Semesterendtest

Dieser Test dient der Selbsteinschätzung. Alle Aufgaben sind online auf https://echo.ethz.ch zu lösen. Schicken Sie Ihre Lösung bis spätestens Mittwoch, 12. Januar um 14:00 Uhr ab.

1. Gegeben seien die beiden Matrizen

$$A := \begin{pmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ 1 & 1 & -1 \end{pmatrix} \quad \text{und} \quad B := \begin{pmatrix} x_1 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 1 & x_2 \end{pmatrix}.$$

Für welche beiden reellen Zahlen x_1 und x_2 gilt $B = A^{-1}$?

- (a) $x_1 = 1$ und $x_2 = 1$.
- (b) $x_1 = -1 \text{ und } x_2 = 1.$
- (c) $x_1 = 1$ und $x_2 = -1$.
- (d) $x_1 = -1 \text{ und } x_2 = -1.$
- 2. Gegeben sei das lineare Gleichungssystem Ax = b, wobei

$$A:=\left(a^{(1)}\dots a^{(i)}\dots a^{(n)}\right)\in\mathbb{R}^{m\times n}\ \text{mit Spaltenvektoren}\ a^{(i)}\in\mathbb{R}^m\ \text{für }i=1,2,3,\dots,n$$
 und

$$b \in \mathbb{R}^m \text{ mit } b \notin \text{span} \left\{ a^{(1)}, \dots, a^{(i)}, \dots, a^{(n)} \right\}.$$

Dann existiert keine Lösung x zum Gleichungssystem Ax = b.

- (a) Richtig.
- (b) Falsch.
- 3. Es sei die 3×4 -Matrix $A \in \mathbb{R}^{3 \times 4}$ gegeben durch

$$A := \begin{pmatrix} 2 & 1 & -1 & 2 \\ 1 & 0 & -1 & 0 \\ 3 & 1 & -2 & 2 \end{pmatrix}.$$

Dann ist eine Basis β des Unterraums $\ker(A) = \{x \mid Ax = 0\}$ gegeben durch . . .

(a)
$$\beta = \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -3 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

(b)
$$\beta = \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -5 \\ 1 \\ 2 \end{pmatrix} \right\}.$$

(c)
$$\beta = \left\{ \begin{pmatrix} 2\\1\\3 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}.$$

(d)
$$\beta = \left\{ \begin{pmatrix} 2\\1\\-1\\2 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix} \right\}.$$

4. Welche der folgenden drei Vektoren v_1 , v_2 und v_3 sind jeweils linear unabhängig?

(a)
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$.

(b)
$$v_1 = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}.$$

(c)
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$, $v_3 = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$.

5. Betrachten Sie den Vektorraum $\mathcal{F} := F(\mathbb{R}, \mathbb{R})$ der Funktionen $\mathbb{R} \longrightarrow \mathbb{R}$ in der Variablen x mit der Addition

$$(f+g)(x) := f(x) + g(x)$$
 für alle $f, g \in \mathcal{F}$

und der skalaren Multiplikation

$$(\lambda f)(x) := \lambda f(x)$$
 für alle $f \in \mathcal{F}$ und alle $\lambda \in \mathbb{R}$.

Darin enthalten sind für alle $n \in \mathbb{N}_0$ die Unterräume

$$\mathcal{P}_n(x) := \{ a_0 + a_1 x + \ldots + a_n x^n \mid a_i \in \mathbb{R} \}$$

der Polynome mit Grad $\leq n$ in der Variablen x. Es gilt:

- (a) Die Dimension des Unterraums $\mathcal{P}_n(x)$ ist n+1.
- (b) Die Sinusfunktion $\sin(x)$ ist Element von \mathcal{F} , das heisst $\sin(x) \in \mathcal{F}$, aber liegt in keinem der Unterräume $\mathcal{P}_n(x)$, was heisst, dass $\sin(x) \notin \mathcal{P}_n(x)$ für alle $n \in \mathbb{N}_0$.
- (c) Die Sinusfunktion $\sin(x)$ und die Cosinusfunktion $\cos(x)$ sind linear abhängige Vektoren in \mathcal{F} .
- (d) $1, \sin^2(x), \cos^2(x)$ sind linear abhängige Vektoren in \mathcal{F} .
- (e) Sind zwei Polynome p(x) und q(x) linear unabhängig, so sind auch die Polynome xp(x) und xq(x) linear unabhängig.
- (f) Der Untervektorraum $V = \text{span}\{\sin(x)\}$ schneidet den Unterraum $\mathcal{P}_3(x)$ nur in 0, oder formal

$$V \cap \mathcal{P}_3(x) = \{0\}$$

und es gilt

$$\dim (\operatorname{span} \{\sin(x), 1, x, x^2, x^3\}) = 5.$$

- (g) Die Abbildung $A \colon \mathcal{F} \to \mathbb{R}, f \mapsto f(1)$ ist linear.
- **6.** Gegeben sei die 7×7 -Matrix

Dann gilt:

- (a) A ist orthogonal.
- (b) A ist nicht orthogonal.
- 7. Es sei $n \in \mathbb{N}$ eine natürliche Zahl mit $n \geq 2$ und \mathbb{I}_n die $n \times n$ -Einheitsmatrix. Weiter seien A eine $n \times n$ -Matrix, $u, v \in \mathbb{R}^n$ zwei Vektoren und es gelte

$$A^2 = 2\mathbb{I}_n \text{ und } Au = v.$$

Dann folgt:

- (a) Die Determinante $\det(A)$ von A ist entweder $-\sqrt{2^n}$ oder $\sqrt{2^n}$. Andere Werte für $\det(A)$ sind nicht möglich.
- (b) Das lineare Gleichungssystem Ax = u hat die Lösung $x = \frac{1}{2}v$.
- 8. Bestimmen Sie die Determinante det(A) der Matrix

$$A := \begin{pmatrix} -1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

- (a) $\det(A) = 0$.
- (b) $\det(A) = -1$.
- (c) $\det(A) = 2$.
- **9.** Gegeben seien zwei Matrizen A und B aus $\mathbb{R}^{n \times n}$ mit n > 1. Welche der folgenden Aussagen sind korrekt?
 - (a) Es gilt det(A + B) = det(A) + det(B).
 - (b) Es gilt det(AB) = det(A) det(B).
 - (c) Aus $\det(A) \neq 0$ folgt, dass die Spaltenvektoren $a^{(1)}, \dots, a^{(i)}, \dots, a^{(n)}$ von A linear unabhängig sind.
 - (d) Es gilt det(AB) = det(BA).
 - (e) Für jede von Null verschiedene reelle Zahl λ gilt $\det(\lambda A)=\lambda\det(A).$
 - (f) Es gilt $det(A) = det(A^T)$, wobei A^T die Transponierte von A bezeichnet.
 - (g) Für jede von Null verschiedene reelle Zahl λ gilt $\det(\lambda A) = \lambda^n \det(A)$.