Rechenregeln

Im folgenden Satz nehmen wir an, dass alle vorkommenden Operationen für die Matrizen A, B, C, D definiert sind.

Satz

- ► Kommutativgesetz Addition: A + B = B + A
- ▶ Assoziativgesetz Addition: (A + B) + C = A + (B + C)
- Assoziativgesetz Multiplikation: (AB)C = A(BC)
- ▶ Distributivgesetz: (A + B)C = AC + BC und A(C + D) = AC + AD

Ferner für $\lambda, \mu \in \mathbb{R}$:

- $\lambda(A+B) = \lambda A + \lambda B$
- $\lambda(\mu A) = (\lambda \mu) A$

ACHTUNG: Im Allgemeinen ist $AB \neq BA$.

Repetition

Lineare Algebra

Rechenregeln

Kronecker-Syr

Transpositions

Inverse Ma

Kronecker-Symbol

$$\delta_{ij} := \begin{cases} 1 & \text{falls } i = j \\ 0 & \text{falls } i \neq j \end{cases}$$

Insbesondere gilt

$$(\mathbb{I})_{ij}=\delta_{ij}$$

Repetition

Lineare Algebra

Rechenregeln

Kronecker-Symbol

Spalten und Zeilen

ranspositionsreglen

nverse Matix

Spalten- und Zeilenstrukur

Spaltenstruktur

Sind $a^{(1)}, \ldots, a^{(n)}$ *m*-Spaltenvektoren (d.h. $m \times 1$ -Matrizen), so bezeichnet

$$A=(a^{(1)}\ldots a^{(n)})$$

die $m \times n$ -Matrix mit $a^{(i)}$ als i-te Spalte.

Zeilenstruktur

Sind $a^{[1]}, \ldots, a^{[m]}$ n-Zeilenvektoren (d.h. $1 \times n$ -Matrizen), so bezeichnet

$$A = \begin{pmatrix} a^{[1]} \\ \vdots \\ a^{[m]} \end{pmatrix}$$

die $m \times n$ -Matrix mit $a^{[i]}$ als i-te Zeile.

Repetition

Lineare Algebra

Rechenregein

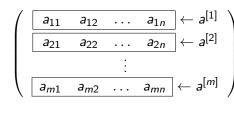
Kronecker-Sym

Spalten und Zeilen
Transpositionsreglen

Inverse M

Spaltenstruktur:

Zeilenstruktur:



Repetition

Lineare Algebra

Rechenregeln

ua ua aliau Ciina

Spalten und Zeilen

ranspositionsregler

Sätze

Spaltenstruktursatz

Sei $A = (a^{(1)} \dots a^{(n)})$ eine $m \times n$ -Matrix mit Spalten $a^{(i)}$, $B = (b^{(1)} \dots b^{(p)})$ eine $n \times p$ -Matrix mit Spalten $b^{(i)}$,

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ ein } n\text{-Spaltenvektor und } e^{(i)} \text{ die } i\text{-te Spalte von}$$

 \mathbb{I}_n . Dann gilt

- $Ae^{(i)}=a^{(i)}$
- ► $Ax = x_1 a^{(1)} + ... + x_n a^{(n)}$ (Linearkombination) ► $AB = (Ab^{(1)}...Ab^{(p)})$

Repetition

Lineare Algebra

Spalten und Zeilen

Zeilenstruktursatz

Sei
$$A = \begin{pmatrix} a^{[1]} \\ \vdots \\ a^{[m]} \end{pmatrix}$$
 eine $m \times n$ -Matrix mit Zeilen $a^{[i]}$,

$$B = \begin{pmatrix} b^{[1]} \\ \vdots \\ b^{[n]} \end{pmatrix}$$
 eine $n \times p$ -Matrix mit Zeilen $b^{[i]}$, $y = (y_1 \dots y_n)$

ein n-Zeilenvektor und $e^{[i]}$ die i-te Zeile von \mathbb{I}_n . Dann gilt

- - $\triangleright yB = y_1b_1^{[1]} + \ldots + y_nb_1^{[n]}$ (Linearkombination)

$$AB = \begin{pmatrix} a^{1-1}B \\ \vdots \\ a^{[m]}B \end{pmatrix}$$

Repetition

Lineare Algebra

Rechenregeln

Kronecker-Symbo

Spalten und Zeilen
Transpositionsreglen

verse Matix

Transpositionsregeln

Es seien A, B Matrizen, so dass die Operationen definiert sind. Dann gilt:

- $(A^T)^T = A$
- $(A+B)^T = A^T + B^T$
- $(AB)^T = B^T A^T$

Repetition

Lineare Algebra

Rechenregeln

ronecker-Syml

Spalten und Zeilen

Transpositionsreglen

Inverse Matrix

Definition

- Sei A eine $n \times n$ -Matrix. Dann heisst A invertierbar oder regulär falls eine $n \times n$ -Matrix X existiert, so dass $AX = \mathbb{I}_n$. X heisst dann Inverse von A.
- ▶ Falls A nicht regulär ist, nennt man A singulär.

Lemma: Eindeutigkeit

Falls A invertierbar ist, so ist die Inverse eindeutig bestimmt und wird mit A^{-1} bezeichnet.

Bemerkungen: Sei A eine reguläre $n \times n$ -Matrix. Dann gilt:

- ▶ Die Lösung von Ax = b ist gegeben durch $x = A^{-1}b$.
- ▶ Bezeichnen wir mit $e^{(k)}$ die k-te Spalte von \mathbb{I}_n , so ist die k-te Spalte von A^{-1} die Lösung von $Ax = e^{(k)}$.

Repetition

Lineare Algebra

Rechenregeln

Kronecker-Syn

Transpositio

Inverse Matix