakier. We note that

f(B +X)s,u −Df(Bs +Xs)Xs,u

=

∫ 1

0

(
Df(Bs +Xs + r(Bs,u +Xs,u))−Df(Bs +Xs)

)
(Bs,u +Xs,u) dr

+Df(Bs +Xs)Bs,u.

Noticing that the final term above vanishes upon taking an Es conditional expectation, we
then have∥∥Es(f(B +X)s,u −Df(Bs +Xs)Xs,u

)∥∥
Lm
≤ ‖f‖C2

b

∥∥|Bs,u +Xs,u|2
∥∥
Lm

. ‖Bs,u‖2L2m + |Xs,u|2

≤ ‖B1‖2L2m |u− s|+ ‖X‖α|u− s|2α

. |t− s|2α.
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It follows that
‖EsδAs,u,t‖Lm . |t− s|3α.

Since 3α > 1, we have that (11.4) also holds.
By the stochastic sewing lemma (Theorem 11.1), there exists a process with the desired

properties.

For a thorough discussion and further applications of the stochastic sewing lemma, see
the article [Lê20].

12 Rough paths of lower regularity

In this course we have focused on the case where the Hölder exponent α of the paths we
consider are strictly greater than 1

3 . In particular, we saw how Young integration is adequate
to deal with the case when α ∈ (1

2 , 1], and developed a theory of rough paths capable of
handling paths with Hölder exponents α ∈ (1

3 ,
1
2 ]. We saw in particular that this is enough

to include important stochastic processes such as Brownian motion, and that we can even
derive pathwise results analogous to classical results from stochastic calculus, e.g. the bracket
process, Itô formula and the rough exponential.

However, the full theory of rough paths is able to handle paths of arbitrarily small Hölder
exponent, i.e. any α ∈ (0, 1]. In this section we shall briefly discuss rough paths of lower
regularity. We will not go into much detail, but we will just try to see how the notion of
rough paths we have considered fits into the more general theory.

12.1 The signature and Chen’s relation

Let X = (X1, . . . , Xd) : [0, T ]→ Rd be a smooth path. Consider a word

w = w1w2 . . . wn

with letters in the alphabet {1, 2, . . . , d}, i.e. such that wi ∈ {1, 2, . . . , d} for each i = 1, . . . , n.
We write |w| = n ≥ 0 for the length of the word w.

In this course we considered the rough path enhancement as the integral of X against
itself, i.e. a matrix consisting of elements of the form∫ r3

s
Xw1
s,r2 dXw2

r2 =

∫ r3

s

∫ r2

s
dXw1

r1 dXw2
r2 .

Integrating with respect to Xw3 , we then obtain
∫ r4
s

∫ r3
s

∫ r2
s dXw1

r1 dXw2
r2 dXw3

r3 . After n such
integrals, we arrive at the n-fold iterated integral

Xw
s,t :=

∫ t

s

∫ rn

s
· · ·
∫ r3

s

∫ r2

s
dXw1

r1 dXw2
r2 · · · dX

wn−1
rn−1

dXwn
rn .

As a shorthand, let’s write

∆n
[s,t] = {s < r1 < r2 < · · · < rn < t}
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for the n-dimensional simplex over the interval [s, t]. We can then rewrite the above as

Xw
s,t =

∫
∆n

[s,t]

dXw1
r1 · · · dX

wn
rn . (12.1)

The family of all such iterated integrals corresponding to words of length n is given by∫
∆n

[s,t]

dXr1 ⊗ · · · ⊗ dXrn ∈ (Rd)⊗n.

The collection of all iterated integrals up to arbitrary length, which we can write as

S(X)s,t :=

(
1,

∫ t

s
dX,

∫
∆2

[s,t]

dX ⊗ dX, . . . ,

∫
∆n

[s,t]

dX ⊗ · · · ⊗ dX, . . .

)
,

is called the signature of X over the interval [s, t], and takes values in the tensor algebra
T (Rd) =

⊕∞
n=0(Rd)⊗n.

Let us now fix s ≤ u ≤ t. We observe that, ignoring sets of zero n-dimensional Lebesgue
measure, we have that

∆n
[s,t] = An0 ∪An1 ∪ · · · ∪Ann

where, for 0 ≤ j ≤ n,

Anj := {s < r1 < · · · < rj < u < rj+1 < · · · < rn < t}

= ∆j
[s,u] ×∆n−j

[u,t]

That is, the domain of integration may be decomposed, depending on how many variables
of integration are to the left of u.

Given a word w = w1w2 . . . wn of length |w| = n ≥ 1, we have

Xw
s,t =

∫
∆n

[s,t]

dXw1
r1 · · · dX

wn
rn

=
n∑
j=0

∫
Anj

dXw1
r1 · · · dX

wn
rn

=

n∑
j=0

∫
∆j

[s,u]

dXw1
r1 · · · dX

wj
rj

∫
∆n−j

[u,t]

dX
wj+1
rj+1 · · · dXwn

rn

=

n∑
j=0

X
w1...wj
s,u X

wj+1...wn
u,t .

This motivates a definition. Let us define X∅s,t = 1 for the empty word w = ∅ (of length
0). Then, given two collections of elements A = {Aw : |w| ≥ 0} and B = {Bw : |w| ≥ 0}
indexed by words from the alphabet {1, 2, . . . , d}, we define a product ? such that, for each
word w = w1 . . . w|w|,

(A ?B)w =

|w|∑
j=0

Aw1...wjBwj+1...w|w| . (12.2)
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It then follows from the above that, writing Xs,t = {Xw
s,t : |w| ≥ 0}, we have

Xs,t = Xs,u ?Xu,t (12.3)

for all s < u < t. The equality in (12.3) is a general version of Chen’s relation.

For example, let’s take a word w = ij with length |w| = 2. Then (12.2) and (12.3) imply
that

Xij
s,t = Xij

s,u +Xij
u,t +Xi

s,uX
j
u,t,

which is precisely the equality in (3.2), i.e. the version of Chen’s relation we have been using
throughout this course.

It follows from (12.3) that the signature of X also satisfies its own version of Chen’s
relation:

S(X)s,u ⊗ S(X)u,t = S(X)s,t

for all s ≤ u ≤ t.

12.2 General rough paths

For N ∈ N, we consider maps of the form

∆[0,T ] 3 (s, t) 7−→ Xs,t = (Xw
s,t : 0 ≤ |w| ≤ N)

= (1, X
(1)
s,t , X

(2)
s,t , . . . , X

(N)
s,t ),

which takes values in the truncated tensor algebra TN (Rd) =
⊕N

n=0(Rd)⊗n.

Here, X
(n)
s,t = (Xw

s,t : |w| = n) ∈ (Rd)⊗n is the collection of all elements Xw
s,t corresponding

to words w = w1w2 . . . wn of length |w| = n.

We can define a seminorm on the space of such maps by

|||X|||(α,N) = max
j=1,...,N

‖X(j)‖
1
j

jα,

where ‖ · ‖α denotes the usual α-Hölder seminorm.

We can also define an associated distance similarly:

‖X; X̃‖(α,N) = max
j=1,...,N

‖X(j) − X̃(j)‖
1
j

jα. (12.4)

Definition 12.1. Let α ∈ (0, 1], and let N = b 1
αc, i.e. the integer N ∈ N such that

αN ≤ 1 < α(N + 1). We say that a map (s, t) 7→ Xs,t as above is an α-Hölder rough path
over Rd, if

• |||X|||(α,N) <∞,

• and Chen’s relation Xs,t = Xs,u ?Xu,t holds for all 0 ≤ s ≤ u ≤ t ≤ T .
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Note that the condition that |||X|||(α,N) < ∞ is equivalent to requiring that there exists
a constant C > 0 such that

|Xw
s,t| ≤ C|t− s|α|w|

for all (s, t) ∈ ∆[0,T ] and all words w with length |w| ≤ N .

Thus, a “level 1” rough path (with N = 1) is simply an α-Hölder continuous path X
for some α ∈ (1

2 , 1], which we know fits into the Young regime. Moreover, a “level 2” rough
path (with N = 2) is precisely the space of rough paths we have considered throughout this
course, and is appropriate for paths with regularity α ∈ (1

3 ,
1
2 ].

Definition 12.2. We define the space of geometric α-Hölder rough paths as the closure of
level N canonical lifts of smooth paths with respect to the rough path distance in (12.4).
By the level N canonical lift of a smooth path X : [0, T ] → Rd, we mean the rough path
X = (Xw : |w| ≤ N), where Xw is defined as in (12.1).

The shuffle product � is a product on pairs of words which, heuristically, gives the sum
of all ways of interlacing them. It can be defined inductively by the relations:

w� ∅ = ∅� w = w

and
vi� wj = (v� wj)i+ (vi� w)j,

where ∅ is the empty word, i and j are single letters, and v and w are arbitrary words.

The name “shuffle product” refers to the fact that the product can be thought of as the
sum over all the different ways of riffle shuffling two words (or, indeed, the two halves of a
deck of playing cards) together. For example, for letters i, j, k, we have that

ki� j = kji+ jki+ kij,

which is the sum of the ways of arranging the three letters such that the letter k always
appears before the letter i.

Definition 12.3. We define a weakly geometric α-Hölder rough path as a rough path which
additionally satisfies the shuffle identity:

Xv
s,tX

w
s,t = Xv�w

s,t (12.5)

for all times (s, t) ∈ ∆[0,T ] and all words v and w with combined length |v|+ |w| ≤ N .

The purpose of the shuffle identity (12.5) is to impose the chain rule. As an example,
suppose that α ∈ (1

3 ,
1
2 ] and N = 2. For letters i, j, we have that i� j = ij + ji, so that the

shuffle identity gives
Xi
s,tX

j
s,t = Xi�j

s,t = Xij
s,t +Xji

s,t.

Equivalently,
1

2
X

(1)
s,t ⊗X

(1)
s,t = Sym(X

(2)
s,t ),

which is precisely the condition (3.3) for a level 2 rough path to be weakly geometric.
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