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CHAPTER 1

Preliminaries

We assume knowledge of the contents of Analysis I (for instance, properties of real
numbers, sequences and series, continuous functions on intervals, differentiable functions
on intervals, Riemann integral, improper integrals). These can be found in the script [1]
of Prof. M. Burger.

We denote by N = {0,1,2,...} the set of all natural numbers, by Q the rational
numbers, by R the real numbers and by C the complex numbers.

In addition to continuous and differentiable functions defined on intervals with values
in R, as in [1, Kap. III, IV], we will also consider functions f: I — R? where d > 2
and [ is an interval. This means that

f(x) = (filx), ... fa(z))

for some functions f;: I — R. We then say:

e That f is continuous (on I, or at a point xg € I) if each coordinate function f;
is continuous (on I or at xz);

e That f is differentiable (on I, or at a point z( € I) if each coordinate function f;
is differentiable (on I or at ), in which case we write

f'(@o) = (fi(xo), .-, falxo))-
A primitive F of a continuous function f: I — R% is a differentiable function F': I —
R? such that F' = f. A primitive always exists, for instance

F(z) = (L: A, .. E) fd(t)dt>

when writing f = (f1,..., fs4) as before.



CHAPTER 2

Ordinary differential equations

2.1. Introduction

A differential equation is an equation where the unknown (or unknowns) is a function
f, and the equation relates values of f at a point x with values of derivatives of the
function at the same point x. If the function has one variable only (as is the case in this
chapter), one speaks of ordinary differential equations.’

ExXAMPLE 2.1.1. (1) The exponential function f(z) = e”, defined for x € R, satisfies
f'(x) = f(x) for all x € R. One says that this function is a solution (on R) of the
differential equation 3y’ = y. This is not the only solution: in fact, for any constant a € R,
the function f,(z) = ae® also satisfies f!(z) = f.(x) for all z € R. Later, we will see that
there are no other solutions.

(2) In the mechanics of Newton, the movement of a particle P with mass m > 0, given
by its position f(t) = (z(t),y(t), z(t)) € R? for all times ¢ is determined by the equation

mf"(t) = sum of forces acting on P at time t,

and by the “initial condition”, which means the specification of the position f(0) and
speed f’(0) at some starting time t5. Note that the forces acting on the particle at time ¢
are expressions involving f(t) (position) and f’(t) (speed), at the same time t. Also, the
solution is unique because of the initial conditions (otherwise, as in Example (1), there
would be infinitely many solutions).

Since f is a function with one variable ¢ but with values in R?, we recall again that
the derivatives of f are simply taken for each coordinate separately

() =@,y @),21), (1) = ("({),y"(), 2"(1)).

For example, a particle subject to no external force satisfies the equation mf”(t) = 0,
so that f”(t) = 0 for all ¢, which means that the motion is a straight line (each of the
coordinates is of the form x(t) = agt + by, y(t) = ait + by, 2(t) = ast + by).

Classical newtonian mechanics (and its solutions) forms a basic tool to simulate phys-
ical behavior of objects in applications (such as computer games, computer generated
videos, etc).

(3) For any given continuous function a, the differential equation f’ —a = 0 has a
solution, namely any primitive of the function a. The existence of the solutions follows
from the Fundamental Theorem of Calculus ([1, §5.4]): we may define

fla) = f "ty

o
In general, differential equations are closely related with integration theory.
(4) An equation like f'(x + 1) — f(x) = 0 is not an ordinary differential equation,
because it relates the value of f at the point x with the derivative at another point.

IWhen there is more than one variable, one speaks of partial differential equations, referring to partial
derivatives in multi-variable calculus (see Chapter 3).
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REMARK 2.1.2. In computer science, besides simulations of physical systems, differ-
ential equations arise frequently in the analysis of algorithms, for instance the running
time of certain algorithms might be a solution of a differential equation, or might be
approximated by such a solution.

It is customary to write down a differential equation without writing the evaluation
f(t) or f(x) but only the function’s name (or its derivatives), and to use the letter x or ¢
for the variable when it appears elsewhere in the equation. In physics, the time variable ¢
plays an important role, and derivation with respect to time is often denoted by a dot: gy
instead of ¢/, and ¢ instead of y”. When one needs to specify initial conditions (values of
the unknown function at some fixed value that specify the solution uniquely), one writes
for instance y(0) = a, ¥'(0) = b to say that the function f should satisfy f(0) = a and

£1(0) = b.

EXAMPLE 2.1.3. The important function f(z) = e‘xQ, for x € R, satisfies the differ-
ential equation y' = —2zy, i.e., for every x € R, we have f'(z) = —2ze " = —2xf(x).
In a physics context, where the variable is understood as time, this might be written
y = —2ty.

Ordinary differential equations are classified according to their order, which is the
highest derivative that appears in the equation. So Newton’s equations are of order 2
(because forces are expressed in terms of y and ¥, and acceleration involves y”).

There is a trick to reduce any ordinary differential equation of order £ > 2 to an
equation of order 1, but for a function that takes values in a higher-dimensional space
(keeping however a single variable). We illustrate it with an example.

ExaMpPLE 2.1.4. The differential equation

(2.1) y" =z(x+ 1)y — 3y,
with unknown a differentiable function f: R — R, can be transformed into the equation
(2:2) Y= (—3 x(x + 1)) Y

with unknown a differentiable function F': R — R?, where the right-hand side is a matrix

product. Indeed, if F' is a solution of this equation and we write F(z) = (f O(x)), then

fi(x)

the equation for F' means that

(%g) - (—03 - 1>> (%3) - (—3fo(96) L 1)f1(x)>

for all z. So we have f; = f, and therefore F(z) = (j})gg), where the function
0

fo: R — R satisfies (second row of the equation) the ordinary differential equation

0(x) = filz) = =3fo(x) + x(x + 1) f(x)
for all z. Conversely, given a solution f of (2.1), putting F'(x) = (
of (2.2).

/()
f'(z)

) gives a solution

This trick explains why many general results are stated for equations of order 1. On
the other hand, the solution of specific equations of order 2 or higher might be easier
without using this trick.



Although it is “physically” clear that Newton’s equation have solutions, it is not at
all obvious that ordinary differential equations should have solutions in general. In fact,
it is possible that a solution only exists “locally” around an initial point.

ExaMpPLE 2.1.5. Consider the equation 2yy’ = 1 on R with the initial condition
y(0) = 1. Writing the left-hand side as (y*)’, we see that y* satisfies y? = x + a for some
constant a € R, and we have a = 1 because of the initial condition. Hence the solution is
f(z) = +v/z + 1. But although the equation can be asked for all z € R, here the solution
only makes sense for x > —1.

At least one can prove that this local existence always holds, for nice enough equations
of the form ' = F(z,y) (and many others that can be brought to this form).

THEOREM 2.1.6. Suppose F: R?> — R is a differentiable function of two variables
(see Chapter 3). Let xg € R and yo € R?. Then the ordinary differential equation
y' = F(z,y)
has a unique solution f defined on a “largest” open interval I containing xy such that
f(zo) = yo. In other words, there exists I and a function f: I — R such that for all

x € I, we have f'(z) = F(x, f(z)), and one cannot find a larger interval containing I
with such a solution.

As is the case for polynomial equations, it is in general impossible to write down
“explicitly” the solution to such an equation.

ExAMPLE 2.1.7. The function F' can be arbitrary, for instance
F(t,u) = u® exp(cos(tu® — 1)) + 3sin(t)
for the complicated differential equation
y' = y® exp(cos(zy® — 1)) + 3sin(x)
whose solutions f: I — R (for some interval I) satisfy

f'(x) = f(z)* exp(cos(z f(x)* — 1)) + 3sin(z) = 0,

forall zel.

2.2. Linear differential equations

The simplest differential equations are the linear differential equations.

DEFINITION 2.2.1. Let I < R be an open interval and k£ > 1 an integer. An ho-
mogeneous linear ordinary differential equation of order k on I is an equation of the
form

y® + apy® Y+ ay +agy =0
where the coefficients ag, ..., ai_1 are complex-valued functions on I, and the unknown
is a complex-valued function from I to C that is k-times differentiable on I.
An equation of the form

(2.3) y® + a1 y* Y+t @y +agy = b,

where b: I — C is another function, is called an inhomogeneous linear ordinary differen-
tial equation, with associated homogeneous equation the one with b = 0.

Note that if the coefficients are real-valued, it is often of interest to find only the
real-valued solutions.



ExaMPLE 2.2.2. The equations

"

Y =y, y' = —v, Yy +2zy=0

(which admit as particular solutions the functions exp(z), cos(x) and exp(—z?), respec-
tively) are linear and homogeneous. The equation

y' —y = cos(x)

is linear and inhomogeneous. The equations

2uy’ =1, y =P, cos(y") = exp(z + y), (y+y)? =1, y —y=aze’

are not linear.

The main property of linear differential equations (explaining the adjective) is that if
we write D(f) for the left-hand side of the equation, so that

D(f) Zf(k)+ak71f(k71)+"'+a1f/+@0f7

then the operation D is linear: for any numbers z; and z, and (k-times differentiable)
functions f; and fy, we have D(z1f1 + 22fa) = z1D(f1) + 22D(f2). Indeed, let f =
Zlfl + ngg, then

D(f) = f(k) + - tarf +aof
= Z1(f1(k) +ap fEV A+ aofi) + ZQ(fz(k) +ap fO -t agfy)
= ZlD(fl) + ZQD(fg)

The main theoretical results concerning linear differential equations are summarized
in the following result:

THEOREM 2.2.3. Let I < R be an open interval and k = 1 an integer, and let

(k1)

y® + ap_1y +tay +ay =0

be a linear differential equation over I with continuous coefficients.

(1) The set 8 of k-times differentiable solutions f: I — C of the equation is a complex
vector space which is a subspace of the space of complex-valued functions on I.

(1bis) If the functions a; are real-valued, the set 8 of real-valued solutions is a real
vector space which is a subspace of the space of real-valued functions on I.

(2) The dimension of 8§ is k, and for any choice of o € I and any (yo, ..., yr_1) € CF,
there exists a unique f € 8 such that

f(@o) =yo, f'(m0) =1, .-, f(k_l)(xo) = Yk-1-

(2bis) If the functions a; are real-valued, the dimension of the space of real-valued
solutions, as a real vector space, is k, and for any choice of xog € I and any (yo, ..., Yx—1) €
RF¥, there ewists a unique real-valued solution f such that

f@o) =wo, Fflwo)=w1, -, FE V(@) =yt

If b and the coefficients a; are real-valued, there exists a real-valued solution.
(3) Let b be a continuous function on I. There exists a solution fq to the inhomoge-
neous equation

y W +apy® Y+t ay +agy = b,
and the set 8y is the set of functions f + fo where f € 8.
(4) For any xo € I and any (yo, ..., yx—1) € CF, there exists a unique f € 8 such that

f(l'o) = Yo, f/(x(J) = Y1, ceey f(kil)(xO) = Yk—1-
5



REMARK 2.2.4. (1) If b & 0, the set 8, of solutions is not a vector space.

(2) Statement (1) of this theorem is elementary: the set 8 is just the kernel of the
linear map that sends a function f to D(f). In other words, if f; and f; are elements of
S and zq, 29 are complex numbers and f = 21 f; + 22 f2, then

D(f) = 21D(f1) + 22D(f2) = 0.

Also, if we can find any element fy of the set §,, then it is elementary that all other
elements are of the form f + f; where &;, since for f; € §;, we get

(fi — fo)(k) + ap—1(fi — fo)(k_l) + -+ ao(f1 — fo)
= D(f1 — fo) = D(f1) = D(fo) =b—-b=0,
so that f; = f + fo where f = f; — fo € 8.

We will illustrate this result in the next sections by explaining how to solve, in practice,
two important types of linear differential equations.

REMARK 2.2.5. The linearity of the equation has also consequences when trying
to solve the inhomogeneous equation. Indeed, for instance, if we know a function f;
solving (2.3) with the right-hand side b;, and one function fs solving (2.3) with the right-
hand side by, then f; + f5 solves (2.3) with right-hand side by + be, since D(f} + f2) =
D(fl) + D(fg) = by + bs.

2.3. Linear differential equations of order 1
Let I < R be an open interval. We consider here the linear differential equation
y' +ay =0,

when a and b are general continuous functions defined on 1.

The solution has two steps: first solving the homogeneous equation 3 + ay = 0 (say
that 8 is the space of solutions, which is a one-dimensional vector space according to
Theorem 2.2.3), and then finding a solution fy of the inhomogeneous equation, so that
the set 8;, contains exactly the functions fy + f where f € 8. If f; is a basis of 8§ (which
only means that f; is in 8 and is not the zero function), this means that the solutions
are given by fy + zf1, where z € C is arbitrary.

If a is real-valued, then there exists a real-valued non-zero element f; of §, and a
real-valued solution fj, so that the real-valued solutions of the equation are the functions
of the form fy + = f;, where x € R is arbitrary.

If one wishes the solve the problem with initial value f(xg) = yo, then it suffices to
solve the equation

fo(zo) + 2 f1(z0) = yo
to determine the value of z. (It might be thought that there is a problem if fi(xy) = 0,
but we will see that this never happens for a non-zero function f; € 8).

Step 1 (solving the homogeneous equation). Formally, the idea is to transform
y' + ay = 0 into ¢/ /y = —a, so that (log |y|)’ = —a, which implies by integration that

y = zexp(—4A),

where z € C and A is a primitive of the function a. There is a potential problem with
this argument, since we divided by gy, which is a function so that y might vanish at some
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point in the interval. However, it is easy to check that the conclusion is correct. First, if
we define a function f(x) = zexp(—A(z)), then we get by the chain rule the relation

fl(@) = —zA/(z) exp(—A(z)) = —a(z) f(2),
so that f is a solution of the equation y' + ay = 0.
Conversely, suppose that f is a solution of the equation 3’ + ay = 0, and define
g(x) = f(x)exp(A(z)). Then we obtain, by the Leibniz rule and the chain rule, the
formula

g'(z) = f'(z) exp(A(x)) + A'(z) f (z) exp(A(x))
= —a(x)f(x) exp(A(x)) + a(x) f(x) exp(A(z)) =
which means that g is a constant, say z, in which case f(z) = zexp(—A(:c)), as we

guessed.
We conclude:

PROPOSITION 2.3.1. Any solution of y' + ay = 0 is of the form f(x) = zexp(—A(z))
where A is a primitive of a. The unique solution with f(xo) = yo is

f(z) = yo exp(A(zo) — A()).
Step 2 (solving the inhomogeneous equation). Now consider the equation
Yy +ay=Db.
We know that it suffices to find a single solution fy to obtain all of them by adding one

of the solutions of ¢ + ay = b found in the previous step.

EXAMPLE 2.3.2. Sometimes, we can make a clever guess that finds a suitable function
fo. Consider for instance the equation v’ = y + 22. We might guess that a polynomial
can be a solution; it should be of degree 2, so we can try f(x) = az? + bx + ¢, for some
constants a, b, c. In that case we get

f'(x) — f(x) =2az +b— (az® + bz + ¢) = —az® + (2a —b)x + b —c
so this function is a solution provided

a =—1
2a —b =0, hence b = —2
b—c =0, hence c = —2.

So we can take fo(z) = —2% — 2z — 2.

If there is no obvious guess of the form of a special solution fj, there is a general
method that works (but might lead to complicated formulas). It is called “variation
of the constant”, because it starts with the formula for a solution of the homogeneous
equation, namely

f(z) = zexp(—A(x)), 2z e C,
and looks for a solution fy of this form, but where now z is considered to be itself
a function of x. If we assume this, and Compute the derivative f’, then we see that
fo(x) = z(z)exp(—A(z)) is a solutlon of ¥ + ay = b if and only if

#(z) exp(=A(x)) — A'(x)z(z) exp(=A(2)) + a(z)z(x) exp(—A(z)) = b(z),

which (since A’'(z) = a(x)) translates into

#(x) = b(x) exp(A(z)).

7



In other words, we can take z to be a primitive C'(x) of the continuous function b(x) exp(A(z)),
and the special solution is

fo(z) = C(z) exp(—A(z)).
If we use the fundamental theorem of calculus to write primitives (taking the value 0 at
xg) of a and bexp(A), this becomes the rather complicated expression

folz) = exp(— J a(t)dt”

Zo zo

t

b(t) exp (f a(u)du> dt,

Zo

T X

which is a special solution such that fo(xo) = 0.

REMARK 2.3.3. When solving concrete equations, do not forget the last step of mul-
tiplying the “constant” z(z) by exp(—A(x)) at the end!

2.4. Linear differential equations with constant coefficients

Let kK > 1 be an integer, and let ag, ..., ax_1 be complex constant coefficients. We
consider the linear differential equation

Yy + a1y + @y +agy = b.

Note that the coefficients a; are fixed numbers, but the right-hand side b is still assumed
to be a general continuous function.

ExXAMPLE 2.4.1. The equation y” — xy = 0 does not belong to this class, but the
equations ' —y = 0 and y” + y = 0 (satisfied by the exponential and by trigonometric
functions) have constant coefficients.

The solution of the homogeneous equation is very simple in principle. One looks for
solutions of the special form f(z) = e*® for some complex number « € C. Then we have
fU)(x) = a7e®® for all j = 0 and for all 2, which means that

FO@) + ap_y fEV(@) + -+ ay f(2) + aof(z) = e (a* + ap_10" P + - + ara + ap).

We conclude that f is a solution of the homogeneous equation if and only if P(a) = 0,
where P is the polynomial with coefficients ag, ..., ag_1:

P(X):Xk+ak,1Xk+---+a1X+a0.

According to the Fundamental Theorem of Algebra, this polynomial of degree k has k
complex roots, counted with multiplicity: there exist complex numbers «y, ..., aj such
that

PX)=(X—ay) (X —ay).

This polynomial is called the companion or characteristic polynomial of the homogeneous
differential equation.

REMARK 2.4.2. We repeat that this is only defined when the coefficients of the equa-
tion are constant.

REMARK 2.4.3. Although it is natural to look for complex-valued solutions, one is
often interested in situations where the coefficients a; are real and we know that the
solution should take real values, or we want such solutions.

Suppose that a root a = 3+ i7y is not real, so the imaginary part ~ is non-zero. Then
the solution f(x) = e does not take real values. However, in that case, the conjugate
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B —iy = a % «is also a root of the companion polynomial (which has real coefficients,
so that P(z) = P(z) for any z € C) and one can replace the two solutions

fl(I) — eax’ fQ(Qf) _ e@:c

by the real-valued functions
file) = e cos(yx),  falx) = €7 sin(ya)
(note for instance that f; = ]?1 + zfg and that ]?1 = f1 + fy since € = cos(f) + isin(6)).

The possible existence of multiple roots requires some care in the next step, so we
begin by discussing the simple case where this does not happen.

Case 1: no multiple roots. Assume that a; + «; for ¢ + j. Then we have
found k distinct solutions f;(z) = e** of the homogeneous equation. It is not very
difficult to check that these functions are linearly independent, so that the space of linear
combinations of these functions has dimension k. According to Theorem 2.2.3, (2), this
must be the full vector space 8 of solutions of the homogeneous linear differential equation.
In other words, any solution of

y P +apy® Y+t ay +agy =0
is of the form
f(x) = 21€M° + -+ + ze™ 7,

for some complex numbers (21, ..., z;) that can be chosen arbitrarily.
If one wishes to find the unique solution with

f(zo) = vo,.. -, f(k_l)(xo) = Yk—1

for given (yo,...,yx—1), one may simply view zj, ..., zp as unknowns. Substituting
x = 1z in the formula for f(x) and solving for these initial conditions becomes a linear
system with unknowns 2, ..., z;. It is a fact that the system has a unique solution (the
determinant is always non-zero), which provides the required function.

REMARK 2.4.4. If the constants a; are real, the space of real-valued solutions of the
equation is obtained as follows: order the roots «; so that a;, ..., a,, are the real
solutions of the polynomial P, and «,,;1, ..., o are the solutions which are not real.
Write a; = a; + ib; for j = m + 1. (Note that we may have m = 0, if there is no real
solution, or m = k, if all solutions are real). Then the space of real-valued solutions of
the homogeneous differential equation is the space of functions of the form

F£) = 216+ b e
Ting 1€ coS(Dpms 1) + Yma 1€ 1 sin(by, 1) +
o 4 xpe™® cos(bpx) + yre®™” sin(bgx).

Because such expressions are more complicated to handle, it is often better to work with
complex-valued solutions as long as possible.

EXAMPLE 2.4.5. (1) Consider the equation ¢’ + ay = 0, with a constant. The com-

panion polynomial is X + a, so the only solution is ay = —a, and we get the solutions
f(z) = ze~*. This coincides with the solution in Section 2.3, since a primitive of a is
A(z) = az.

(2) Consider the equation y” — ay = 0. The companion polynonial is P = X? — a.
There are then three cases.



e (Case 1). If @ > 0, then P = (X — 4/a)(X + y/a) has two real roots, and the
solutions take the form

f(x) = 216V 4 zpe~ VT,

e (Case 2). If a < 0, then P = (X —i+/|a|])(X + i4/]a|), and the solutions take
the form

f(x) = zeVIale 4 peivVlale

= (21 + 22) cos(v/|a| x) + i(z1 — 22) sin(+/]al x).

e (Case 3). If a = 0, then we have only found one solution (namely f(z) = 1).
However, the equation is easily solved in that case: f is a solution of y” = 0
means that f(z) = 212 + 29 for some complex numbers z; and z3. So the function
fi(z) = x is a second solution linearly independent of the first.

(3) What is the solution f to y” + 3"+ y = 0 such that f(0) = 1 and f’(0) = 07

The companion polynomial is P(X) = X?+ X +1 = (X — a)(X — @) with o =
(=1 +4+/3)/2. Since we are interested in real solutions, it is easier to work with the two
basic solutions

filz) = e cos(?z), folx) = 7/ sin(?az).

We know that there exist numbers z; and z5 such that

f(z) = z21f1(x) + 22 fo(7),

and the initial conditions transform into the linear equations

21 =1
—%21 + \/752’2 =0
for z; and 2, (since, for instance, we have
1
fi(z) = —ze @2 cos(ig.m) — \/—ge_x/Z sin(ﬁx),
2 2 2
so f1(0) = —1/2, and similarly for f5(0) = 1/3/2). It follows that z; = 1 and z, = 1/4/3.

Case 2 (multiple roots). Suppose that a is a multiple root of order j of the
polynomial P, with 2 < j < k. Then the k functions

fa,O(m) = eam’ fa,l(x) = xeam’ T fa,jfl<x> = xjilxax

are linearly independent, and are solutions of the homogeneous linear differential equa-
tion. Taking the union of the functions f, ; for all roots of P, each with its multiplicity,
gives a basis of the space of solutions.

REMARK 2.4.6. To say that « is a root of P with multiplicity 7 > 1 means either of
the following two equivalent conditions:

(1) We have P(a) = --- = PU=Y(a) = 0.
(2) We have a factorization P(X) = (X — a)/Q(X), where @ is a polynomial and
Q(a) 4 0.
We now check the assertion about f, ; being a solution in the case of a double root
(7 = 2). Note that
fi(x) = axe™™ + e, '(z) =«

10
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so that we find the formula
fl(k) (x) + ak,lfl(kfl)(x) + -+ arfi(x) + apfi(x) = ze** P(a) + e** P' ().

Since P(a) = P'(a) = 0 for a double root, the function f; is a solution of the homogeneous
differential equation. The general case is similar.

Once a basis of § is found (using this kind of functions for each root), one can find
the unique solution with given initial conditions by again substituting zy in a linear
combination, and solving a system of linear equations.

EXAMPLE 2.4.7. Suppose that the companion polynomial factors as
P(X)=X(X-43*X - (1+))(X —(1—-1)).
Then a basis of the solution space 8 are the functions
fo(z) =1 (for the solution 0 of P)
fi(z) = €',  folx) = ze*™  f3(x) = 2%e* (for the solution 4, which is a triple root)
fa(z) = 1% = (cos(x) + isin(z))e?, f5(z) = P97 = (cos(x) — isin(z))e”.

If one is interested in real-valued solutions, it might be easier to use the alternate basis
where f; and f5 are replaced by

fi(x) = e*cos(z), fs(zx) = e®sin(x).

We now go back to the general case. If we need to solve an inhomogeneous equation,
there remains to find a special solution for

(k1)

(2.4) y ™ + a1y + - 4 a1y + agy = b.

There are some useful tricks that can be used to avoid the analogue of the method
of variation of constants, which is often rather complicated to implement (as we will see
below). The first is Remark 2.2.5 (following from linearity). The second is that there
are special cases of right-hand sides b where one can search explicitly for solutions of a
special form. The most important are the following:

(1) If b(x) = x%* for some integer d > 0 and some number 3 which is not a
root of the companion polynomial P, then one looks for a solution of the form
f(x) = Q(z)e*, where Q is a polynomial of degree d.

(2) If b(x) = x?cos(Bz) or b(x) = x?sin(Bz) for some integer d > 0 and some
number [ which is not a root of the companion polynomial P, then one can
either transform it to a combination of complex exponentials (and apply linearity
and (1)), or one may look for a solution of the form

f(z) = Q1(x) cos(Bx) + Q2(x) sin(Sx),

where (01 and ()5 are polynomials of degree d.

(3) If b is of the form of the previous two examples but where 3 is a root of mul-
tiplicity j of the companion polynomial, then one looks for f(z) = Q(x)e’® (or
the analogue with cosine and sine), but where @ has degree d + j.

(4) The special case = 0 of (1), (2), (3) corresponds to the situation when b is a
polynomial of degree d > 0. So one should search for a polynomial solution f of
the same degree d, unless 0 is a root of the companion polynomial, in which case
one should look for a polynomial of degree d + j, where j is the multiplicity of
0 as a root of P.
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EXAMPLE 2.4.8. (1) We can illustrate Example (3) (and in fact remember the way
it works) by considering the case where P(X) = X7, so that a = 0 is a root of order j.
The equation is y¥) = b, and if b(z) = 2%** = 2%, then a solution is

_ 1 d+j

I =gy —@+n°
which is indeed a polynomial of degree d + j.

(2) Consider the equation y” + 3y’ + y = 3z% + cos(z). Here we use linearity to find
a special solution: a solution is f = 3f; + fo, where f; is a solution of y” + 3y’ +y = 2?
and f, is a solution of y” + 3y’ + y = cos(x).

The companion polynomial is P = X2 + 3X + 1 with roots a; = (=3 + v/5)/2 and
Qg = (—3 — \/5)/2

To find f;, we note that 3 = 0 is not a root of P, so we look for f(z) = az* + bx + c.
Then

U+ 3f + fi =ax® + (b+6a)x + (c + 3b + 2a),

and the linear system to solve is

a =1
b+ 6a = (0 hence b = —6
c+3b+2a =0 hencec=18 -2 = 16.

This means that f(x) = 2% — 6z + 16.
To find fy, since f = 1 is not a root of P, we consider fs(z) = acos(z) + bsin(x).
Then

5 +3fy+ fo=(a+3b—a)cos(z) + (b+ 3a — b)sin(x) = 3bcos(x) + 3asin(x),

and that means that we can take b =1/3, a = 0, and fo(z) = §sin(x).

We conclude that a special solution of the inhomogeneous equation is
1
flx) = 3f1(x) + folz) = 32 — 18z + 48 + 5 sin(x).

Finally we discuss the method of variation of constants for linear differential equations
of order > 2; it does not, in fact, necessarily require that the coefficients are constant,
although the computations are often very difficult in general situations.

We consider the inhomogeneous equation

(2.5) y® a1y Y 4 a4 agy = b,
and we assume that a basis (fi,..., fx) of the space 8 of solutions of the homogeneous
equation

y P +apy® Y+t ay +agy =0
has been found (it may be any basis). We then search for a solution to (2.5) of the form
f(@) = z1(@) fix) + -+ 2e(2) fi(2),
where 21, ..., 2 are functions such that, moreover, we have
) filz) + -+ () fi(x) = 0
A@)fi(@) + -+ z(e) filx) = 0

A(@) @)+t @) T (@) = 0
12



for all . The justification for requiring these k — 1 extra constraints is that we need to
find £ different functions, and we may hope to succeed if they satisty k different equations;
one of these will be the original one (2.5), in combination with the & —1 extra conditions.
Indeed, one can prove that this method works.

The most important example is £ = 2. Write again f = 21 f1 + 22 f2, and the constraint

2 fi+ 2 fa = 0.

The reason this condition is useful is that we get by differentiation the formulas
=2 +znfotafi+afy=2afl +z2f
f"=all+2fh+afl +=af;,

and therefore

Y +ay +aoy = 21(fi +anfi +aofi) + 2(f) +aifs +aofz) + 21 f1 + 2 fa.

But f; and f; solve the homogeneous equation, and hence

Y +ary + agy = 21 f1 + 2 f5.

We conclude that z1, 25 lead to a solution of the inhomogeneous equation provided they
satisfy the equations

z1fi+25fa=0

{Zif{ vy =b
For any given value of z, this is a linear system of equations with unknowns (21 (z), 24(z)).
Once it is solved, we can obtain (in principle) the required functions z; and 2z, by com-
puting primitives of (2], 25). It is a fact that the determinant f; f; — f f2 of the system

will not vanish when solving this linear system of equations, corresponding to the fact
that (f1, f2) is a basis of the space § of solutions of the homogeneous equation.

EXAMPLE 2.4.9. We wish to solve the inhomogeneous equation

1
" /
+y — 6y = :
vy Y71 + 22
The roots of the companion polynomial X2+ X —6 are a; = 2 and ay = —3, so we search

for a solution of the type
f(z) = z1(2)e* + zo(x)e™™*
satisfying
24 (2)e* 4 zh(x)e 3 =0

for all . Substituting into the equation, we obtain the system

{zi (z)e** + 2b(x)e 3 =0

221 (x)e*® — 324 (z)e " = Hle.

The determinant is —be™*

zb given by

so is indeed never zero, and we find the solutions for z] and

6721
z(z) = 5(1+a2)
/ 8393
Z9 ZE) = —m
This means that a solution is
1 X —2t 1 T 3t
f(z) = —€2$J  _at- —6_35”[ < _ar.
5 o 1+t 5 o 1+t
13




2.5. An example: the harmonic oscillator

One of the most basic example of linear differential equation with constant coefficients
is given by the harmonic oscillator.

Case 1 (harmonic oscillator without friction). Here we have a particle with
mass m > 0 attached at the end of a vertical spring, moving without the effect of gravity
or of any friction. We measure its position along the axis of movement by a single function
y(t), where t is time, and where the origin of the y-axis refers to the equilibrium position.
Then the only force acting on the particle is the restoring force from the spring, which
is of the form F' = —ky for some coefficient £ > 0 that depends on the “strength” of the
spring.

The Newtonian equations of motion takes the form of the differential equation

or in other words x is solution of the homogeneous linear differential equation of order 1
given by

.k
y+—y=0.
m
Since k/m > 0, the real-valued solutions are of the forme
y(t) = acos(wt) + bsin(wt)
where w = 4/k/m, for some real numbers a and b. It is customary to rephrase this in the
form
y(t) = Acos(wt + ¢)
where A = (a® + b*)Y/2 and ¢ is some real number. The advantage of this formula is that
it clearly shows not only that the movement of the particle is periodic, with period 27 /w,
but also that its maximal amplitude (around the equilibrium position corresponding to
y=0)is A.
To see why this formula holds, note that

a2 b2
(3) () -2
so that there exists a real number ¢ such that cos(¢) = a/A and sin(p) = —b/A; we get
a cos(wt) + bsin(wt) = A(cos(p) cos(wt) — sin(p) sin(wt)) = A cos(wt + ¢).

Case 2 (damped harmonic oscillator). Suppose now that the particle also encoun-
ters resistance, and that this other force is proportional to velocity (this is an assumption
true in many cases, at least approximately). Then the Newton equation for y(¢) becomes

my = —by — ky,

where b > 0 is another parameter measuring the strength of the friction force. We write
this as

. b. Kk
y+—y+—y=0,
m m
which has companion polynomial X2 + %X + % There are correspondingly three cases,
depending on the sign of
b? — 4km

2

A =

m
14



If A > 0, a basis of the space 8§ of solutions is

yi(t) = exp((—% + %\/Z)t), ya(t) = exp((—i — %\/Z)t).

2m

Observe that the sum of the two solutions of the quadratic equation is —b/m < 0 and the
product is k/m > 0, so that both solutions of the quadratic equations are negative. This
means that, as t — +00, we have y;(t) — 0 and y,(t) — 0. Since the condition A > 0
corresponds to b “large”, the physical behavior is that the friction force is strong enough
to essentially bring the motion to a stop, without oscillations.

If A =0, there is a double root, and a basis of the space 8 of solutions is

yi(t) = eXp(_Qthn)’ yo(t) = texp(—;—;).

We have then also an exponentially fast “return to equilibrium” without oscillations.
If A <0, we get oscillatory functions as basis for the real solutions of the equation,
namely

bt bt \ .
y1(t) = exp(—%> cos(2/]A| 1) ya(t) = exp(—%> sin(2+/]A| t).
The solution can now, as above, be expressed in the form

y(t) = Aet/(2m) COS(%«/ Al t+ @),

(with A > 0 and ¢ € R). Since b > 0, the physical behavior is again return to equilibrium
due to friction, but in an oscillatory manner around the equilibrium position. Note that

the period 2m/(34/|Al) is larger than the period 27/(k/m) of the oscillator with the same
parameters but without friction.

2.6. Other methods

Besides the techniques described in the previous sections, it is useful to know two
other commong methods that can be helpful to solve certain differential equations that
are not of the type previously considered.

Change of variable. If a function f(z) is replaced by h(y) = f(g(y)), where g is a
“new variable”, then any equation satisfied by f corresponds to an equation satisfied by
h, and this equation may be simpler to solve, leading to a solution of the original one.

EXAMPLE 2.6.1. If we make the change of variable h(t) = f(e'), then we have relations
W) =T, W) = T + .
If, for instance, we try to solve z?y” + xy’ = y, for z > 0, then we see that his is
equivalent to

h"(t) = h(t)
for h(t) = f(e"). So the solutions are given by
h(t) = ae’ + be™
which means that

f(z) =ax + g

15



Separation of variable. Suppose that a differential equation of order 1 can be
written in the form (g(y))’ = b for some functions g and b (in other words, ¢'(y)y’ = b).
Then this can be solved by writing ¢g(f(z)) = B(z), where B is a primitive of b, and then
“inverting” g¢.

EXAMPLE 2.6.2. Consider the equation ey’ = z with z > 0. To say that f is a
solution means that the derivative of %ezf () is x, hence

1@ =22 g

for some constant a, or in other words

f(z) = %log(x2 + a).

16



CHAPTER 3

Differential calculus in R"

In this chapter, n and m are always integers > 1.

3.1. Introduction

We are interested in functions defined on subsets of R"™ which take values in R, or C,
or even in another space R™, where m > 1 is an integer.
Here are some basic examples of such functions that should be kept in mind.

(1) Linear maps f: R™ — R™, or in other words, functions defined by f(z) = Az,
where A is a matrix with n columns and m rows, and z is interpreted as a column
vector. For instance, for n = 2 and m = 1, one can consider f(z,y) =z + y for
(z,y) € R2. Slightly more generally, if in addition we fix 5 € R™, we can define
the affine-linear map f(z) = yo + Ax.

(2) Quadratic forms @: R™ — R, or in other words, functions of the type

n n
Qz) = Y > aijam;
i=1j=1

for all x = (z1,...,x,), where (a;;) are real numbers. For instance, for n = 2,
one can consider Q(x,y) = xy; for arbitrary n, one has the quadratic form
Q(z1,...,2n) =22 + - + 22,

(3) Polynomials in n variables: these generalize the previous two examples. Given
an integer d > 0, a polynomial in n variables of degree < d is a finite sum of
monomials of degree e < d, namely a finite sum of functions R* — R of the

type

(3.1) fxy,... zn) = azd - al

where the degree of the monomial, that is the integer
e=dy+---+dy,
satisfies e < d. For instance, the function
f(z,y,2) = 2° — 120y°2 + Y2

is a polynomial of degree 7. Example (1) (affine-linear maps) corresponds to

polynomials of degree < 1, and Example (2) to certain polynomials of degree 2.
(4) “Cartesian product” functions: two functions f;: R™ — R™ and fy: R" — R™

combine to produce a function f = (f1, f2): R" — R™ %2 defined by

f(@) = (fi(x), fa(2)).

An important point is that any function f: R" — R™ is a cartesian product
f=1(f1,..., fm) of functions f;: R™ — R, where f;(x) is just the i-th coordinate
of f(x) as a vector in R™. This means that many definitions and results for

17
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FIGURE 3.1. Graphs of f(z,y) = 2 + y* and f(z,y) = sin(32% + zy)

functions R"” — R™ may be reduced easily to the case m = 1 by considering
each coordinate separately.
Functions with separated variables: if fi, ..., f, are functions on R (or on a
subset of R, the same for each of them), we can define a function f: R" - R
by

f(xh s 7In) = fl(xl) T fn(xn)a

where the variables are “separated”. For instance, any monomial (3.1) is a
function with separated variables.

Composition of functions: given any function f: R®™ — R, and a function
g: R — R, we can consider the composition g o f. For instance, composing
the quadratic form

Q(a;l,...,xn)zx%—l—'--—i—xi

with the square root, one obtains

AJXTT A a2,

which is the euclidean norm (length from the origin to the point x € R™). Com-
posing with exp(—y), one gets
exp(—(2] + - a3))-

Note that this last function is a function with separated variables (but the eu-
clidean norm is not).

For functions f: R* — R, one can visualize the graph of f, which is

{(:Evya Z) eR’:z= f(x,y)}

as a surface in R? (see Figure 3.1 for two examples; using an interactive software is better
to understand such pictures, as one can manipulate the graph easily). This visualization
is not possible anymore when there are 3 variables or more. This is one reason why multi-
variable calculus is often more difficult to understand intuitively than the one-variable

REMARK 3.1.1. Another interesting visualization possibility concerns the case of

f: R?* — R? where one can show f(z) as a vector based at x, at least for a subset
of values of x. Figure 3.2 illustrates this for the function

flay) = (=" +y—Lz—y*+1).

18



F1GURE 3.2. Vector plot

3.2. Continuity in R”

The first notion that we want to generalize is that of a continuous function. To
follow the example of functions of one variable, we need first to recall the definition of

convergence and limit of a sequence (or of a function) in R".
We define

|zl = fat + -+ 2}

for x € R" (the norm of = in the euclidean space R™; see Section 1.2 in [1])). This
function satisfies the following properties:

||| = 0, and |z| = 0 if and only if z =0
[tz| = |t||x| for all t € R
|z +y| < |z + |y| (triangle inequality).
The definition of convergence on R™ is given in [1, Def. 2.6.1].
DEFINITION 3.2.1. Let (zg)ken where x, € R™. Write

T = (Tp1,s - - Thyn)-

Let y = (y1,...,yn) € R". We say that the sequence (z) converges to y as k — +o if
for all € > 0, there exists N > 1 such that for all n > N, we have

|zx =yl <e.

LEMMA 3.2.2. The sequence (xy) converges to y as k — +o0 if and only if one of the
following equivalent conditions holds:

(1) For each i, 1 < i < n, the sequence (xy;) of real numbers converges to y;.

(2) The sequence of real numbers |xx — y| converges to 0 as k — +o0.

PROOF. The equivalence of the two conditions is elementary: first, since
n
2 2 2
wns = uil® < D |y — yil* = e — I,
j=1

the second condition implies that x;; — y; for each i; conversely, if the first condition
holds, then

n
ok —yl? = Y lwwy — sl
j=1
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is the sum of n sequences, each converging to 0, hence converges to 0. The fact that these
are equivalent to the convergence of () to y is proved in [1, Satz 2.6.3]. O

We next extend the definition of continuity given in [1, Def. 3.2.1, 3.2.2].

DEFINITION 3.2.3. Let X c R" and f: X — R™.
(1) Let zp € X. We say that f is continuous at x if for all € > 0, there exists 0 > 0
such that, if = € X satisfies ||z — z¢|| < 0, then

| f(z) = fzo)| <&

(2) We say that f is continuous on X if it is continuous at xq for all 25 € X.

Similarly to [1, Satz 3.2.4], we can test if a function is continuous using sequences.

PROPOSITION 3.24. Let X < R" and f: X — R™. Let xg € X. The function f is
continuous at xy if and only if, for every sequence (ry)k=1 in X such that x, — xo as
k — +oo, the sequence (f(xy))k=1 in R™ converges to f(x).

From this proposition, we can immediately see that most functions that we encounter
are continuous.
In a similar way, we can define the limit of a function at a point (see [1, §3.10]).

DEFINITION 3.2.5. Let X <« R" and f: X — R™. Let 2o € X and y € R™. We say
that f has the limit y as x — xo with x % x( if for every € > 0, there exists o > 0, such
that for all x € X, x % x¢, such that ||z — z¢|| < J, we have ||f(x) — y| < e. We then
write

lim f(z) =y.

T—T(
z$x0

REMARK 3.2.6. In this definition, we could also remove the assumption that o € X,

because if xy ¢ X, we could always extend f to X u{zy} by, for instance, defining f(x¢) =
0.

The “sequence” test for this condition is:
PROPOSITION 3.2.7. Let X < R" and f: X — R™. Let xo € X and y € R™. We

have
Jm f(z) =y.
z$x0
if and only if, for every sequence (zy) in X such that xy — x as k — +0, and zy + xo,

the sequence (f(xy)) in R™ converges to y.

ExAMPLE 3.2.8. Let X <« R"” and f: X — R™. Let o € X. Then f is continuous
at xg if and only if

lim f(z) = f(xo)-

T—T0
x+x0

The easiest way to prove continuity is in general to use composition:

PROPOSITION 3.2.9. Let X <« R™, Y <« R™ and p > 1 an integer. Let f: X — Y
and g: Y — RP be continuous functions. Then the composite g o f is continuous.

PROOF. We apply Proposition 3.2.4. If (z;) is a sequence in X converging to x € X
in R”, then by continuity of f, the sequence (f(zx)) is a sequence in Y converging to
y = f(z). Then by continuity of g, the sequence (g(f(xx)) converges to g(f(x)). By
definition of g o f, this implies that g o f is continuous. U
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ExAMPLE 3.2.10. (1) Cartesian products of continuous functions are continuous: if
fi: R" - R™ and fy: R — R™ are continuous, then f = (f1, f2): R® — R™*™2 ig
also continuous. In particular, a function f: R®™ — R™ is continuous if and only if its
coordinates fi, ..., f,, are continuous. This follows from the definition and is left as an
exercise.

(2) Any linear map f: R™ — R™ is continuous. In particular, the identity map is
continuous. To see this, note that according to (1) it is enough to assume that m = 1.
Then there exist numbers a4, ..., a, such that

flxy, ... x,) = a1 + -+ - apxy,.

Let y = (y1,...,yn) € R™ and let (x;) be a sequence converging to y. Then, writing
xg = (Tp1,. .., Trn), we have xy; — y; for all ¢, and therefore it follows that a,xy; — a;y;,
and then that

flxr) = a1xpq + -+ + Ap@pn — a1y1 + -+ + ayn = f(y)

(see [1, Satz 2.1.8]: for convergent sequences, lim(ay + by) = lim ay + lim by,).

A similar argument shows that if f;: X — R™ and fy: X — R™ are continuous on
X, then f; + f5 is also continous. Alternatively, one can write f; + fo = ao(f1, f2), where
a: R™ x R™ — R™ is the addition map. Since a is linear and (f1, f2) is continuous, the
sum fj + fo is continuous by composition (Proposition 3.2.9).

(3) Functions with separated variables are continuous if the factors are continuous:
if f1, ..., fn are continuous functions on R (or on a subset of R, the same for each of
them), then f defined by

f(xla s ,.Tn) = f1(1’1> T fn(xn)
is continuous on R™. This follows easily from the rule

lim aib, = ab
k—+00
for convergent sequences ([1, Satz 2.1.8]).
(4) Combining addition and functions with separated variables, one deduces that
polynomials in zy, ..., z, are continuous.
(5) Similarly, using the rules

lim aib, = ab, lim ay/by = a/b
k—+00 k—+o0
when real numbers a;, — a and by — b, with b # 0 in the second case (again [1, Satz

2.1.8]), one checks that if f; and f, are continuous functions from X < R” to R, then
fife is continuous, and if moreover fo(z) 4 0 for all z € X, then f;/f, is continuous.
(6) Analogues of the previous results exist for limits of functions, for instance

lim (f(2) + g(2)) = lim f(z) + lim g(z), lim f(z)g(x) = lim f(z) lim g(z)

if both f and g have limits as z — .

(7) Suppose that f: R? — R is continuous. Then, if we fix a value yo € R, then
the function g defined on R by g(z) = f(z,y0) is continuous (for instance, it is the
composition of f and of the function x — (x,7,), which is continuous). However the
converse is not true. For instance, define

x ity >0
—x ify <O.

f(z,y) ={
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Then each function g(z) = f(z,y) is continuous, but f itself is not continuous. For
instance, we have f(1,0) = 1. However, the sequence (zx,yx) = (1,—1/k) converges to
(1,0) but we have f(1,—1/k) = —1 for any k > 1, which does not converge to 1.

One of the first difficulties in extending the definitions of Analysis I to functions of
n > 2 variables is that the sets on which they are defined can be much more complicated
than those used with one variable, which are often just intervals. For n = 2, one can draw
many different possible “two-dimensional” shapes, each of which is a possible definition
set for a function.

We need analogues of closed and compact intervals (Definitions 2.5.1 and 3.4.2 in [1]).

DEFINITION 3.2.11. (1) A subset X < R" is bounded if the set of ||z| for z € X is
bounded in R.

(2) A subset X < R" is closed if for every sequence (z) in X that converges in R”
to some vector y € R", we have y € X.

(3) A subset X < R™ is compact if it is bounded and closed.

EXAMPLE 3.2.12. (1) The empty set and R™ are both closed.
(2) Let » > 0 and o € R™. The open disc D = {z € R" : | — z¢| < r} is bounded
(since, by the triangle inequality, we have

|z < |z = zoll + o] <7 + [0l
for all z € D). It is not closed, since for instance the sequence
xp=x0+ (r—1/k,0,...,0) > 2o+ r

where xg +1r ¢ D.
(3) The closed disc A = {x € R" : |x — x| < r} is closed and bounded. Indeed, let

x, € A be a sequence that converges to y € R™. We have

\/(xm —201)2 + A+ (T — Ton)?2 <7
for all k and x; — y;. Taking k — +00, and using the property

(ar < a for all k) = li]1€rna;C <a

for converging sequences of real numbers, we deduce that

\/(91 —201)2 4+ (Yo — Top)? <7

so that y € A.

In particular, for n = 1, this means that a closed interval is a closed set. An interval
is compact if, furthermore, it is bounded.

(4) If X; < R™ and Xy, < R™ are bounded (resp. closed, resp. compact), then so is
X; x Xo < R"™™. In particular, the set

B=I5x-x1I,={(z,...,z,) e R" : z; € I}
is closed (resp. compact) if each interval I; is closed (resp. compact).

Using basic examples of closed sets as above, one can construct many more using the
following fundamental property:

ProrPosITION 3.2.13. Let f: R® — R™ be a continuous map. For any closed set
Y < R™, the set
f'Y)={zeR": f(x) e Y} c R"
18 closed.
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PROOF. Indeed, let X = f~1(Y). If (x) is a sequence in X that converges to y € R™,
then by continuity we get f(zx) — f(y). But then f(y) € Y because it is the limit of
f(xy) € Y and Y is closed. This means that y € f~1(Y). O

EXAMPLE 3.2.14. Let f: R® — R be a continuous function. The zero set Z = {x €
R"™ : f(xz) = 0} is closed in R™ because {0} < R is closed.
For instance for r» > 0, a circle or a sphere of radius r, defined by

{xeR?: |z — x| =1}, {reR’: |z — x| =1},

is closed.
Similarly, for any r > 0, the set

{reR" : |f(x)| < r}

is f7!([-r,r]), hence is closed since the interval [—r,r] is closed.
In practice, the closed sets that we will use will very often be of one of these forms.

The following Theorem generalizes Theorem 3.4.5 of [1] to more than one variable.

THEOREM 3.2.15. Let X < R™ be a non-empty compact set and f: X — R a contin-
uwous function. Then f is bounded and achieves its maximum and minimum, or in other
words, there exist x4 and x_ in X such that

flzy) =sup f(x),  flz-) = inf f(2).

zeX X

Another difficulty in working with functions of n > 2 variables is that for n > 2, the
notion of continuity (or of limit) is much stronger than in dimension 1. One intuitive
reason is that there are “many more ways” for a sequence to converge to x € R" than in
R.

For instance, all of the following sequences converge to (0,0) in R?, but the way they
do it is quite different:

(1) (Limit along a ray) Take (cos(f)/k,sin(0)/k), where § € R is fixed. All these
points are on the line with angle 6 from the x-axis.
(2) (Spiraling limit) Take (cos(k)/k,sin(k)/k); here the angle from the z-axis is k,
and there is no special direction of convergence.
A priori, the limit of f(z, yx) could exist but be different for each of these sequences, or
there could be limits in some directions but not others, the “spiraling” limit may or may
not exist even if the “ray” limits exist, etc.

EXAMPLE 3.2.16. Define f(0,0) = 0 and
__
f(x>y> - .%'2 +y2'

Note that f is continuous when defined on R?\{(0,0)}, since the denominator is contin-
uous and is never zero there.

Then
o i _ sin(f) cos(6)/k°
f(cos(6)/k, sin(0)/k) cos?(6) /k? + sin*(0) /k2

so the limit exists for every 6, but its value depends on 6. This implies in particular that
the function f is not continuous at (0,0), hence is not continuous on R™.
On the other hand, for the spiral, we get

f(cos(k)/k,sin(k)/k) = cos(k) sin(k)
23
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which has no limit as k — +o0.

3.3. Partial derivatives

We now consider the generalization of derivability in R™. In one variable, we restricted
to open intervals to define the derivative. The analogue in R" is the following:

DEFINITION 3.3.1. A subset X < R" is open if, for any = = (xy,...,x,) € X, there
exists 6 > 0 such that the set
{vy= 1, yn) e R" ¢ |x; — | <6 for all i}

is contained in X.

In other words: any point of R™ obtained by changing any coordinate of x by at most
0 is still in X.

The basic example to keep in mind is just X = R" (and one may assume at first that
this is the case for the definitions of partial derivatives and of the differential below).

The following proposition often leads to an easy way to show that a set is open:

PROPOSITION 3.3.2. A set X < R" is open if and only if the complement
Y={zeR":x¢X}
15 closed.
COROLLARY 3.3.3. If f: R" — R™ is continuous and Y < R™ is open, then f~1(Y)
15 open in R™.

PROOF. This is because the complement of f~(Y") is the set of points x € X such
that f(z) belongs to the complement of Y, which is closed according to the proposition,
so this follows from Proposition 3.2.13. O

The following examples are the most important open sets for us.

ExXAMPLE 3.3.4. (1) The empty set and R™ are open. In fact, they are the only
two sets in R™ that are both open and closed (this is intuitively reasonable, although a
rigorous proof requires some care).

(2) The open ball of center xy and radius r

D={zxeR": |z -z <r}

is open in R™. We can check this both using the definition and the corollary.
For the definition: let z € D and define s = |z — 20| < r. Put o = 5(r — s) > 0.
Then any z € R™ such that ||z|| < & satisfies

|2 + 2 — 20| < |lz — 2o + 2] < s+ <7
Define 6 = §o/+/n. If |x; — y;| < 6 for all 4, then putting z = y — z, we get
ly = 2| = V(1 — 202+ + (yo — 20)? < 6V/n =

so |y —zo| = |z + 2 — x| < 9.

Using the corollary, let f(x) = |z, which is a continuous function; then D = f~!(] —
r,7[), so it is open.

On the other hand, the closed ball A is not open: for instance, if we take z =
xo + (r,0,...,0), then for any 6 > 0, the point

SL’Q—F(T‘F(S,O,...,O)

is not in A.
(3) Let Iy, ..., I,, be open intervals in R. Then I; x --- x I, is open in R™.
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(4) Arguing as in Example (2), we see more generally that X < R" is open if and
only if, for any x € X, there exists § > 0 such that the open ball of center x and radius
0 is contained in X.

Now we can define partial derivatives.

DEFINITION 3.3.5. Let X < R"™ be an open set. Let f: X — R™ be a function. Let
1 < i <n. We say that f has a partial derivative on X with respect to the i-th variable,
or coordinate, if for all zg = (zo1,...,%0,) € X, the function defined by

g(t) = f(zo1,. .., Toi—1,t, Z0it1,- - Ton)
on the set
I={teR : (o1, - ,%0i-1,t,%0it1,---,Ton) € X}
is differentiable at t = xq;. Its derivative ¢'(xo;) at zo,; is denoted

0
(%fi (zo), O f(mo),  Oif(zo).

Intuitively, this definition means that we “freeze” all variables except the i-th one, and
consider the derivative of the corresponding function of one variable. We recall once more
that if m > 2, so that g(t) = (¢1(¢), ..., gm(t)) for some real-valued functions g;: I — R,
then g is differentiable if and only if all g; are differentiable, and that

g ) = (i), ., g(1)).

REMARK 3.3.6. (1) Note that by definition of an open set, the set I always contains
an open interval containing x;, so that it makes sense to ask that g be differentiable at
X0y

(2) The notation 0., f can sometimes be confusing. It is important to remember that
here x; refers to a variable, and not to a specific real value. This is especially a problem
when one writes a value of the partial derivative at a point: in

azlf(llll, c. ,xn),
we think of z; in the partial derivative as a variable (indicating for which variable we
compute the derivative), but we think of (xy,...,x,) as a point in R™ where we evaluate

the partial derivative. Writing 0; f(x) is sometimes clearer for this reason.

It follows immediately from the definition that partial derivatives have all the prop-
erties of the usual derivative of a function of one variable.

PROPOSITION 3.3.7. Consider X < R™ open and f, g functions from X to R™. Let
1<i<n.

(1) If f and g have partial derivatives with respect to the i-th coordinate on X, then
f + g also does, and

(2) If m = 1, and if f and g have partial derivatives with respect to the i-th coordinate
on X, then fg also does and

Oz:(f9) = 0u,(f) g + [0, (9).

Furthermore, if g(x) £ 0 for all x € X, then f/g has a partial derivative with respect to
the i-th coordinate on X, with

00:(f/9) = (02:(f) 9 — £02,(9)) /9.
Moreover, computing partial derivatives is as easy as computing ordinary derivatives.
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ExXAMPLE 3.3.8. (1) Let f be linear from R™ to R. Then if we write
flz, ..o xn) =z + -+ + apy,
then we see that
@f(a:) =a

forall ze R" and 1 <7 <n.
(2) Let f be a function with separated variables, say

fl@) = fi(z1) - fulzn).

If each f; is differentiable on R, then f has partial derivatives, which are

Oif(x) = fa(zr) - fica (i) fi (i) fisa (iga) -+ fulon)
(so all partial derivatives also have separated variables).
(3) Let f(x,y,z) = cos(zy?2®) — 1222, Then we have
Oof = —y?27 sin(xy?2?) — 24x
Oyf = —2xyz"sin(zy®2?)
0.f = —3xy*2? sin(zy?2?).
(4) Let f(x,y) be the function of Example 3.2.16. Since f(0,y) = f(z,0) = 0, we
obtain the partial derivatives 0, f(0,0) = ,f(0,0) = 0.

DEFINITION 3.3.9. Let X < R" open and f: X — R™ a function with partial
derivatives on X. Write
f(@) = (A(2), ..., fm(@)).

Jp(x) = (axjfi(x))lliigm

<J<n

with m rows and n columns is called the Jacobi matrixz of f at x.

For any z € X, the matrix

EXAMPLE 3.3.10. Let f: R? — R3 be defined by

cos(x? + y)
Flay) = | e -1
v+t =

241

(the variables (z,y) should be thought of as a column vector). Then the function has
partial derivatives, and for any (z,y) € R?, the Jacobi matrix is

—2x sin(az2 + y) — sin(x2 + y)
Jf (SL’, y) — Y COS(?T{Ey)GSin(Tmy) T COS(,R_Iy)esin(wxy)
[ra22 1

(the first column has the partial derivatives with respect to x, and the second with respect

to y).
If we want to evaluate this at some point, say (1,0), we obtain

—2sin(1) —sin(1)
Jr(1,0) = 0 -7
5 1
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As is clear from examples, often the partial derivatives 0, f of a function themselves
admit partial derivatives 0,,(0,,f), and so on. Some of thee notation that are used for
multiple partial derivatives are:

0ur(0ur]) = 012 o

= <,
0x;0x;

2
- 0x?
DEFINITION 3.3.11 (Gradient, Divergence). Let X < R™ be open.

(1) Let f: X — R be a function. If all partial derivatives of f exist at xo € X, then
the column vector
azlf(xo)

axnf(xO)
is called the gradient of f at x, and is denoted V f(zy).
(2) Let f = (f1,---, fn): X — R™ be a function with values in R™ such that all partial
derivatives of all coordinates f; of f exist at xy € X. Then the real number

TI‘(Jf(IEQ)) = 2 az1f2($0)7

axz(axjf) = axi,xjf

the trace of the Jacobi matrix, is called the divergence of f at xg, and is denoted

div(f)(zo).
3.4. The differential

Although partial derivatives are very easy to define and compute, their existence is
not the correct analogue of differentiability. To be more precise, we want this analogue to
provide a way to approximate a function by a linear map, just as the fact that a function
f: R — R is differentiable with derivative a at 0 means that

f(z) = f(0) + az + E(x)

where the “error” E(x) has the property that lim, o F(z)/x = 0, so that the affine-linear
map g(z) = f(0) + ax = f(0) + f(0)z is a good approximation to f(z) when z is close
to 0.

If we consider a function f: R® — R with n > 2, the problem is that d,, f(0), for
instance, only gives some information on how f behaves when the first variable tends to
0, the others being fixed. It is quite believable that, for certain functions, we will not be
able to deduce an approximation for f(z) when z is close to 0 from the approximations
along the coordinate axes!

ExAMPLE 3.4.1. (1) Let f(z,y) be the function of Examples 3.2.16 and 3.3.8. We
have seen that 0, f(0,0) = ,f(0,0) = 0, but from Example 3.2.16, the function f is not
continuous at (0,0)! So the partial derivatives can not be combined in any reasonable
manner to give a good approximation of f for (z,y) close to (0,0).

(2) Let g: R* — R be defined by ¢(0,0) = 0 and

Yy

x,Y) = —F——

(see Figure 3.3 for its graph). This function is now continuous at (0,0) because, for
(2,9)  (0,0), we have

1 2 2
s + 1
o) < 25 L rera g

NEETE
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FIGURE 3.3. Graph of g(x,y) = xy/+/2? + y?

as (z,y) — (0,0). Since g(x,0) = ¢g(0,y) = 0, the partial derivatives exist and are both 0
again. But if we compute g(r cos(),rsin(f)) as r — 0, corresponding to approximating
g along a line with angle # with respect to the x axis, then we get for r > 0 the formula

r? cos(6) sin(0)

which is a linear approximation, in terms of r, but one that cannot be constructed
reasonably from the values of the partial derivatives.

g(rcos(0),rsin(f)) = = rcos(0) sin(0),

It turns out that the correct definition of the generalization of differentiability is to

take the approximation property as the defining condition.

DEFINITION 3.4.2. Let X < R" be open and f: X — R be a function. Let u be a
linear map R™ — R™ and 2y € X. We say that f is differentiable at xo with differential
u if

) 1
lim ————(f(z) — f(zo) — u(z — o)) = 0
1250 |z — o

where the limit is in R™. We then denote df (zo) = u.
If f is differentiable at every xy € X, then we say that f is differentiable on X.

This definition means that, close to xy, we can approximate f(z) by the affine-linear
function g: R™ — R™ defined by
g(z) = f(x0) + ulz — x0),

with an error that becomes much smaller than |z — x| as x gets close to .

REMARK 3.4.3. (1) If we write

flx) = (filx),..., fm(z))
and similarly write
u(x) = (ur(z), ..., un(x))
where fi, ..., f, are functions X — R and uy, ..., u,, are linear maps R" — R, then
the definition of limit shows that f is differentiable with differential u if and only if, for
each i, the function f; is differentiable with differential w;.
Furthermore, a linear map u: R™ — R (or linear form) has the simple form
(1, .. Tn) = 1T+ 0+ ATy
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for some coefficients aq, ..., a, in R. So, in the case m = 1, the approximation for f(x)
is

f(zo) + a1y + - -+ + apxy,
and depends only on the n numbers (a4, ...,a,). These are the analogues of the single
derivative f’(xg) when n = 1, and we will see that these coefficients are just the values

of the partial derivatives of f at x.
(2) Suppose n =1 and m = 1. Then the definition is equivalent to

o T@ = F@) —ale—w @) = )
gt T — T T x—@

where a is the (unique) coefficient representing the linear map u: R — R (because
| — xo| = |z — x| and a function tends to 0 if and only if its absolute value does).
In other words, f is differentiable according to the definition above if and only if f is
differentiable at xy in the sense of Analysis I, with derivative f'(zg) = a.

The following proposition shows that differentiable functions have some good proper-
ties: they are continuous, and have partial derivatives, which can be computed easily in
terms of the differential.

PROPOSITION 3.4.4. Let X < R" be open and f: X — R™ be a function that is
differentiable on X.

(1) The function f is continuous on X.
(2) The function f admits partial derivatives on X with respect to each variable.
(3) Assume that m = 1. Let xg € X, and let
w(Ty, . &y) = a1 + -+ + ATy
be the differential of f at xo. We then have

amf(x()) = @
for1<i<n.

PROOF. (1) Let xg € X. For = £ x, write
f(x) = flzo) + u(z — xo) + E(x)

for some E(z) € R. According to the definition, we have

lim E(z)

7,
=0 |7 — o

which implies that E(z) — 0 as  — x. Since u is continuous and u(0) = 0, we deduce
that

lim f(z) = f(zo),

T—xTo
which means that f is continuous on X.

(2) and (3): we consider only the case n = 2, m = 1 and ¢ = 1 for simplicity, using
(x,y) for the coordinates. Let (xo,40) € X. We define E(z,y) by

f(x,y) = f(zo,90) + ar(z — 20) + az(y — vo) + E(z,y).

It follows that if we put y = yo and vary x only, we have

— FE
f(ﬂl?,yo) f(x07y0) — a4+ 0+ (fUa’yo)_
T — Zo T — Zo
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Since |x — x| = ||(z,y) — (20, yo)||, the definition implies that
E
lim ({E, yO)

z—-T0 T — T

f(%yo) - f($07y0)

=0,

and therefore

lim = a,
z—T0 x — X
which means that the partial derivative 0, f exists at (xg,yo) and is equal to a;. U

ExAMPLE 3.4.5. (1) The simplest example of a differentiable function is an affine
linear function
f(z) = yo +u(x)
where yo € R™ and u: R™ — R™ is linear. Indeed, since f(zg) = yo + u(zo), we get

f(@) = yo +u(z) = f(zo) + u(z — o)

which means that f is differentiable at all xy, with differential df (x¢) = w, independent
of Zo.

(2) Consider the function g: R? — R of Example 3.4.1 (2). This is not differentiable
at (0,0). Indeed, if it were, then since the two partial derivatives at (0,0) are equal to 0
(as we saw earlier), the proposition shows that the differential u = df(0,0) would be the
zero linear map. But then we find that

1 9(z,y) Y
|(z,9)] [yl 2?+y?

and from Example 3.2.16, this quantity does not have a limit as (z,y) — (0,0).

(3) Consider the case m = 1 in general. If a function f: X — R is differentiable, then
according to Proposition 3.4.4 (3), its differential at x is the linear map u: R™ — R
such that

n
of

wu(ty, ..., tn) = To)t;

(10000ot0) = 35 7o)
for all t = (¢;) € R™. A convenient way to represent this is to write

u(t) = Vf(l'o) 1,

where V f(xzq) is the gradient of f at zg, and x - y denotes the scalar product of two
vectors:

Ty =T+ -+ TplYn.
The affine linear map that approximates f is then

9(x) = f(xo) + Vf(z0) - (x — o).

The next issue is to know when a function is differentiable and to construct more
differentiable functions (they would not be useful if they didn’t exist). For this purpose,
there are two basic results: (1) showing that various operations preserve differentiability;
(2) giving a supply of functions for which it is easy to know that they are differentiable.

PROPOSITION 3.4.6. Let X < R"™ be open, f: X — R™ and g: X — R™ differentiable
functions on X.

(1) The function f + g is differentiable with differential d(f + g) = df + dg, and if
m = 1, then fg is differentiable.

(2) If m =1 and if g(x) + 0 for all x € X, then f/g is differentiable.

The next proposition immediately implies that most elementary functions are differ-
entiable:
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PROPOSITION 3.4.7. Let X < R" be open, f: X — R™ a function on X. If f has all
partial deriwatives on X, and if the partial derivatives of f are continuous on X, then f
15 differentiable on X, with differential determined by its partial derivatives, in the sense
that the matriz of the differential df (zo), with respect to the canonical basis of R™ and
R™, is the Jacobi matriz of f at xg.

EXAMPLE 3.4.8. (1) Let n = 2, m = 1 and consider f(z,y) = cos(z + y?) — xev.
Pick (xg,y0) = (7/4,0). The function f is differentiable on R? because its has partial
derivatives and Jacobi matrix

Ji(z,y) = (—sin(z + y?) — ¥, —2ysin(z + y*) — ze¥)

where the components are continuous functions on R2.
At (z0,y0), the Jacobi matrix becomes

Jp(m/4,0) = (—sin(n/4) — 1,0 — w/4) = —(1 + 1/v/2, 7/4).
so that the differential u = df (xq, o) is the linear form
u(z,y) = —(1+1/vV2)z + my/4,
and the affine-linear approximation g(x,y) to f(x,y) close to (zo,yo) is given by
NOE 1 T T
9(@,y) = f(7/4,0) + u(z — z0,y — o) = - 1 (1 + 7§> (x— Z> + Zy

(2) Any polynomial in n variables is differentiable on R". Its partial derivatives are
also polynomials in n variables.

(3) If fi, ..., [ are functions of class C* on R (so that their derivatives are defined
and continuous), then the function

is differentiable on R".

The other important rule about differentiable functions is the chain rule.

PROPOSITION 3.4.9 (Chain rule). Let X < R"™ be open, ¥ < R™ be open, and
let f: X - Y and g:' Y — RP be differentiable functions. Then go f: X — RP 1is
differentiable on X, and for any x € X, its differential is given by the composition

d(g o f)(wo) = dg(f(w0)) o df (wo).

In particular, the Jacobi matrix satisfies

Jgor(w0) = J4(f(0)) I (20)
where the right-hand side s a matrix product.

EXAMPLE 3.4.10. (1) To see this formula concretely, assume n = m = p = 2, and

write £y = (;;Em’w)  glue) = (gl(u,v))

xZ, y) g2 (u7 U)'
Then the Jacobi matrices are

. Oz f1 ayfl o Ougi  Ougi
Trle,y) = <(7zf2 Oyf2)’ Tolw,v) = Jug2 Ovg2)
The matrix product J,J; gives us the Jacobi matrix of g o f, namely

J (x y) _ auglamfl + (%glamfg auglayfl + avglayf2
gof i &uQQarfl + &fug2azf2 (3ugg(9yf1 + angany ’
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When evaluating such a Jacobi matrix at a given point xg, it must be remembered that all
partial derivatives of f are evaluated at x(, and all partial derivatives of g are evaluated
at yo = f(xo).

(2) Suppose p = 1, so that go f is real-valued. For the partial derivative of go f with
respect to 1, for instance, we get

dgof), . 09, \0f o9 , .\ 0fs AN
axl (l’o) - ayl (y())&xl (ZE()) + ayQ (y0> &xl ([L'()) + + aym (y()) axl ($0)7
or in other words
Agof), \ 9%, \0f
axl ('xO) - ; ay] (yO) axl (IL'Q),

where yo = f(z¢) and the variables in R™ are (y1,...,Ym).

(A way to remember the formula is to think that the j-th coordinate variable y; in the
“denominator” of the partial derivative for g corresponds to the “numerator” f;, which
is the j-th coordinate of f).

(3) Let f, g: R* — R be two functions. Define h(z,y) = (f(x,y),g(x,y)) and
m(u,v) = uv, so that mo h(z,y) = f(z,y)g(x,y). The Jacobi matrices of h and m are

nte) = (G5 ) g = o

(the Jacobi matrix for m is just a row vector). It follows therefore that

M =00, f + ud,g,
ox

evaluated at (z,y), which (since we must replace u and v by the coordinates of h(z,y))
means that

% = g(l" y)axf<l’,y) + f(xa y>axg(xv y),

a formula that we can recognize as the Leibniz rule.

(4) Let I < R be an open interval. Consider f: I — R™ and g: R™ — R, so that
the composite is a function go f: I — R. If f is differentiable on I (which means that
each component is a differentiable function of one variable) and if ¢ is differentiable on
R™, then go f is differentiable on I, and its derivative, which is just the partial derivative
with respect to the only variable is determined by

(go f)(t) = dg(f(t) ['(t),

i.e., the linear map dg(f(t)): R™ — R (whose coefficients are the partial derivatives of
g), applied to the vector f'(t) € R™. If we write f(t) = (fi(t),..., fm(t)), this is just

iy _ 09 / g /
(go f)(t) = a_yl(f(t>)fl(t) +oo ay_m<f(t>)fm(t>‘
Another convenient expression as a scalar product is just
(go f) () =Vg(f®)) f').
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FIGURE 3.4. Graph of f(z,y) = 4/1 — 22 — y? and tangent space at (1/2,1/3)

FIGURE 3.5. Graph of g(x,y) = xy/4/1 — 22 — y? and horizontal plane

DEFINITION 3.4.11. Let X < R"™ be open and f: X — R™ a function that is differ-
entiable. Let xg € X and u = df(x() be the differential of f at zq. The graph of the affine
linear approximation

9(x) = f(zo) + u(z — o)
from R" to R™, or in other words the set
{(z,y) e R" x R™ : y = f(x0) + u(z — o)
is called the tangent space at z( to the graph of f.

The tangent space at a point generalizes the tangent line for the graph of a function
of one variable. It is the affine subspace in R™ that is “the best” fit to the graph of the
function f around xy. It is an affine space of dimension n, since it can be parameterized
by z € R"™, which determines uniquely the corresponding point y = f(zg) + u(x — xo)
such that (z,y) belongs to the tangent space.

We can also write the points of the tangent space in the form

(z,y) = (w0, f(w0)) + (7 — 20, u(r — 20))

which shows that it is the set of points (xg, y9) + w, where w belongs to the graph of w,
which is a linear subspace of dimension n in R"™. We say that this linear subspace is
the linear subspace parallel to the tangent space at xg.

ExAaMPLE 3.4.12. (1) Figure 3.4 illustrates (from two different angles) the graph of

the function
flzy) =v1—a% =y
(which is demi-sphere of radius 1 centered at (0,0)) and the tangent space at the point
(z,y) = (1/2,1/3).
(2) Consider again the function g(z,y) = xy/+/x? + y? of Example 3.4.5. Figure 3.5
shows the graph of ¢ and the horizontal plane z = 0 in R? that “would be” the tangent
plane if the function was differentiable at (0, 0).
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(3) Define

flx,y) = a? + 2

Let (xo,y0) = (3,4). The tangent plane to the graph of f at the point (z¢,yo) is the set
of all (z,y,2) in R3 such that

We have f(3,4) = /9 + 16 = 5, and the gradient at an arbitrary point is given by

Vf(:c,y) = < m2y+y2)

so that V f(zo,v0) = (3/5,4/5). The equation of the tangent plane becomes
z2=5+3(x—3)/5+4(y—4)/5.

If a function is differentiable at a point zy € R", one meaning of the linear map
u = df (zo) is that the value u(v), for a vector v € R", gives the “directional derivative”
in the direction v, in the sense of the following definition:

DEFINITION 3.4.13. Let X < R”™ be an open set and let f: X — R™ be a function.
Let v € R™ be a non-zero vector and xg € X. We say that f has directional derivative
w € R™ in the direction v, if the function g defined on the set

I={teR :zy+tve X}
by
g(t) = f(zo + tv)
has a derivative at ¢t = 0, and this is equal to w.

In other words, this means that the limit

f(zo + tv) — f(x0)

exists and is equal to w.

REMARK 3.4.14. It is easy to see that because X is open, the set I contains an open
interval | — 0, 0 for some § > 0, so that the derivability of g at ¢ = 0 makes sense.

PROPOSITION 3.4.15. Let X < R™ be an open set and let f: X — R™ be a differen-
tiable function. Then for any x € X and non-zero v € R"™, the function f has a directional
derivative at xo in the direction v, equal to df (xq)(v).

REMARK 3.4.16. (1) What is important to notice in this proposition, is that the
values of the directional derivatives are linear with respect to the vector v. So if we know
the directional derivatives w; and wsy in directions v; and vy, then it follows that the
directional derivative in direction v; + vy 1S Wy + ws.

(2) If we take v to be the vector e; of the canonical basis of R™, then the directional
derivative in direction e; is simply the partial derivative with respect to the i-th variable.

EXAMPLE 3.4.17. (1) Consider the function g(z,y) = zy/+/2? + y? of Example 3.4.5,
(2). Although it is not differentiable at (0, 0), it has directional derivatives in all directions
(u,v) £ (0,0), since g(0,0) = 0 and

g(tu,tv) — 9(070) _ uv

t Vu2 + 02
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FIGURE 3.6. Directional derivative

(In fact, this is just g(u,v)). But this expression is not linear with respect to (u,v).

(2) Suppose that m = 1. Then the directional derivative in direction u is a real number
which has the following geometric meaning: intersect the graph of f in R"*! with the
plane perpendicular to the hyperplane R™ = R™ x {0}, which passes through (z,0) and
(2o +v,0). This gives a set I which is the graph of the function g(t) = f(xq + tv). Now,
if v has length 1, then the slope of the tangent line to I' at (zo, f(z¢)) is equal to the
directional derivative at that point.

For instance, define f(z,y) = cos(zy) and consider the point (0, —1) and the direction
(1,1). Figure 3.6 displays the graph and the corresponding perpendicular plane.

We now suppose m = 1. Let f: X — R be differentiable, and let o € X. The
tangent space at xy to the graph of f is the set of (z,y) € R"™ x R such that

y = f(xo) + Vf(20) - (x — 20).
This is an affine space of dimension n, and the corresponding linear subspace in R" is
the graph of the linear map

7> T f(20) -2,

in other words the set of all (z,y) € R™ x R such that y = Vf(xy) - . A good way to
visualize or interpret this linear space is to observe that it is the set of vectors orthogonal
to the vector

no = (=Vf(x),1) e R" x R.
Indeed, we have

y—Vf(zo) x = (z,y) no

where the right-hand side is now a scalar product in R"*!,

The gradient has another important interpretation, which generalizes the fact that
for a function of one variable, the sign of the derivative indicates whether the function is
(locally) increasing or decreasing. Precisely, suppose that the gradient vector V f(xg) is
non-zero. Then the vector wy = V f(zo) points in the “direction of greatest increase” of
the function f. In other words, it points in the direction where the directional derivative
is the largest. This follows from the fact that

f(z) — f(zo) = Vf(xo) - (x — o) + (small error)
and that we know (Cauchy-Schwarz inequality) that

[V f (o) - (z = wo)| < |V f(z0)| |2 = ol = [woll [z = o]
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FIGURE 3.7. Some level curves of f(x,y) = 2° — zy + 2y

with equality if x — xq is proportional to wgy, which corresponds to varying x in the
direction of wy.

Another way to see this is in terms of directional derivatives. Let v € R™ be a vector
of length one. If we remember that the scalar product of two vectors in R" is the product
of their lengths with the cosine of the angle, the directional derivative of f in the direction
v at g is

Vf(xo) - v =[Vf(xo)| cos(0)

where 6 € [0, 7] is the angle between the gradient and the direction v. This is maximal
when 6 = 0, which means that v is proportional to V f(zo).

EXAMPLE 3.4.18. Think of the graph of f: R? — R as giving the height of a mountain
above the point with coordinates (x,y) of the map of a region of the earth. Then the
gradient V f(zo) is a vector in R?, and it points in the direction in which the height grows
faster: if one wants to climb the slope as quickly as possible, one should walk always in
the direction of the gradient.

Yet another related geometric property of the gradient is that it is perpendicular to
the “level sets” determined by an equation of the form f(z) = ¢, where ¢ € R is a fixed
real number.

To be more precise, fix ¢, and denote by L, the set of all x € X where f(z) = ¢. Let
xo € L. be any point in this set. Then, for any differentiable function of one variable
v:]—1,1[— R" such that f(v(t)) = ¢ for all t € I and 7(0) = x¢, the gradient V f(zy) is
orthogonal in R™ to the vector 4/(0), which is “tangent” to the level set. This is simply
because, by the Chain Rule, we have the relation

0= (f29)(0) = Vf(zo) - 7'(0).

EXAMPLE 3.4.19. The simplest example is f(z,y) = 2* + y*>. Then the level sets L.
are empty if ¢ < 0, a single point if ¢ = 0, and a circle of radius 4/c if ¢ > 0. In this
last case, the gradient vector at any point of L. is (2x,2y), and therefore points in the
direction orthogonal to the circle.
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3.5. Higher derivatives

We can often straightforwardly compute partial derivatives of a function f: R™ — R™,
and check that not only they exist, and are continuous, but also themselves admit further
continuous partial derivatives, etc. This leads naturally to the notion of function of class
Ck,

DEFINITION 3.5.1. Let X < R" be open and f: X — R™.

We say that f is of class C! if f is differentiable on X and all its partial derivatives
are continuous. The set of functions of class C' from X to R™ is denoted C'(X; R™).

Let k& > 2. We say, by induction, that f is of class C* if it is differentiable and each
partial derivative 0,,f: X — R™ is of class C*~1. The set of functions of class C* from
X to R™ is denoted C*(X;R™).

If feCFX;R™) for all k > 1, then we say that f is of class C*. The set of such
functions is denoted C*(X;R™).

In practical terms, this means that one has to check all possible combinations of k
derivatives, with respect to any combination of k variables, and always obtain continuous
functions.

EXAMPLE 3.5.2. (1) If f(z) = (fi(z),..., fm(x)), then f is of class C* if and only if
each f; is of class C*.

(2) If f, g are of class C*, then so is f + g; if m = 1, then so is fg, and if g(z) £ 0
for all z € X, then so is f/g of class C*.

(3) If f(x) = fi(x1) - fulx,) has separated variables, and if f; is of class C*, then f
is of class C*.

(4) Any polynomial in n variables is of class C™.

(5) Any partial derivative is a linear operation on the functions.

(6) Suppose that f is of class C*, and that f(X) < Y, where Y < R™ is open, and
that g: Y — RP? is also of class C*. Then the composite g o f is also of class C*. This
follows, by induction on k, from the chain rule that expresses partial derivatives of g o f
in terms of partial derivatives of f and g.

Suppose that k = 2. Then, in order to show that a function f is of class C?, we first
check that f is differentiable with continuous partial derivatives. There are n such checks
to make since f has m partial derivatives. Next there are apparently n? second order
derivatives, namely

aarl (aanf)’ axl (amf)? e azl (aznf)a

until

awn(ax1f>’ aﬂ?n(a$2f)’ axn(aznf)-

However, if we do it in practice, we see that these derivatives are not independent at

all.

EXAMPLE 3.5.3. Let f(x,y) = e V¥ for z € R, y > 0. Then

V(@) = (~2uy/yexp(—a®Vy), =3 exp(~a*\/y)).
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Now we compute the four partial derivatives of order 2:

O f = —2y/yexp(—a®y) +4a*y exp(—o* )

3

Ouyf = _\/i? exp(—mQ\/gj) + \x/—g exp(—xZ\/@

_E s L
Oyef = \/@exp( w\/§)+\/yexp( °\/Y)
2 fL’4

_ T 2 2
Opf = 1 exp(—z°\/y) + I exp(—z°,\/y).
We see here that d,, f = 0y f. This is a general fact.

PROPOSITION 3.5.4 (Mixed derivatives commute). Let k > 2. Let X < R"™ be open
and let f: X — R™ be a function of class C*. Then the partial derivatives of order k
are independent of the order in which the partial derivatives are taken: for any variables
x and y, we have

aa?,yf = ay,xfa

and for any variables x, y, z, we have

aac,y,zf = a:t,z,yf = ay,z,:lcf = az,ac,yf =
etc...

EXAMPLE 3.5.5. (1) To convince oneself that this should be true, it is best to look at
a monomial first. Say
flz,y,2) = 2%y’2".
Then
Opyf = abz® 'y 2% =0, . f
and
Oayoof = abez®lyt=1ze71

is the same however we order x, y and z when taking the derivatives.

(2) Let k = 2. In order to ensure that d,,f = 0,.f, it is essential to know that f
is of class C? (so that all partial derivatives of order 2 are continuous), and there are
counterexamples otherwise. For instance, one can easily check that

2 2
f<x,y>:%y§”, (,9) £0,  f(0,0)=0

defines a function R? — R which is differentiable (with V f(0,0) = 0) and admits partial
derivatives of order < 2, but at (0,0), we have

Ory f(0,0) =1, Oy f(0,0) = —1.
In polar coordinates, we have f(z,y) = rsin(46)/4.

Because of the symmetry, we introduce a more compact notation for mixed derivatives
of “large order”. If we want to take a derivative of order k, we select the first variable (say
x;, ), compute the partial derivative, then select a second (say x;,), compute the second
derivative Oy, 4, , etc, up to the iy-th variable. But, provided Proposition 3.5.4 applies

(i.e., f is of class C*), the resulting partial derivative

Qv Oxy Oy, f

SCZ‘k
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FIGURE 3.8. Function with non-symmetric mixed second derivatives

only depends on how many times we took the derivative with respect to each variable. In

other words, let m; be the number of indices j such that i; = 1, ..., m, be the number
of j such that i; = n. Then

axik axik—l o axllf az;nl,a:;nz ----- m"f
Let m = (myq,...,my). This is a vector of non-negative integers, with

my 4+ m, =k

(since, in total, we have taken k derivatives). We may use any of the following notation
for these expressions:

k
Oy f = L —omp— pmp—omy

~ ozm

REMARK 3.5.6. The linearity of the partial derivatives means that
O (afy + bfs) = ady fi + b fo
whenever both partial derivatives on the right-hand side exist.

EXAMPLE 3.5.7. Suppose n = 3 and k = 4. There are then 15 possible derivatives of
order 4, corresponding to the tuples

m=(4,0,0), m=(3,1,0), m=(3,0,1), m=(2,2,0), m=(2,1,1)

m=(2,0,2), m=(130), m=(121), m=(11,2), m=(1,0,3)

m=(0,4,0), m=(0,3,1), m=(0,22), m=(0,1,3), m=(0,0,4).
For instance, m = (1, 1,2) corresponds to the derivative

otf
0xoyd?z

ExXAMPLE 3.5.8. (Laplace operator) Let X be open in R™, and let f € C*(X). The
gradient of f belongs to C''(X;R™), so we can compute its divergence (Definition 3.3.11).
We obtain

N0 /0f 0% f
di _ (55) =255
This differential expression is called the Laplacian of f, and is denoted Af.
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For the case k = 2, m = 1, we organize in a matrix the partial derivatives of order 2
of a function X — R, namely the derivatives

2 f
ﬁxi(?xj ’
where 1 < i, < n. For a function f of class C?, this matrix will be symmetric.

DEFINITION 3.5.9 (Hessian). Let X < R"™ be open and f: X — R a C? function.
For x € X, the Hessian matriz of f at x is the symmetric square matrix

Hess¢(z) = (a$i@jf)1$i,j<n'

We also sometimes write simply Hy(x).

EXAMPLE 3.5.10. Let n = 3 and f(z,y,2) = 2’y — cos(xz?). Then we compute
Oof = 2xy + 2 sin(xz®), 0,f =%, 0.f = 3w2”sin(v2?)
and then we obtain the Hessian by further differentiation

2y + 25 cos(z2?) 2z 32%sin(xz%) + 22° cos(x2?)
Hess¢(z,y,2) = 2z 0 0
32%sin(x2?) + 22%cos(z2®) 0 6rzzsin(rz®) + 92225 cos(z23)

3.6. Change of variable

An important application of the chain rule concerns the computation of partial deriva-
tives after a change of variable. Here we have an open set U < R" (with variables that
we write (y1,...,Yn), the “new” variables) and a change of variable g: U — X is a map
that expresses the variables (z1,...,x,) in terms of (yi,...,y,), i.e., we consider

*Tl:gl(yla-"?yn)a xn:gn(yh?yn)

We should think of g as something “fixed” and very standard (such as going to polar
coordinates, or to spherical coordinates, etc).

Whenever a function f: X — R is given, the composite h = fog: U — R is the
function f expressed in terms of the “new” variables y.

The chain rule then provides a way to express all partial derivatives of A in terms of
those of f, and of the Jacobian matrix of the change of variable g. For instance

aylh: a_f%++a_f%
dxy iy 0z Oy

Here, since we think that ¢ is fixed, the corresponding partial derivatives are known
quantities.

There are very common abuses of notation that may be very confusing at first, but
that are extremely convenient:

(1) one thinks of f and h as being the same function, simply expressed in different
coordinate systems, and one writes simply

o o, o e

opf == : .
ylf 0xy 0y oxy, 0y
(2) one thinks of g; as being the variable x;, expressed in terms of the new variables
(y1,--.,Yn), and replaces g; by z;, so the expression becomes
of 0z, of 0wy,
aZ/1f = A

0xy Oy d, Oy
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REMARK 3.6.1. The first of these two simplification is very natural if we think of a
function like “the distance to the origin”, which we can describe without referring to any
particular choice of coordinate system.

The point of a change of variable is often to go back and forth, and one can solve for
y in terms of z, and write down the corresponding relations

of oy of Oy
g oz " Gy, om1

In practice, this can be done by solving the linear system of equations represented by the
chain rule.

amf =

EXAMPLE 3.6.2. One of the most important example is the change of variable to
polar coordinates in R?. The polar coordinates are (r,6) € U =]0, +o0[ xR (or sometimes
U =]0,40o0[x[0,27[) and they parameterize the plane minus the origin (0,0) by

x =rcosf

y = rsinf.
In other words, we consider the map

g: U - R?

such that g(r,8) = (rcosf,rsinf), and to express a function f: R* — R in polar coor-
dinates means replacing f by h = fog: U — R, so that

h(r,0) = f(rcosf,rsin).

The Jacobian matrix of the change of variable is given by

Jg(ﬂ 6) — (COSQ —7rsin 9)

sinf rcosf

(with determinant 7). The chain rule leads to the formulas

Orh = cos(8)0, f + sin(0)o, f
Oph = —rsin(6)0, f + rcos(0)0, f

(where all partial derivatives of f are evaluated implicitly at (r cos @, rsin#).) This is also
often expressed as

royh = x0, f +yo, f
Oph = —yO,f + 20, f.

With the short-hand notation discussed earlier, this becomes

Tarf = xawf + yayf
Oof = —youf + a0, f.

Solving for 0, f and d, f, we obtain the relations
O f = cos(0)0,h — 1S.in(H)élgh
r
1
Oyf = sin(60)o.h + . cos(0)dgh
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(where all partial derivatives of h are evaluated implicitly at (x,y) such that x = rcos#,
y =rsind), or

(3.2) Ouf = cos(0)0,f — - sin(6)d, f
r

(3.3) Oyf =sin(0)o, f + % cos(8) 0 f

in abbreviated form.

One can iterate applying these partial derivatives to obtain expressions for higher
derivatives. For instance, let us compute the Laplace operator

Af = df + 0 f
in polar coordinates (see Example 3.5.8). Using the formula (3.2) twice, we have
Or f = cos(0)0.(0sf) — = sin(6)dy(0 )
r
= cos(0)0, (cos(@)é‘rf - % sin(6 )69f> ! sin(#)dg (Cos(e)é’rf - % sin(@)é’gf).

Computing further these expressions, this gives

Op2f = cos(@){cos(ﬁ)&rzf + %sin(@)(?gf - %sin(&)ﬁrgf}
- % sin(@){— sin(0)0, f + cos(0)0ro f — % cos(0)gf — % sin(&)ﬁng}
= cos?(0)0,2 f + %cos( )sin(0)0p f — 2cos(@) sin(0)0,o f + %sin2(0)8rf + %sinQ(ﬁ)ﬁng.

A similar computation using instead (3.3) twice gives the formula

2 1
Opf = sin2(9)8rzf—ﬁ cos(0) sin(0 )@9f+ cos(6) sin(@)@rgf—i—; cos?(0)0, f+ cos?(0)0g2 f.
We conclude that (for a C? function f), we have
1 1.,
Op2 f + 8y2f =0f + ;&f + T—Qase f
We look at a concrete example. Let f(z,y) = exp(z? + y?). The corresponding

expression in polar coordinates is h(r,6) = exp(r?). We can compute the gradient of f
and Af using the polar coordinates by writing

Of_ O\ _ (cos(0)0.h —r~tsin(0)dph
f= oyf ) \sin(0)d,.h + r~'cos(0)dgh
_ (2rcosfexp(r 2) 2z exp(z® + y?)
~ \ 2rsinfexp(r?) 2y exp(a® + y?)
and

1 ]. 2 2 2 2 2 2
Af=0nf+=0f+500f =02(e")+2¢" = (2+4r%)e” +2¢" = 4(1+a" +y°)e” TV
r r
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3.7. Taylor polynomials

We consider in this section the case m = 1, and a function f: X — R. The affine-
linear approximation for f(x) when z is close to a point zq € X involves only the first
derivatives of f, and is given by T} f(z — xo;x¢), where T} f(y; zo) is the function on R"™
such that

Ty 20) = fa0) + V) -y = Flan) + 3 L (o)

i=1 0

As a function of y, this is a polynomial of degree < 1 (it is of degree exactly 1 unless
V f(xg) is zero).

In the case n = 1, we know that we obtain better approximations to a function
when considering higher derivatives, and building the Taylor polynomials of the function,
defined by

f// T f(k:) T
T (3:20) = (ao) + ooy + L0y T e
in the sense that
f(x) = Tif(x — xo; ) + (remainder)
with, roughly speaking, a remainder that is much smaller than |z — z|* when z — x.
The same is true in general, but the Taylor polynomials have now n variables.

DEFINITION 3.7.1 (Taylor polynomials). Let & > 1 be an integer. Let f: X — R be
a function of class C* on X, and fix g € X. The k-th Taylor polynomial of f at the
point x is the polynomial in n variables of degree < k given by

n

T f (y; w0) = f(xo) + Z gf.

i=1 ¢

(x(])yi I

1 o*
+ D, J (wo)yy™ -y

e ale ! ox] oxm

where the last sum ranges over the tuples of n non-negative integers such that the sum
is k.

This seems a complicated formula, but comparing with the previous section, this
means that the polynomial is a sum of monomials

1 o f

m1 Mn
o)y -y
m1!~-mn!8x?“~-(9x;”"( Jvi "

where 7 runs over all integers with 0 < j < k, and for a given j, we consider all possible
partial derivatives of order j (so that m; + --- 4+ m,, = j) with the factorial coefficient.
Moreover, with clever notation, we can simplify this a lot. First, for any n-tuple

m = (myq,...,my,) of non-negative integers, we define |m| = m; +- - -+ m,, and we denote
m! =mq!---my!
and moreover, for variables v, ..., y,, we denote by y™ the monomial

Y=ty
Then using the abbreviated notation for partial derivatives from the previous section, we
can write

1
Tefm) = Y, ol f )y
Im|<k
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(by convention, the 0-th partial derivative is just the function f itself, and (0,...,0)! =
0l =1).

EXAMPLE 3.7.2. For k = 1, we recover the affine-linear map
Ty f(y; w0) = f(wo) + Z Oz, f (w0)y

For k = 2, we obtain a polynomial of degree < 2 which is

T f(y; zo) = f(o +Zacczf To)yi + 25 [ @)yl + Y O F@0)yiy,.

I<i<j<n

The term of order 2 corresponds to the partial derivatives of order 2, in other words to
the tuples (my,...,m,) with my; + -+ + m,, = 2. Indeed, two cases can arise:

(1) either all except one m; are zero, and m; = 2, in which case we obtain the second
derivative with respect to x; taken twice, with coefficient 1/m! = 1/2! = 1/2.

(2) or two of the m;’s are non-zero, equal to 1, and all others are zero; assume that
m; = 1 and m; = 1 with ¢ < j, then we get the partial derivative 0,,,, with
coefficient 1/m! = 1/(1!1!) = 1.

Another way to express this second term (and to remember it) is to notice that

1
—Za 2f ZE() yz + 2 a xO yzyj §yt Hessf(xo)y

I<i<j<sn

where 3 is the transpose of the column vector y. Hence we can express the second Taylor
polynomial concisely in the form

Flao) +Vf(ro) -y + 59" Hess(w)y

for y e R™.
For instance, take n = 2, and suppose that

Hess(z) = (Z Z) :
1

1 b 1 1
§yt Hessf(zo)y = 5(91 y2) (Z d> <z;> = anf + byry2 + idyi

Then

The following statement indicates one way that Taylor polynomials give a better and
better approximation to a function of class C* (there are more precise versions, but we
will not need them).

PROPOSITION 3.7.3 (Taylor approximation). Let k > 1 be an integer. Let X < R" be
open and f: X — R be a function of class C*. For xy in X, if we define Eyf(x;xq) by

f(x) = Tp f(x — m0; 20) + B f (5 70)

then we have

E 5
R
3% T — o]

For k = 2, this means that for a function of class C?, we have
1 1
lim ——— (f(@) = (f(wo) + VF(w0) - (v = m0) + 5 (@ = )" Hess (zo)(w — 20)) ) = 0.

) A
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FIGURE 3.9. f(z,y) and its approximations of order 1 and 2

EXAMPLE 3.7.4. Take n = 2 and f(z,y) = ¢** @) around the point (0,0) where
f(0,0) =€ = 1.
The gradient is

_ (3= ycos(ay)) exp(3z — sin(xy))
Vir,y) = ( —x cos(zy) exp(3z — sin(zy)) )

so that Vf(0,0) = (3

0>. The Hessian matrix is

_ _3z—sin(zy) [ @ b
Hessf(z,y) = e (b d)

with
a = y*sin(zy) + (3 — ycos(zy))?
b = —cos(zy) + zysin(xy) — x cos(zy)(3 — y cos(zy))
d = 2*sin(xy) + 2% cos(xy)?,
so that

Hess¢(0,0) = (_91 _01>

Hence the first order approximation at (x,y) close to (0,0) is
a(x,y) =1+ 3z

and the second-order approximation at (x,y) is

922
g(z,y) =Tof (x,y;(0,0)) =1+ 3z + 5~

As a numerical illustration, we find that

f(=0.0015,0.003) ~ 0.99551458963514434461139384694367021911
a(—0.0015,0.003) = 0.9955
9(—0.0015,0.003) = 0.995514625

so the precision has increased considerably (the difference goes from ~ 1.46 - 107> to

~ 3.5-107%).
Figure 3.9 displays the graph of f, as well as that of a and g over [—2,2] x [-2,2].
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3.8. Critical points

Recall that for a function of 1 variable, an important application of the derivative is its
use for finding extrema of a function, using the necessary criterion that if a differentiable
function f has a local maximum or minimum at a point x that is not a boundary of an
interval, we have f'(z) = 0.

PROPOSITION 3.8.1. Let X < R"™ be open and f: X — R a differentiable function.
If xg € X is such that
f(y) < f(xo) for all y close enough to zg (local maximum at )
or
f(y) = f(xo) for all y close enough to zy (local minimum at x).
Then we have df (zg) = 0, or in other words V f(xo) = 0, or equivalently

0

forl1 <i<n.
PROOF. Let 1 < ¢ < n. Define
g(t) = f(wo + te;)

for ¢ such that x¢ + te; € X (this contains an open interval around 0 since X is open).
Then g has a local extremum at ¢ = 0 by construction, and is differentiable, so ¢'(t) =
axlf(x(]) = 0. O

This proposition justifies the following definition:

DEFINITION 3.8.2 (Critical point). Let X < R™ be open and f: X — R a differen-
tiable function. A point zy € X such that V f(zg) = 0 is called a critical point of the
function f.

Proposition 3.8.1 is enough to determine the maximum and minimum of a function
of more than one variable in many cases. One issue requires some care however: the
existence of a point where a continuous function f: X — R is maximal or minimal is not
automatic if X < R" is open.

Such points do exist, however, if f is defined on a set X that is compact (Defini-
tion 3.2.11), namely if the set X is bounded and closed. But the necessary condition of
Proposition 3.8.1 does not apply in this case. The most common strategy is be in such a
situation (a continuous function defined on a compact set X), so that a maximum and a
minimum are known to exist, and to have a decomposition

X =XuUB,

where X is open and B is a “boundary” part. Suppose then that the restriction of f to
the open set X is differentiable. Then, if the maximum or minimum of f is reached in a
point of X, this must be a critical point of the restriction of f to X. One can attempt to
compute all these points, and evaluate f at these points to determine where the extremal
points are. One must in any case also evaluate f on the boundary B in order to compare

the values there, which might be larger (or smaller) than the values at the critical points
in X.

REMARK 3.8.3. This problem already occurs with one variable, where one must check
the values f(a) and f(b) to find the maximum of a continuous function f: [a,b] — R,
and not only the points x €]a, b[ where f'(x) = 0.

46



EXAMPLE 3.8.4. Let X be the square [0,1] x [0,1] in R? and f(z,y) = 2? — 24>
The set X is compact, and X = X U B, where X is the open set |0, 1[x]0, 1[, and B the
boundary of the square, which is itself the union of four line segments.

The function f is differentiable on X, and its gradient is

viwn - (%)

so that the only critical point is (0,0), where f(0,0) = 0. It is already clear that this is
not the maximum, or the minimum, of f on X.
On the boundary B, we compute

fl@,0)=2%  flz,1)=2"-2,  f(0,y)=-2"  f(lLy) =1-2y"
The maximal values of f on these four segments are respectively
1, -1, -2 1
and the minimal values are
0, -2, -2, -1

We conclude that the maximum of f on X is equal to 1 = f(1,0), and that the minimum

is —2 = £(0,1).

In the case n = 1, the most convenient sufficient criterion for the existence of a local
extremum at a point x where f’(z) = 0 is that the second derivative f”(x) at this point
should exist and be non-zero. Its sign then indicates whether x is a local maximum (if
f"(z) < 0) or minimum (f”(x) > 0). The analogue question for n > 2 is more delicate. It
is natural to think that the second partial derivatives (hence the Hessian matrix) should
play the role of the second derivative, but the non-vanishing of Hess¢(xg) is not enough
to have a local extremum if n > 2, as the following important example shows.

ExAMPLE 3.8.5. Let n = 2 and f(z,y) = xy. Then Vf(z) = (y,x), so the only
critical point is (0,0), where f(0,0) = 0. We have

Hess¢(0,0) = ((1) é)

which is non-zero, but nevertheless, the critical point (0,0) is not a local maximum
(since f(z,z) = 2z* > f(0,0) for = arbitrarily small) and is not a local minimum (since
f(x,—x) = —2? < £(0,0) for x arbitrarily small).

This phenomenon reflects the fact that there is one line (namely, y = z) in which the
restriction of the function has graph a downward parabola, and another (namely y = —x)
in which it is an upward parabola. Such situations are called “saddle points”.

DEFINITION 3.8.6 (Non-degenerate critical point). Let X < R™ be open and f: X —
R a function of class C?. A critical point x9 € X of f is called non-degenerate if the
Hessian matrix has non-zero determinant.

For a non-degenerate critical point zy of f: X — R, we can classify the behavior of
the function f around xy in terms of the signs of the eigenvalues of the Hessian matrix.
Recall, from linear algebra, that if a symmetric matrix H of size n is non-degenerate (has
det(H) % 0), then it is diagonalizable, with non-zero real eigenvalues, in an orthonormal
basis of R™. Let p (resp. ¢) be the number of positive (resp. negative) eigenvalues of H.
There exists an orthogonal basis (vy,...,v,) of R™ such that, for

y=tivy + -+ t,v, € R",
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FIGURE 3.10. f(x,y) = xy

we have

yHy =ti+--+t -t — =t
where it is perfectly possible that p = n (in which case, there are no terms with minus
sign) or ¢ = n (in which case, there are no terms with plus sign).

The coefficients tq, ..., t, are given by linear functions

t’i = E’i(yla s 7yn)

if y = (y1,...,yn) € R™ Since Vf(zo) = 0 (it is a critical point), the second Taylor
polynomial of f at xq is then given by

Flao) + 59 Hessywo)y = Flo) + 5 (L0 4+ L)~ fn®)’ =+~ Lpra9)?).

When z is very close to xg, the function f(x) is approximated very closely by

f(zo) + %(ﬁl(x —20) + A+ (1 — 20)* — lpyr(x — 30)? — - — Ly (T — x0)2>,

and in particular the sign of f(x) — f(x), which tells us whether z is a local maximum,
or minimum, or neither, is the same as the sign of

G+ + 0(y)? = b1 (y)® — - — lpig(y)?

This is very easy to determine, because when x — z( is in the direction of v;, which
means when only ¢;(z — z¢) is non-zero, and all other /;(x — x() are zero, we get the
approximation

Ci(r —x0)%, if1<i<p, —li(z —m0)?,  ifp+1<i<n.

If both of these cases occur for suitable choices of 7, then there will be negative as well as
positive values of f(z) — f(zg). So a local extremum is only possible if p = n or ¢ = n.

COROLLARY 3.8.7. Let X < R" be open and f: X — R a function of class C?. Let
xo be a non-degenerate critical point of f. Let p and q be the number of positive and
negative eigenvalues of Hessz(x).

(1) If p = n, equivalently if ¢ = 0, the function f has a local minimum at x.

(2) If ¢ = n, equivalently if p = 0, the function f has a local maximum at x.

(3) Otherwise, equivalently if pq % 0, the function f does not have a local extremum
at xg. One then says that f has a saddle point at xy.

REMARK 3.8.8. (1) The condition p = n means that the Hessian matrix H at zg
is a positive definite symmetric matrix (and ¢ = n means that it is a negative definite
matrix). This also means that y*Hy > 0 for any non-zero vector y € R". When pq + 0,
the Hessian is also said to be indefinite.
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(2) From linear algebra, we know an often convenient criterion for a symmetric matrix
A = (a;;)1<ij<n to be positive definite: this is so if and only if the n submatrices
Ar = (ig)1<ij<

for 1 < k < n, have positive determinant. (For negative definite matrices, apply this to
the opposite matrix; be careful that det(—Ax) + — det(Ax) unless the size of the matrix
is odd!) For instance, when n = 2, a matrix

(i 3)
b d
is positive definite if and only if
a>0, ad — b > 0.
It is negative definite if and only if
a <0, ad — b* > 0,

and indefinite if and only if ad — > < 0 (note that if a = 0, then the determinant is
—b* < 0 since a = b = 0 is not possible for an invertible matrix).

For the Hessian matrix at a critical point zy of a C? function f: R? — R, these
conditions become

o f 02 f

% f % f 2
Faalm) >0 e g — (55 ) >0
for a local minimum at xg, or
% f 0% f 0% f 0% f 2
Fal) <0 T = (55 @) >0
for a local minimum at xq, or

OXf  Of O f 2
Sz 53() = (5,3 (m)) <0

for a saddle point.
If n = 3, the matrix

N

I
o oQ
SR 0

~ 0 o

is positive definite if and only if
a>0, ae —b* > 0, det(A) > 0.

(3) If pq is non-zero, the description with the Taylor polynomial is much more precise:
it tells us that f behaves like a downward parabola in the directions corresponding to vy,
..., Up, and like an upward parabola in the directions vp41,. .., Uy.

ExAMPLE 3.8.9. (1) Consider again the function f(x,y) = zy on R? at the critical
point (0,0), as in Example 3.8.5. Since it is a polynomial of degree 2, it is in fact equal to
its second Taylor polynomial; the critical point is non-degenerate since det(Hess;(0,0)) =
—1. An orthogonal basis of eigenvectors is (vy,v9) with v; = (1,1) (where H(v;) = v;)
and vy = (1,—1) (where H(vg) = —vy). The expression

1/1 , 1 ,
f@) =y =5 (5@ +9)? - 5@—v)?)
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FIGURE 3.11. The graph of e«*@=% 4+ 22 and its behavior close to (0, )

corresponds to our previous discussion, and we recover the directions y = z and y = —x
where f has different behavior.
(2) Take n = 2 and

flzy) = e ey
for (z,y) € X =] — 4,4[?. The gradient is

_ (—sin(z — y) exp(cos(z — y)) + 2z
Vi(z,y) = ( sin(x — y) exp(cos(x — y)) ) '

The critical points are determined by V f(zg,%) = 0. The second equation becomes
sin(zg — yo) = 0, from which the first transforms to zy = 0, and hence sin(yg) = 0. We
conclude that the critical points in the indicated region are z; = (0,0), zo = (0,7) and
T3 = (0, —T )

The Hessian is

20
Hess¢(z,y) = (0 O)

L peosa—y) (T cos(x —y) +sin?(x —y)  cos(x —y) —sin?(z — y)
cos(x —y) —sin*(z —y) —cos(z —y) +sin’*(x —y) )"

The values Hy, Hs, H3 of the Hessian of f at these three critical points are given
respectively by

2—e e 24!t —e!
m=(o ) meme (05 )
The matrix H; is indefinite (the determinant being —2e < 0), but Hy and Hj are positive
definite (since 2 + e~! > 0 and the determinant is 2/e > 0). So (0,7) and (0, —) are

local minimum of f, while (0,0) is a saddle point.
It is interesting to note from the graphs that this is not so obvious!

REMARK 3.8.10. If z is a degenerate critical point, the Hessian does not allow us
to conclude anything concerning local extrema at zo: there could be one (either a local
maximum or local minimum) or not.

For instance, take fi(z,y) = 2* + 3, fo(z,y) = 2* —y* and f3(x,y) = —2* —y*. The
gradient of any of these functions vanishes if and only if (z,y) = (0,0), and f;(0,0) =
f2(0,0) = f3(0,0) = 0. In all three cases, we also have Hessy, (0,0) = 0, so the information
provided by the Hessian is the same. However, it is immediate that (0,0) is a local
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FIGURE 3.12. The behavior close to (0,0)

minimum of f; (even a global one), a local maximum of f3, and that f; has a saddle
point at (0,0).

3.9. Lagrange multipliers

A common type of optimization problem does not simply asks for the maximum (or
minimum) of a function, but adds constraints to the values of the variable. For instance,
we might want to solve a problem like “what is the largest value of f(x) if = is constrained
to satisfy an equation g(x) = 07.

ExAMPLE 3.9.1. Let (a,b, c) € R? be non-zero, and let (a, 3,7) € R?, also non-zero.
We want to find the maximum of the quadratic form

Q(z,y,2) = ar® + by* + cz*
for (z,y, z) such that |(z,y,2)|| < 1 and
ax + By + vz = 0.

Geometrically, we intersect the sphere of radius 1 in R? with a plane and we try to
maximize Q(x,y, z) on the intersection.

One idea to solve such a problem (which is often sufficient) is to parameterize the set
of solutions of the constraint g(z) = 0 in terms of new variables (say u, so that x = h(u)
describes the set of solutions of g(x) = 0), and to maximize the function f(h(u)) for u in
the set of parameters.

This method is often complicated because there is no simple parameterization of
the solutions of g(z) = 0, or because the parameterization will destroy some natural
symmetry of the problem, with the effect that the calculations become more complicated
than they should.

The method of Lagrange multipliers can be used to solved this constrained maximiza-
tion problems without involving a parameterization of the solution set.
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PROPOSITION 3.9.2. Let X < R"™ be open and let f: X — R and g: X — R be
functions of class C'. If xg € X is a local extremum of the function f restricted to the
set

Y={xeX : g(x)=0}
then either Vg(xo) = 0, or there ezists A\g € R such that

V f(z0) = AVg(zo)
9(900) =

or in other words, there exists A\ such that (xo, \) is a critical point of the differentiable
function h: X x R — R defined by

W, A) = f(x) = Ag(x).

Such a value X\ is called a Lagrange multiplier at xg.

INTUITIVE EXPLANATION. Suppose there is a local extremum satisfying the con-
straint at xy and that Vg(xg) £ 0. If we “move” x around z, staying in the solution set
of the equation g(x) = 0, which means moving perpendicularly to the gradient Vg(zo),
the function f varies approximately by (z — x¢) - V f(xo). This will take values both
positive and negative, unless all variations x — xy are orthogonal to V f(z(). But all these
possible variations represent the vectors orthogonal to Vg(zg), so the conclusion is that,
for a local extremum, the gradients of f and g at xq are linearly dependent. And since
Vg(zo) £ 0 by assumption, this means that there exists A € R such that

V f(xo) = AVg(xp).
Ol

Compared to the problem of finding critical points of f (which has n equations
ox;f(xy) = 0 and n unknowns), we have here n + 1 equations and n + 1 unknowns.
Note that the values of the Lagrange multipliers A is usually irrelevant to the final prob-
lem: they are just auxiliary quantities that are useful to find the local extrema.

As in the case of Proposition 3.8.1, it is important to remember that the solutions of
the equations for Lagrange multipliers are only candidates for local extrema. As in the
previous situation, we still need to check whether they are indeed extrema or not, and we
may often need to handle a “boundary” component when f is defined on a set X that is
compact, and is expressed as X u B with X open, and B the boundary.

REMARK 3.9.3. (1) Suppose that f is defined and continuous on a compact set X =
X u B. If the function g defining the constraint g(z) = 0 is also continuous, then the
intersection

Y=Xn{reX : g(x)=0}

is still a compact subset of R™ (indeed, it is bounded, as it is contained in X, and it is the
intersection of two closed sets — the second because g is continuous —, and it is elementary
from Definition 3.2.11 that the intersection of two closed sets is closed). By restriction,
f defines a continuous function f|Y: Y — R, and in particular Theorem 3.2.15 applies
to f|Y, which shows that f has a maximum and a minimum on Y.

Suppose now that f is defined on R", which is not compact. Then there is another
important case in which the existence of a maximum and minimum for the constrained
problem is ensured: this is so if the set Y defined by g(x) = 0 is itself compact, since then
we are maximizing or minimizing the continuous function f on this compact set. And
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since g is continuous, the set Y is always closed, and therefore the question is whether it
is bounded or not, which can often be determined very easily.

(2) Before deciding to use Lagrange multipliers, it is useful to check if some other
method could apply, since the difficulty of the computations may vary a lot depending
on the approach.

(3) The critical points of f on X are obvious candidates for local extrema of f re-
stricted to Y, if they happen to be elements of Y. They occur in Proposition 3.9.2
precisely when the Lagrange multiplier A is zero, since in that case the equation becomes
V f(xo) = 0 (in addition to g(zo) = 0).

ExAMPLE 3.9.4. (1) Consider the problem of maximizing f(x,y) = 22 + 3zy — y>
on the circle of radius 1 in R?. The circle is compact, so we know that there exists a
maximum. The circle is represented by the constraint g(z,y) = 0 with g(z,y) = 2?+y*—1.

Since Vg(x,y) = 0 only if (x,y) = 0, for which ¢g(z,y) % 1, only the case of a Lagrange
multiplier can occur in Proposition 3.9.2. So we write down the equations

22+’ =1
dr 4+ 3y — 222 =0
3z — 2y —2y\ = 0.
The last two equations are linear with respect to z and y and have only the zero solution,
which is incompatible with the first equation, unless the determinant is zero. This is
—(4—20\)(24+2)) — 9 = 4)\* — 4\ — 17.
The discriminant of this equation is 288 = 25 - 32, so the solutions are

_A+12v2 143v2 o d4-12v2  1-3V2

9 =

1

8 2 8 2
Writing = —3/(4 — 2)), we obtain the possible values for y, namely
4 —2\
y== :
(4—-2X)2+9
which gives, for the two values of A, two values of y each, namely
+y; = +0.382683432365089771 - - -, +y, = +£0.923879532511286756 - - - .

One can check that y? + y2 = 1, so the corresponding values of z for a given y are + the
“other” value of y. Taking all possibilities of the sign into account, this shows that the
maximum and minimum are taken at one of the values

W201),  (=v2mn), (w2 =), (=2, —11)
(Wiy2), (i, —v2),  (=y,92),  (=y1, —v2)-
In fact, since f(—x,—y) = f(z,y), we only need to check the first two values of each row,

and for these we obtain

1
Sy y1) = 3 f(=y2,y1) = 2.621320343559642 - - -

1
f(y152) = —1.621320343559642 - f(y1, —p2) = 5

(In fact, in this case, we have f(—y2,y1) = A\ and f(y1,y2) = Ao, but this is a coincidence.)
In that case, it is however much simpler to represent the circle by the parameterization
(cos @, sin f), since this reduces the problem to maximizing or minimizing the function

f(cosf,sinf) = 2cos?f + 3cosfsinf — sin?@ = 2 + 3sinH(cos § — sin ).
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Simply by differentiating, we find that the extreme values are achieved for § = /8
(maximum) or # = 57/8 (minimum).

(2) Consider the maximum and minimum of the function f(z,y,2) = 2 —y? with the
constraint g(x,y, z) = 0, where g(z,y, 2) = * + 2y? + 322 — 1. Here the set of solutions of
g(z,y,2) = 0is closed, since g is continuous, and it is bounded since 2% < 2%+ 2y*+ 322 =
1, and similarly 292 < 1 and 322 < 1 for any solution. Since f is also continuous, we
know that there exist a maximum and a minimum.

The gradient of g is

Vy(z,y,2) = (2z,4y, 62)

and doesn’t vanish when g(x,y,z) = 0. So we look for the Lagrange multipliers. The
equations V f(x,y, z) = A\Vg(z,y,2) and g(z,y,z) = 0 are

2 = 2\x
—2y =4\y
0=06Az

2?2 +292+322-1=0.
The third equation shows that either A = 0 or z = 0. In the first case, this implies
that # = y = 0, and therefore z = +1/4/3, giving two possibilities p; = (0,0,1/4/3) and
P2 = (0,0, —1/4/3). We have
f(p1) = f(p2) = 0.

If z = 0, then the equations for z and y become

201—=XNz =0
—2(1-2\N)y =0
2%+ 2% = 1.
The first equation shows that either x = 0 or A = 1. If x = 0, then we have the solutions
with A = 1/2, y = +1/+/2, in other words ps = (0,1/+/2,0), ps = (0, —1/+/2,0). Then
1
Flps) = fpa) = =35

Finally if A = 1, then the second equation shows that y = 0, and the third gives the
solutions ps = (1,0,0) and pg = (—1,0,0). Since

f(ps) = f(ps) = 1,
we conclude that the maximum of f with the constraint g = 0 is 1, and the minimum is
—1/2.
(3) Here is an example with n arbitrarily large. Fix (yi,...,v,) € R™ non-zero. We
want to maximize and minimize the function

f(xla"'axn):$1y1+"'+xnyn

(which is in fact a linear function of x), subject to the constraint 22 + - -- + 22 = 1. This
constraint defines a compact set, so we know that the maximum exists.

Since Vg(z) = (2z1,...,2x,) is non-zero for all x satisfying g(z) = 0, we solve the
Lagrange multiplier equations. These are

Yi = 2\x; forl<i<gn
S R S
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Since y + 0, we have A £ 0 from any of the first n equations. Then these equations state
that x; = y;/(2X) for 1 <4 < n. It follows that

F) = gy + o 2)

On the other hand, the last equation shows that

1
W(y%+--~+yi)=1,

and hence there are two solutions for A, namely

1
= i_'
2|yl
We find the values x = +y/(2||y|), and
1
fla) = +—= =(yi+ o yn) = YRy = £y
yi+ -ty

Hence the constrained maximum of f is |y| and the constrained minimum is —|y|.
If we now consider an arbitrary vector x # 0, and replace it with = z/|z|, which
satisfies the constraint g(Z) = 0, the result implies by homogeneity that

—lzllyl < 211 + - + gy < 2]yl

This is the Cauchy-Schwarz inequality that we have recovered as a case of constrained
optimization!

3.10. The inverse and implicit functions theorems

We finish this chapter by stating without proofs two important theoretical results
that are often used in the study of functions of more than 1 variable, and of their level
sets.

The first result is the analogue of the fact that a differentiable function f: I — R
defined on an interval is bijective from I to its image if its derivative is always > 0 (or
always < 0). In other words, we want conditions that ensure that a function f: X — R"
can be used as a change of variable, i.e., that we can recover x uniquely from the value

f().

DEFINITION 3.10.1 (Change of variable). Let X < R"™ be open and f: X — R" be
differentiable. Let o € X. We say that f is a change of variable around z if there is a
radius r > 0 such that the restriction of f to the ball

B={zeR": |z —x <r}

of radius r around z( has the property that the image Y = f(B) is open in R", and if
there is a differentiable map ¢: Y — B such that fog =1Idy and go f = Idp.

Note that this definition is local: we do not require the existence of an inverse g for
f defined everywhere. For a given y € Y, there could well exist an element x € X, not in
B, such that f(x) =y.
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THEOREM 3.10.2 (Inverse function theorem). Let X < R™ be open and f: X — R"
be differentiable. If xo € X is such that det(J¢(xo)) + 0, i.e., such that the Jacobian
matriz of f at xq is invertible, then f is a change of variable around xy. Moreover, the
Jacobian of g at xq is determined by

(3.4) Jg(f(x0)) = Jy(z0) .
In addition, if f is of class C*, then g is of class C*.

In contrast to the case n = 1, there is no easy condition to ensure that f is a “global”
change of variable: this must be investigated case by case.

It is easy to see that the requirement that det Jr(xzg) + 0 is necessary for such a
statement, and also to see that the formula (3.4) must be true if f is a change of variable.
Indeed, if we assume that there exists g differentiable such that g o f = Id, then by the
chain rule, it follows that

Jo(f(z0)) - Jf(20) = Jua(w0) = 1n,
the identity matrix of size n (because the identity function is linear, so is its own differ-
ential). This formula implies that J¢(z,) is invertible with inverse J,(f(xo)).

ExXAMPLE 3.10.3. (1) Consider the function
fz,y) = (sin(zy), e* +y).
Then

e’ 1

Jy(a,y) = (y cos(zy) xcos<xy>)

with determinant
det J¢(z,y) = ycos(xy) — xe® cos(zy) = cos(xy)(y — ze®).

This means that f is a change of variable around (z,y), unless either zy = 7/2 + k7 for
some k € Z, or y = xe”.
(2) Consider the function
r cos(f) sin(y)
f(r,0,0) = | rsin(0) sin(p)
rcos(yp)
forr > 0,0 <60 <27 and 0 < ¢ <7 (“spherical coordinates”).
The image of f is R? and the function is differentiable and injective if the domain is
the open set
X =]0, +o0[x]0, 27[x]0, .
In fact, r is the distance to the origin of (z,y, z), 6 is the angle in the horizontal plane
z = 0 from the x axis to the point (z,y), and ¢ is the angle between the vertical axis
x =y = 0 and the line (z,vy, z) (so it is between 0 and 7).
The Jacobian of f is
cos(f) sin(p) —rsin(f)sin(p) rcos(h) cos(p)
(3.5) Jr(r,0,p) = | sin(f)sin(p) rcos(d)sin(e) rsin(f) cos(p)
cos(p) 0 —rsin(p)

with determinant
(3.6) det J(r,0,0) = —r®cos?(0) sin’(¢) — r? sin®(0) sin®(¢) cos(p)
— 1% cos?() cos? () sin(p) — r?sin?(6) sin®(p) = —r?sin(p).
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This is non zero for all (r,6,¢) in X, which confirms that the spherical coordinates give
a change of variable around any point in X.

The last theorem of this chapter concerns the problem of transforming an equation
g(x,y) = 0 into a functional relation y = f(x) — in other words, of “parameterizing” the
solutions of an equation.

We consider the case where y is a single value, whereas x runs over R"”. As in the
case of the Inverse Function Theorem, there is a general result that shows that such
parameterizations exist, but a priori only for x close to a given x.

THEOREM 3.10.4 (Implicit Function Theorem). Let X < R"™"! be open and let
g: X — R be of class C* with k > 1. Let (x9,10) € R® x R be such that g(xg,yo) = 0.
Assume that

0y9(x0,%0) + 0.

Then there exists an open set U < R"™ containing xq, an open interval I < R containing
Yo, and a function f: U — R of class C* such that the system of equations

{g(w) =0

zelU, yel

is equivalent with y = f(z). In particular, f(x¢) = yo. Moreover, the gradient of f at
s given by

(3.7) Vf(zo) = — ! )Vzg(%; Yo),

(949) (0, Yo
where V.9 = (01,9, -+ -5 02,9)-

IDEA OF THE PROOF. We will explain how to deduce at least the existence of the
function from the Inverse Function Theorem. Consider the function

0: X — R
defined by o(x,y) = (z, g(x,y)). It is of class C*. The Jacobian matrix is

1 0
To(xy) = (o"
o) = (97 o)
Its determinant at (zg,yo) is

det(Jy (0, %0)) = (Gy9) (%0, Yo),

which is non-zero by assumption. This means that ¢ is a change of variable around
(0, Y0), by the Inverse Function Theorem. Therefore, by Theorem 3.10.2, there exists an
open set V < R™! containing o(x¢,49) = (20,0) and a function ¢: V — U of class C*
such that

po = Id.
We use (u,v) € R™ x R for the variables in V' and write ¥ (u,v) = (¥1(u,v), s (u,v))
where 9 (u,v) € R™ and 15 (u,v) € R. Then the relation ¢ o1 = Id means that
(ua U) = @(7701 <u7 U)a wQ(ua U)) = (¢1 (u7 U)a 9(% (u7 ’U), ¢2(uv U)))

In particular, this means that ¥ (u,v) = u, and taking v = 0, we get
0 = g(u,2(u,0))

which shows that we can take f(x) = 1o(z,0) to solve the equation, namely that
g(z, f(x)) =0 for all x.
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We can also quickly explain the formula (3.7): we start from the relation g(z, f(x)) =
0, which we write as g o fz 0, where f(x) = (x, f(x)). Since f(xo) = (20, Y0), it follows
by the chain rule that
0 = Jy(xo, yo) - Jf(%)-

But we have
B = (V000 560 = (o)

(a matrix with n+ 1 rows and n columns), and writing down the coefficients of the matrix
product, we obtain the relations

0 = 0w, 9(20, Y0) + (0y9) (w0, Y0)Ou, f (20)
for 1 <i<n. O

EXAMPLE 3.10.5. (1) Let g(x,y) = 2*> + y* — 1 and (x¢, o) such that g(zg,y) = 0.
Then (0,9)(z0, Yo) = 2yo. Therefore we can solve for y as a function of x, provided yo + 0.
In fact the solution is simply

f(2) V1—a? if yo >0
T =
—/1—22 ifyy<O.

Suppose that yo > 0 for instance. Then note that, for a given z, the point (z,v/1 — x2)
is not the unique solution to g(x,y) = 0, since (x, —+/1 — x2) is also a solution. This
explains the restriction to y belonging to some interval containing 1y, in the theorem,
which is needed if we want to have an exact characterization of the solutions, and not
just a sufficient condition that g(x, f(x)) = 0.

The formula (3.7) gives the derivative of f at g, namely

f/(wo) = —%axg(l’o) =

If yg > 0, then this is equal to

(3.8)

Zo

\/1—.7}%7

which is of course the same that one obtains from the formula (3.8).

If we consider yy = 0, then the picture of the circle shows indeed that the solution set
is not the graph of a function of x when z is close to o = £1.

What can be done when yo = 0 (and this is a common occurence) is to use y as a
variable to parameterize the solution, instead of z. Indeed, since (0,g)(+1,0) = £2 % 0,
it follows from the Implicit Function Theorem applied to §(x,y) = g(y, x) that there is a

parameterization as a function of y. In fact, it is simply z = /1 —y? or . = —4/1 — /2,
depending on whether zy > 0 or x5 < 0.

(o) = —
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CHAPTER 4

Integration in R"

This chapter is devoted to integration in R™. There are in fact at least two different
importants aspects: (1) integrating functions f: X — R, where X < R"; (2) relating
integrals over different sets, of different dimensions.

In (1), besides defining integrals, one is led to analogues of the fundamental compu-
tational tools of the Riemann integral, such as the change of variable formula.

4.1. Line integrals

We begin with the simplest type of integrals in R", namely integration of functions
I — R", where [ is an interval, and other integrals that involve a single variable, which
is the integral of a function “along a curve”.

We use again the scalar product in R", which we denote

-y = szyz
i=1

DEFINITION 4.1.1. (1) Let I = [a,b] be a closed and bounded interval in R. Let
f@) = (f1(®), ..., fa(?))

be a continuous function from I to R", i.e., f; is continuous for 1 < ¢ < n. Then we

o Lbf(t)dt = (fb A, Lb fn(t)dt> e R".

(2) A parameterized curve in R™ is a continuous map v: [a, b] — R" that is piecewise
C!, i.e., there exists k > 1 and a partition
a=to<t1 < - <t 1 <tr=0b

such that the restriction of f to |¢;_1,¢;[ is C! for 1 < j < k. We say that v is a
parameterized curve, or a pathx, between v(a) and (b).

(3) Let v: [a,b] — R"™ be a parameterized curve. Let X < R" be a subset containing
the image of v, and let f: X — R" be a continuous function. The integral

jfwm»vmﬁeR

is called the line integral of f along ~. It is denoted
J f(s)-ds, or f f(s)-ds.
g 2l

The integral of continuous functions I — R satisfy much of the same rules as the
Riemann integral of a function I — R, for instance

b

Jb(f(t) +g(t))dt = Lbf(t)dt + f g(t)dt.

a a
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Also, as in the one-variable case, we define

[ s~ - [ s,

if a <b.

In the line integral, 4'(¢) and f(y(¢)) are both vectors in R™ for all ¢ (since v takes
values in R™), so that the final integral is a real number.

It is customary, when working with line integrals, to say that the function f: X — R”
is a vector field: a function that sends each point z in X < R" to a vector in R", which
we display as based at .

ExAMPLE 4.1.2. (1) Let z = (21,...,2,) and y = (y1,...,¥ys) be elements of R™.
The function

v:[0,1] - R"
defined by v(t) = (1 —t)x + ty is a parameterized curve joining v(0) = = to (1) = y. Its
image in R" is exactly the line segment joining = to y. Note that 7/(¢) = y — x for all
t € [0, 1] (intuitively, this means that v goes from x to y with constant speed).

Let f be a continuous function on X, expressed as f(z) = (fi(x),..., fu(z)). Then
we have

J f(s)-ds= Z(y — xi)fo Fi((1 = )z + ty)dt.

In particular, suppose that y; = z; for all i except a single value j (which means that the
segment vy joins two points along one of the coordinate axes). Then we get

ff(s)-dg: (yj—xj)fo £ (1 =)z + ty)dt.

(2) Define 7: [0,27] — R? by ~(t) = (cos(t),sin(t)). This is a parameterized curve,
whose image is the circle centered at (0, 0) with radius 1. For f(x,y) = (fi(z,y), fo(z,v)),
we have

2m
0

L F(s) - ds = j (1 (cos(t) sin(t))(— sin()) + folcos(t) sin(t)) cos(t) ) .

Take for instance

Then we obtain
27
J F(s) - ds = f (sin?(t) + cos?(£))dt — 2.
¥ 0

Take now 7, (t) = (cos(t),sin(t)), but defined for 0 < ¢ < 47. Then the parameterized
curve ~; corresponds to “going twice over the circle”, so the image of v, is the same as
the image of v. However, for the same vector field f as before, we have

f(s)-d§= JM dt = 4.

" 0

(3) A parameterized curve v: [a,b] — R™ is not required to map different times ¢
to different points: the trajectory described by + may have points of self-intersection.
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FIGURE 4.1. Lemniscate

An example is the circle taken twice over of the previous example, another one is the
lemniscate of Bernoulli

(4.1) A(t) = (

for 0 <t < 2.
This is a closed curve, and we have also

A(7/2) = A(37/2) = (0,0).

cos(t)  cos(t)sin(t) )
1 +sin?(t)” 1+ sin®(¢)

Note however that
1
N(t) = m (— sin(t) — sin®(t) — 2sin(t) cos®(t), cos®(t) — 2 sin2(t)>
so that (—1/2,—1/2) = N (7/2) + XN(37/2) = (1/2,1/2).
REMARK 4.1.3. (1) Let f(x) = (fi(x),..., fu(x)). Another notation that is sometimes
used, in relation with the notion of differential form, is

Lf(s)-d§=Lw

w= fi(z)dxy + -+ fulz)dz,,
using linearly independent “formal symbols” dz1, ..., dzx, to separate the components f;
of f.

(2) The line integral has a physical interpretation. Suppose we have a particle that
moves from z; to xs along the path 7, where v(t) is the position and ~/(¢) is the speed
of the particle at time t. Suppose further that a force f, represented by a vector giving
its direction and intensity, is applied to the particle during the motion. Then the line
integral

where one writes

L f(s) - ds

is the “work” that is done by the force f along this trajectory. If there are no other
forces, then the work is (in Newtonian mechanics) the difference in the kinetic energy of
the particle between the starting and end points of the trajectory.

The most important property of the line integral is that it (essentially) only depends
on the image curve v([a,b]) < R", and not on the chosen parameterization. More
precisely:

DEFINITION 4.1.4. Let v: [a,b] — R™ be a parameterized curve. An oriented repa-
rameterization of 7 is a parameterized curve o: [c,d] — R such that o = 7 o ¢, where
¢: |e,d] — [a,b] is a continuous map, differentiable on |a, b[, that is strictly increasing
and satisfies ¢(a) = ¢ and p(b) = d.
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Note that the image o([c,d]) = R" of an oriented reparameterization o of v is the
same as the image v([a,b]). Also, 7 is conversely an oriented reparameterization of o,
since vy =g o}

PROPOSITION 4.1.5. Let v be a parameterized curve in R™ and o an oriented repa-

rameterization of v. Let X be a set containing the image of v, or equivalently the image
of o, and f: X — R™ a continuous function. Then we have

L 75)- a5 = | 1)

Proo¥r. This is a consequence of the change of variable formula for Riemann integrals
(see [1, Satz 5.4.6]): since 0 = v o, we have o'(u) = ¢'(u)y'(¢(u)) for ¢ < u < d, and
hence using the definition of line integrals, we get

[ 569-a5 = [ stotu) -ty

d
_ f FOr(e(w)) - ¢ (W' (p(u))du

- [(reen v dt—ff

by applying the change of variable formula ¢t = p(u), dt = ¢'(u)du, since ¢ = ¢(a) and
d = o(b). O

Because of this proposition, one speaks, for instance, of the line integral of a vector
field f along a circle, instead of fixing a parameterization of the circle. But one should
keep in mind that this means “going over the circle only once, without repetition”.

EXAMPLE 4.1.6. (1) Let n > 1 and define
Y (t) = (cos(27t™), sin(27t"™))

for 0 < ¢t < 1. Then v, = v o ¢,, where ¢,(t) = t". Hence all ~, are common
reparameterizations of ;. The curve described by -, is the circle of radius 1 centered at
(0,0). Note that

v (t) = (=2mnt" ' sin(27t™), 2mnt™ ! cos(2mt™)),

and in particular, if n > 2, we have 7/(0) = 0, which means that the trajectory de-
scribed by 7, starts from (1,0) with very small speed, and then accelerates as t increases.
Nevertheless, if f(x,y) = (—y, ), we have always (for instance)

ff ds—ff

(2) Tt is important that the reparameterizations that are used preserve the orienta-
tion, in other words that the endpoints are not “switched”. For instance, suppose that
v:[0,1] — X is a parameterized curve. Let o(u) = (1 — u); then o is a parameterized
curve, with the same image as -, but it goes from ¢(0) = (1), the endpoint of v, to
o(1) = ~(0), the starting point of ~.
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Let f be a continuous vector field on X. Then we compute

fﬂ@ww=wau—mwevu—mMu

and by substituting ¢t = 1 — u, this is

f?ww»vww=—ﬁﬂ@

In other words: going along a parameterized curve “backwards” leads to the opposite
value of the line integral.

The following example is extremely important, as it gives a very fast way to compute
certain line integrals.

EXAMPLE 4.1.7. Let X be an open set in R" and ¢g: X — R a function of class C'.
Define f = Vg, which is a vector field X — R". Let v: [a,b] — X be a parameterized
curve with image in X. We write v(t) = (71(t), ..., va(t)).

We then have by definition

[0 - [ Syt

But, by the Chain Rule, the function

" Og
Z(?:cz

i=1

is the derivative of the C! function

h(t) = g(v(1)).

Hence, by the fundamental theorem of calculus from Analysis I ([1, §5.4]), we have
| ts) - 5= g00) - st31a))
o

the difference between the value of g at the “end point” 7(b) of the curve, and the value
at the “start point” ~y(a).

What is striking in this example is that the answer only depends on the extremities of
the parameterized curve! Tt is irrelevant how complicated the path joining y(a) to v(b)
may be.

DEFINITION 4.1.8. Let X <« R" and f: X — R" a continuous vector field. If, for any
x1, To in X, the line integral
f £(s) - d7
-

is independent of the choice of a parameterized curve v in X from x; to xs, then we say
that the vector field is conservative.

REMARK 4.1.9. (1) Equivalently, f is conservative if and only if

f (s

for any closed parameterized curve in X (where a curve is said to be closed if y(a) = v(b)).

63



Indeed, if f is conservative, then the integral on a closed curve from z; to x; must
be equal to the integral along the constant curve 7(t) = x1, which is zero (the speed of
being 0).

Conversely, suppose that this condition holds. Let 7y, 72 be two paths in X from z;
to z5. Then the parameterized curve

0 - e if0<t<1/2
T T e —) ifl2<t<t

is a closed parameterized curve from x; to x1, so that the integral of f along v is zero by
our assumption; but a simple computation shows that

0— Lf(s) s — L £(s) - ds— L F(s) - d

Hence the vector field is conservative.

(2) In physics, to say that a force is represented by a conservative vector field means
that the work done by the force on a particle from one point to another is the same,
whatever the trajectory between the two points.

(3) The equation Vg = f is linear. It follows, for instance, that if f; and f, are both
conservative, with respective potentials g; and gy, then for any (a,b) € R?, the vector
field af, + bfs is conservative, with potential ag; + bgo.

The previous example shows if X is open then any gradient vector field f on X is
conservative, i.e., any vector field of the form f = Vg, where g is of class C! on X, is
conservative. The converse is true:

THEOREM 4.1.10. Let X be an open set and f a conservative vector field. Then there
exists a C' function g on X such that f = Vg.

If any two points of X can be joined by a parameterized curve, then g is unique up to
addition of a constant: if Vg1 = f, then g — g1 is constant on X.

REMARK 4.1.11. (1) To say that any two points of X can be joined by a parameterized
curve means that, for all x and y in X, there exists a parameterized curve v: [a,b] — X
such that v(a) = = and y(b) = y. When this is true, we say that X is path-connected.

This is the case for instance when X is a disc in the plane, or a product of intervals.
More generally, it is true whenever X is conver, which means that for any z and y in X,
the line segment joining z to y is contained in X (this is because such a line segment is
the image of a parameterized curve, as we saw in Example 4.1.2 (1)).

On the other hand, let X be the union of two discs that are disjoint, for instance, the
discs of radius 1 around (0,0) and (3,0). Then X is not path-connected, since (by the
intermediate value theorem) any curve y(¢) = (y1(t),72(t)) joining (0,0) to (3,0) must
be such that there exists ¢y with v (¢9) = 3/2, which is impossible since the points of X
have first coordinate in [—1,1] U [2,4].

(2) If f is a conservative vector field on X, then a function g such that Vg = f is
called a potential for f. Note that it is not unique, since at least it is possible to add a
constant to g without changing the gradient.

IDEA OF THE PROOF. Write f(z) = (fi(x),..., fu(x)) for z € X. Assume that X
is path-connected for simplicity. Then fix a point g € X. For any z € X, select a
parameterized curve v, from x( to z, and define

o(z) =f f(s) - ds.
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FIGURE 4.2. Vector field along two curves

This is a function of z, and g(x) doesn’t depend on the choice of 7., since the vector field
f is conservative. In particular, to compute the partial derivative d,, g of g at x, we can
compute g(z + tey) for ¢ small enough by selecting the curve 7,4, to be the curve ~,
followed by the straight line segment ¢, ; from z to = + te; (which is contained in X, for
t small enough, because X is open). Then we get easily

g(x +tey) —g(x) = ) f(s)-ds= tL fil(l —u)x + u(x + tey))du

(since £, ,(u) = te; for all u; see again Example 4.1.2 (1))). By continuity of f, for £ small
enough, the function f; is almost constant on the segment ¢, ;, equal to fi(x). So

g(z +ter) — g(x) ~ tfi(x)

which means that the partial derivative of g with respect to z; exists and is equal to

fi(z).

Doing the same for all partial derivatives, we conclude that Vg = f. O

EXAMPLE 4.1.12. (1) Let n = 3 and f(z,y,2) = (y*, x2,1). We will show that f is
not conservative by computing the line integrals along two curves joining the same points,
and showing that they are different.

We let p; = (0,0,0) and ps = (1,1, 1). The parameterized curves

il (t) = (t7 ta t)? 72(15) = (t7 t27 t3)
for 0 <t <1 both join p; to p;. We have

Ll f(s) - ds = f(tQ,tZ, 1) (1,1, 1)dt = J

0 0

1 3 1
(2t* + 1)dt = [2— + t] _2
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On the other hand, we get

1
Jf J(fl ¢t 1)-(1,2t,3t2)dt=J(2t5+t4+3t2)dt=
0
[t6+t5+t3] -
3 5 o 3 5 15

Note that the second integral is smaller. In a physics interpretation, this would mean
that less work (and energy) is needed to move the particle subject to the force f from p,
to po using the second path than the first path.

(2) Suppose that we know that a concrete vector field f is conservative. How does
one find a potential g such that Vg = f7

One way to do that find g such that

2 )
by integrating f; with respect to x1, when other variables are fixed. This gives an answer
up to a function g; that depends only on (zs,...,x,). We then solve for

jng = fa(z),
starting with the “partial” formula for g involving g;, obtaining a new unknown function
depending only on (z3,...,z,), and we repeat.

For instance, consider the vector field

622 cos(yz) + zsin(y)
flx,y,2) = | =3232zsin(yz) + zz cos(y) + 2y
=323y sin(yz) + wsin(y) + 2z
In order to have 5
&_g = 62° cos(yz) + zsin(y),
x
by the fundamental theorem of calculus, applied for each value of (y, z) separately, we
must have
g(x,y, z) = 32° cos(yz) + zzsin(y) + h(y, 2),

for some function h: R? — R. Then, for ¢ of this type to satisfy

59 3 .
P —3x°zsin(yz) + zz cos(y) + 2y,
Yy
we must have
5 oh .
—3x°zsin(yz) + xz cos(y) + Pl —3z°zsin(yz) + xz cos(y) + 2y,
Y

which means that d,h = 2y, or in other words that

h(y,z) = y* + k(2), g(x,y,2) = 32° cos(yz) + zzsin(y) + y* + k(2),
for some function k. Finally, to have
dg

i —323ysin(yz) + xsin(y) + 22,
z

we need to have
—32%ysin(yz) + xsin(y) + K (2) = =323y sin(yz) + zsin(y) + 2z,
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which means that k(z) = 22 + ¢ for some real number ¢. We can pick ¢ = 0, which gives

g(x,y, 2) = 32° cos(yz) + wzsin(y) + y* + 22

The next general question is: how can one determine easily in practice if a concrete
vector field f is conservative? The characterization in terms of line integrals is not really
convenient, since many integrals are very hard to compute. There is however a very
simple necessary condition.

PROPOSITION 4.1.13. Let X < R™ be an open set and f: X — R"™ a vector field of
class Ct. Write

f(@) = (fi(@), -, ful2)-

If f is conservative, then we have
ofi _ 0f;

(9xj B (%Cl

for any integers with 1 < i % 7 < n.
PROOF. Indeed, let g be a potential for f, which is then of class C?. Then f; = 0,9
and hence
ofi g Pg 0

(3.17]' B (3(1&(3561 B (’/)ZL’@(}‘TJ B axz
by Proposition 3.5.4. O

EXAMPLE 4.1.14. (1) Consider again the example f(z,y,z) = (y*, rz,1). Since
0y(v?) = 2z % 2 = 0,(z2),

we can see that f is not conservative without having to search for two curves where the
line integrals are different.
(2) If n = 2, with f = (f1, f2), then the condition is simply that

oy o
ox Oy
It is natural to ask if this necessary criterion is also sufficient. This is not always true,
and the answer depends on the set X where the vector field is defined.

DEFINITION 4.1.15. A subset X < R" is star shaped if there exists xy € X such that,
for all x € X, the line segment joining xy to z is contained in X. We then also say that
X is star-shaped around x.

EXAMPLE 4.1.16. (1) A ball
X ={zeR": |z — x| <r},

or a “rectangle”

X = [CL1,b1] X oo X [anvbn]7

is a star-shaped subset. In fact, these are even convex sets, which means that for any x
and y in X, the line segment between x and y is contained in X, or in other words, they
are star-shaped around any point in X.

On the other hand, let X; and X, be two different discs in R? that intersect in at
least one point xg. Then X = X; U X, is star-shaped (since, for any x € X, the segment
joining zy to x is either contained in X; or X,, and hence is contained in X) but in
general not convex.
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(2) The complement X = {z € R" : x £ 0} of the origin in R™ is not star-shaped:
whatever value of o + 0 we select in R", the segment between xy, and —xy is not
contained in X, since it contains the origin 0 ¢ X.

(3) Let 0 < a < b be real numbers. The annulus

X={((z,y)eR*:a<2®+y*<b}cR’

is not star-shaped, for the same reason as in (2): it does not contain (0,0), and the
segment between (z,y) and (—z,—y), which both belong to X if (z,y) does, passes
through (0,0).

(4) If X is star-shaped, say around xq, then it is path-connected: indeed, for any x
and y in X, there is a parameterized curve from z to y obtained by following first the
segment from x to xg, and then the segment from x( to y, both of which are contained
in X.

THEOREM 4.1.17. Let X be a star-shaped open subset of R™. Let f be a C* vector
field such that
0fi _ 0
al'j 6951

on X for all i + j between 1 and n. Then the vector field f is conservative.

(4.2)

REMARK 4.1.18. The requirement that X is star-shaped is not necessary. Intuitively,
the correct hypothesis on X should be that there is no “hole” in the middle around which
a circle can go without it being possible to contract it within X.

EXAMPLE 4.1.19. (1) Let X = R? — {0}. Define
¥
f(x7y> = ( xi+y2)

z2+y?

on X. This is a C! vector field. We have

y 1 2y2 1'2 _ y2
y<x2 + y2> T2t (P+)? (@ + )
and
p ( T ) _ 1 B 222 _ y? — 22
x ZC2 + y2 .1:2 + yQ <SC2 + y2)2 (SC2 + y2)27

so that the condition (4.2) holds.
However, consider the closed parameterized curve (t) = (cos(t),sin(t)) for 0 < t <
2m, which describes a circle of radius 1 around 0. Then we have
2
f f(s)-ds= J (sin?(t) + cos?(t))dt = 27 £ 0,
¥ 0
which implies that the vector field f is not conservative.

For this particular choice of X, one can in fact prove that a C* vector field satisfy-
ing (4.2) is conservative if and only if

L f(s)-d5 =0,

for this particular curve ~.

(2) If we consider the same vector field as in (1), but defined on the open set ¥ =
{(z,y) € R?* : > 0} (a half-plane), then since this half-plane is convex, and therefore
star-shaped, it follows that there exists a potential g: ¥ — R such that Vg = f. In
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fact, one can check that g(x,y) = arctan(y/x) has this property. Indeed, g is defined for
x > 0, and since arctan’(z) = 1/(1 + %), we get
Y 1 Y 1 1 T

oug = —2 - -  dg9=- -
A I Oy e L S I O F DR

on Y, which is the desired result.
(3) Let (a,b, c) be real parameters. For which values of (a,b,c) b is the vector field

ax’y + bzy?
flz,y) = (bx4 + ca?y?

conservative? Since f is defined on R?, we need to check if 9, f; = 0, fa, which becomes
the equation
az® + 3bxy?® = 4bx® + 2cay’.

Since x and y take arbitrary values, this is true if and only if

a = 4b
3b = 2c.
This means that we can use b as an arbitrary parameter and put
3b
a = 4b, c=—.
2

For instance, this is the case when (a,b,c¢) = (4,1,3/2).
If n = 3, then there are three conditions (4.2). It is customary to view them as stating
that an auxiliary vector field attached to f, its curl, is zero.

DEFINITION 4.1.20. Let X < R? be an open set and f: X — R3 a C! vector field.
Then the curl of f, denoted curl(f), is the continuous vector field on X defined by

any — asz
curl(f) = | .f1 — 0uf3 |,
Oz f2 — Oy f1

where f(a:,y,z) = (fl(xvyv'Z)?fQ(x)ya Z),fg(.T,y,Z))-

We see immediately that curl(f) = 0 means precisely that the conditions (4.2) hold,
for a 3-dimensional vector field.

REMARK 4.1.21. To remember the definition, one can remember the (formal!) deter-
minant

€1 €2 €3
curl(f) =0, 0, 0./,
i 2 fs

where (ey, €5, e3) is the canonical basis of R?, expanding it “as usual”, with the rule that

@E . fz = fz . @E = (%Cfl, etc.

4.2. The Riemann integral in R"

We will now describe the Riemann integral in R"™. The goal, for a closed bounded
subset X < R™ and a continuous function f: X — R, is to define its integral

J f(zy, ..., x,)dx
be
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so that it has analogue properties to the Riemann integral for n = 1. The important
difficulty, in comparison with the case n = 1, is that there possibilities for X have many
more different shapes in higher dimension. Also, if X is a product of intervals

X =[ay,b1] x -+ x [an, b,] = R",

(an n-dimensional “rectangle”) then it is fairly natural to attempt to partition into smaller
rectangles, by considering partitions of each interval [a;,b;]. However, if X is even as
simple as a disc
X ={(v,y) eR? : * +y* <1} = R?,

then it cannot be decomposed in a finite union of rectangles, or even of smaller discs.

Because of this, the construction of the Riemann integral is much more involved.
Since we will not be able to give the details of the proofs that this construction succeeds
anyway, we will present its properties first, and we will only discuss in a remark what is
a precise limiting process that can be used as a definition (see Remark 4.2.7).

For any bounded closed subset X < R™ and any continuous function f: X — R, one
can define the integral of f over X, denoted

L{ f(x)dx

which is a real number, depending of course on X and on f.

The integral satisfies the following properties:

(1) (Compatibility) If n = 1 and X = [a,b] is an interval (with a < b), then the
integral of f over X is the Riemann integral of f:

b
z)dr = x)dx
@ RE

(2) (Linearity) If f and g are continuous on X and a, b are real numbers, then

JX(afl(x) bfo(a))da — aL fu(@)d + bL fo(w)dz

(3) (Positivity) If f < g, then

L f()de < L g(z)da

and especially, if f > 0, then

L f(x)dx =0

Moreover, if Y < X is compact and f = 0, then

L Fa)dz < L f(@)da.

(4) (Upper bound and triangle inequality) In particular, since —|f| < f < |f],

we have
| s < | s

and since |f + g| <|f| + |g|, we have

U z) + g(z dx f|f |dx+f]g )| da.
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(5) (Volume) If f = 1, then the integral of f is the “volume” in R" of the set X,
and if f > 0 in general, the integral of f is the volume of the set

{(1,y) e X xR : 0<y < f(z)} <« R
In particular, if X is a bounded “rectangle”, say
X =[ay,b1] x -+ x [an, b,] € R"
and f =1, then

(4.3) JX dx = (b, — ay) -+ (by — aq).

We write Vol(X) or Vol,(X) for the volume of X.
(6) (Multiple integral, or Fubini’s Theorem) If n; and n, are integers > 1 such
that n = ny + ng, then for ;1 € R™, let
(4.4) Yo, ={ze e R™ : (z1,29) € X} < R™.

Let X; be the set of x; € R™ such that Y,, is not empty. Then X is compact in
R" and Y,, is compact in R"* for all x; € X;. If the function

g(w1) = f(x1, 22)dzy

Yaq

on X; is continuous, then

JX f(x1, 20)dr = Jxl g(xq)dzy = Lﬁ( . f(xl,xg)dx2>dx1.

Similarly, exchanging the role of x; and x5, we have

JX f(z1, x0)dx = JXQ( . f(xl,xg)dxl)dazg,

where Z,, = {x1 : (x1,72) € X}, if the integral over x; is a continuous function.

REMARK 4.2.1. (1) The conditions we have stated are not independent, and are not
the only properties of the integral that we will state. However, they are enough to get
some intuition, and are sufficient to compute many concrete integrals. Moreover, they
characterize the integral: there is at most one way to define an “integral” for all X and
all f in order that all properties above are satisfied.

(2) Property (5) is somewhat ambiguous, and could be replaced by the special case (4.3)
(which is itself a special case of the formula (4.5) below); the fact that §, dz is the volume
of X would then be the definition of the volume Vol(X).

(3) If the variables are z1, ..., x,, we also write

[ e i,
X

(4) There are at least two intuitive explanations of Fubini’s Theorem. First, if we
think of integrals as generalizations of sums, then a two-variable integral is like a sum of
real numbers a; ; with two indices; then Fubini’s formula amounts to

Z Gij = Z(Z am) = Z(Z am’)

12 (2N J i
which are just different ways of combining the sum of these numbers, and are equal
because of the commutativity and associativity of addition.
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Next, we think of volumes only, and take n = 2 for simplicity. Consider a compact
subset X < R? of the form

X=A{(z,y) ra<z<d, filr)<y< foly)},

where f; < fy are two continuous functions defined on [a, b]. Then Fubini’s formula for

the volume of X becomes ,

Vol(X) = f g(z)dz,

a
where

fa(z)
e = [ dy = foa) ~ o).
f1(=z)

The function g(z) is the length of the vertical interval in X over the coordinate = (which
can be thought of as a vertical slice of X), and so we say that the area of X is the integral
of the length of vertical slices, which is intuitively reasonable.

Note that for more complicated sets, the slices might not be just a single interval,
but the same intuitive explanation applies. And similarly, the area is the integral of the
length of horizontal slices of X.

EXAMPLE 4.2.2. (1) The simplest case of Fubini’s Theorem is when X is a “generalized
rectangle”, namely

X = X x Xo,
where X; < R™ and Xy < R™. Then X; is the same set that was denoted X; in
Property (6). Moreover, for any z; € X;, we have
Yy, ={x2e R™ : (21,22) € X1 x Xp} = Xy c R™,

which is therefore independent of x;. If f is continuous on X, one can then prove that
the function

g(r1) = f(zy, m9)dxy = f(z1, x9)dxs

Yy X2
is always continuous in that case. Hence Fubini’s Theorem takes the simple form

JX1><X2 f(x1, xe)dz1day = JX1< . f(a:l,xz)d@)dxl — JX2 <JX1 f(I1,x2)dx1>dx2

for any continuous function f on X.
(2) Suppose now that

X = [ay,b1] x -+ x [an,b,] =€ R™
and that f is a function with separated variables given by

f(xh ce 7xn) = fl(xl) : fn(xn)’

where each function f; is continuous (so f is also continuous). Then we claim that the
integral takes the easy form

(4.5) JX fxy,...,xy)dxy - - dxy, = < abl fl(a:)das> - <£j fn(a:)dx>.

Indeed, consider the case n = 2 (the general case follows by induction): we have by
Fubini’s Theorem

JX f(z,y)dzdx = Jbl g(x)dx

ai
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provided the function g, defined by

o) = | @ pwdy = (| pwdy) A

is continuous — which is the case since f; and f, are continuous. Since g is a multiple of
f1, we get

b by
| tdnde = ([ ptway) | s,
X a2 al
which gives (4.5).
(3) We want to compute the volume V of the ball of radius one in R?, namely
X ={(z,y,2)eR® : 2* + > +2* < 1}.

First approach. We use slices according to the z variable: since the z variable runs
over [—1, 1], according to Fubini’s Theorem, we have

v ot

where ¢(z) is the area of the subset X, = {(z,y,2) € X} where the last coordinate is z.
This is a disc (in the horizontal plane where this value of z is fixed) of radius +/1 — 22.

So )
2 AT
= 1-2dz=7(2-2) = —.
Vv f_lﬂ( z%)dz 7T< 3) 3

Second approach. According to geometric intuition, the volume V is twice the
volume of the subset X, where z > 0, which is then

X+:{($7?J7Z)ER330<I2+92<1, O<Z<m}

By Property (5), this means that

V—QJ V1 — 2% — y2dxdy
D

where

D= {(z,y) e R? : 2° +y* < 1}
is the disc of radius 1 in R2. We use Fubini’s Theorem to compute this two-dimensional
integral. Here the set X; corresponding to the disc D is [—1, 1] (the set of possible first
coordinates of a point in D). For a given = € [—1, 1], the possible set Y, of values of y is

Y, = [-V1 — 22, V1 — 22].

So, according to Property (6) and Property (1), we have
1
-1

L V1 =22 — 2dedy = f g(x)dx

where
Nier
g(x) = V1= a?—ydy,
B
if g is continuous. But this function g(x) is half of the area of a disc of radius 1 — 22,
so we know that g(z) = %71’(1 — 2?). In particular, it is indeed continuous, and as a

consequence, we get

1
2 g2 _r — 72 Ty _ 2 - 2_7T
JD«/l x? — y2dxdy 5 J_1(1 x%)dx (2 3)

2
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and finally V' = 47/3.

(4) In applying Fubini’s Theorem, it can indeed happen that the function g(x) is not
continuous, although this creates no difficulty in practice, because of the possibility of
decomposing the domain of integration, as we will discuss next.

For instance, let

X={(r,y)eR?*:0<r<2and0<y<1+|z]}

(in other words, we have 0 < y < 1if 0 <z <land 0 <y <2if 1 <z <2). If we take
f = 1 and therefore use the two-dimensional integral to compute the area of X using
Fubini’s Theorem, we get X; = [0, 2] and

v — [0,1] f0o<z<l
“00,2] ifl<z<?2
for which
1 if0<z<l1
_ dy =
9() Ly {2 ifl<az<2

This function is not continuous at x = 1.

A useful tool to compute integrals in dimension > 2 is to partition the domain of
integration X. For this, we have the property that integrals “add up” over disjoint
pieces, and more generally:

(7) (Domain addivitity) If X; and X, are compact subsets of R™, and f is con-
tinuous on X; U X5, then

(4.6) JX ) f(a:)daH—fX . flz)dx = . f(z)dx + . f(z)dz.

Note that X; n X5 is also compact, so all integrals exist.

In particular, if X; n X5 is empty, then

J f(x)dx = f(x)dx + f(x)dx,
X10UXo X1 Xo

which is often very convenient. This simple formula holds also if the intersection X; n X5
is “negligible”. For instance, in R?, the intersection might be a parameterized curve, and
for such a set, the integral is 0 (intuitively, because it is a one-dimensional object and
the integral in R? measures area).

We make the following definitions to deal with more general situations:

DEFINITION 4.2.3. (1) Let 1 < m < n be an integer. A parameterized m-set in R" is
a continuous map
filar,b] x - x [am, b] = R"
which is C! on
Jag, b1[x -+ X]am, b
(2) A subset B < R" is negligible if there exist an integer k£ > 0 and parameterized
m;-sets f;: X; —> R", with 1 <4 < k and m; < n, such that

X < filX1) u--- o fi(Xe).

For instance, note that a parameterized 1-set in R" is just a parameterized curve.
Intuitively, we think of a parameterized m-set in R™ as a way to describe an m-dimensional
subset of R™, but one should be aware that the image of a parameterized m-set f might
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be of dimension smaller than m (for instance, it is possible that f is constant, in which
case the image is a single point, which is an object of dimension 0).

EXAMPLE 4.2.4. (1) Any subset of the real axis R x {0} < R? is negligible in R?.

(2) More generally, if H < R"™ is an affine subspace of dimension m < n, then any
subset of R™ that is contained in H is negligible.

(3) The image of a parameterized curve ~y: [a,b] — R is negligible, since v is a 1-set
in R,

PROPOSITION 4.2.5. Let X < R"™ be a compact set. Assume that X is negligible.
Then for any continuous function on X, we have

L f(@)dz = 0.

We do not prove this, but illustrate this (fairly natural) property with examples.

EXAMPLE 4.2.6. (1) Consider the graph X = {(¢,7(t)) : a <t < b} of a continuous
function g: [a,b] — R. This is the image of the parameterized curve t — (¢,7(t)), so it
is negligible. Indeed, we can check the proposition in that case using Fubini’s Theorem:
for any function f continuous on X, we have

b, rf(z)
| ste.say = [ (| " gte.n)in)dz -0,
X f(z)

a

since an integral over a one-point interval is zero, and the integral of the zero function is
zero by linearity.

(2) The formula (4.6) also explains why the volume of the unit ball X <= R? in
Example 4.2.2 is twice the volume of the hemisphere X, with z > 0. Indeed, let X; = X,
and Xy = X_| the lower hemisphere. Since X = X, u X_| by Property (7), we have

V= J dxdydz = J dxdydz + J dxdydz — J dxdydz.
X X, X_ XinX_

The intersection X, n X_ is D x {0}, where D = R? is the disc of radius 1. So it is
negligible by Example 4.2.4, (2) (one can also see that this is the image in R? of the
parameterized 2-set given by

(r,0) — (rcos(d),rsin(f))
on [0,1] x [0,27]). It follows by the proposition that

J dzxdydz = 0,
D

and hence

V= J dxdydz = J dxdydz + f dxdydz.
X X,

To show that the volume of X_ is the same as that of X, one can use the same method
as in Example 4.2.2 (later, we will see the change of variable formula that allows us to
do this more directly).

REMARK 4.2.7. We will explain here one possible definition of the Riemann integral
in R™. It goes in the following steps:
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(1)

Definition of integrable functions on a closed bounded rectangle
X = [ay,b1] x -+ x [an, by].
Namely, consider finite partitions of each interval
aip =t <ty <--<tip=0b
which induce a partition of X into smaller rectangles

Xt oo = [t trgirn] X X [t trgo+1]-

Each such rectangle has n-dimensional volume

m(j, -5 n) = (i —t) - (Bngart = tog,).
Each such partition defines an upper Riemann sum and a lower Riemann sum:

k-1 k—1

st=3 (s f@)mG )

41=0 =0 T€Xj1 . in
k—1 k—1

9 — Z Z (me)(inf . f(x))m(]l,,jn)

j1=0 jnzO
We say that f is Riemann-integrable over X if
supS_ =inf S,

where we consider supremum and infimum over all upper and lower Riemann
sums computed for every possible partition. We then define

f f(z)dr =sup S_ =infS,.
X

Such functions are not necessarily continuous, but all continuous functions
on X are Riemann-integrable.
Definition of Jordan-measurable subsets X < R", which are necessarily bounded
in R": we say that a bounded set X, contained in a closed rectangle B =
[—R, R]" of “radius” R > 0 around 0 is Jordan-measurable if the function defined

on B by
1 ifxeX
plx) = .
0 ifzx¢X
is integrable in the sense of (1). One then checks that this definition is indepen-
dent of the choice of the radius R.
For a Jordan-measurable subset X < R", and a function f: X — R", consider a

closed bounded rectangle X’ such that X < X’. Then we say that f is integrable
over X if the function

N ,xn>:{f(x1,...,xn) if (21,...,20) € X

T1,... ,
J 0 otherwise,

is integrable over the rectangle X', in the sense of the definition in Step (1), and
we define

JXf(ail,...,xn)dxzf/f(xl,...,xn)dx.
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Note that f is, in general, not continuous, even if f is. One can show that if
X is Jordan-measurable, then every continuous function f on X is integrable in
this sense.

To be precise, this definition leads to some restrictions on the compact sets X that
are allowed, but all “usual” compact sets (such as rectangles, balls, etc) are Jordan-
measurable, so this is not an issue in applications. The more general definition that
leads to the integral over arbitrary compact subsets that we have discussed is that of the
Lebesgue integral.

With this restriction concerning X, the Riemann integral whose definition is sketched
above satisfies, for continuous functions, all Properties described above.

4.3. Improper integrals

As in the one-dimensional case, one is often interested in extending the integral to
unbounded domains, or to open bounded regions with functions that are not bounded.
This is done by taking appropriate limits of integrals over compact subsets of the region
of interest. We indicate just some basic definitions in R?.

Let I < R be a bounded interval and let J = [a, +oo[ for some a € R. Let f be a
continuous function on X = J x I. We say that it is Riemann-integrable on X if the
limit

im [mxlf (z,y)drdy = lim ) (L f (x,y)dy> dr = lim_ I(L f (m,y)dfv> dy

exists (the equality being cases of Fubini’s Theorem). We then denote this limit by

f(z,y)dxdy.

JxI
If f >0, or more generally if |f| is Riemann integrable on X, one can prove the Fubini

formula
sty = ([ si)ar= [ ([ rtegpa)an

where each improper integral is a one-variable integral (this formula is however not always
true without some assumption).

Similarly, let f be continuous on R?. Assume that f > 0. We say that f is Riemann-
integrable on R?, if the limit

lim f(z,y)dxdy

R—+4 [-R,R]?

exists, which is then called the integral of f over R? and denoted

f fx,y)dzdy.
R2

One can then show that this integral is also the limit of

f(z,y)dxdy

Dgr
where Dpg is the disc of radius R centered at 0 (or any increasing sequence of compact
subsets of R?* whose union is R?). There is also the Fubini formula

+00 +00

Jsz(m,y)dxdy - J—Z ( f: [ (@, y)dy ) dv = LD ( - Fla,y)de)dy,
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again with “ordinary” improper integrals in the last two formulas.

REMARK 4.3.1. In all these cases, we also often say that “the integral converges” to
indicate that a function is Riemann-integrable on an unbounded set.

The following comparison principle is the easiest way to prove that a certain improper
integral exists: if [f| < g (resp. 0 < f < g), and we know that

f 9(x,y)dxdy or f 9(@,y)dxdy
JIxI R?
exists, then so does

fla)dady or | fla.p)dody,

JIxI
respectively.

ExAMPLE 4.3.2. (1) Consider the improper Riemann integral

f xe Ydxdy.
[0,4+00[x[1,2]
We have for any R > 0

LR <£2 xe_xydy) dr = JOR x[—ée‘my]?dx = LR (e_27 - e_2w> dx.

This can be evaluated and is equal to
1 1 1
1— fR__l_ 72R:__ —R 72R_)_.
(1—e) 2( e ") 5 e +e 5
Hence the integral converges and is equal to 1/2.
(2) In Example 4.4.3 (3) below, we will see that the improper integral

J e_(xzﬂlz)dxdy
R2
exists and is equal to 7.

4.4. The change of variable formula

We now consider the analogue for the integral in R"™ of the change of variable formula

| #tat@ng @iz = | sy

of one-variable calculus. B )
Let X €« R" and Y < R" be compact subsets. Let ¢: X — Y be a continuous map.
We assume that we can write

X =XuB, Y=YuC

where

(1) the sets X and Y are open;

(2) the sets B and C' are negligible, in the sense of Definition 4.2.3;

(3) the restriction of ¢ to the open set X is a C'! bijective map from X to Y.

In this situation, the Jacobian matrix J,(z) is invertible at all x € X; we assume that

we can find a continuous function on X that restricts to det(.J,(x)) on X (this is usually
obvious because we have a formula for the Jacobian, which makes sense and is clearly

continuous on X'). We abuse notation and still write det(J,(z)) for this function, even if
r e B.
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REMARK 4.4.1. (1) Note that there is no assumption concerning the image of B.

(2) Tt is very frequent that ¢ is the restriction of a C!' map R" — R™, in which case
the determinant of the Jacobian matrix is continuous everywhere, so that the last issue
doesn’t require any argument.

THEOREM 4.4.2 (Change of variable formula). In the situation described above, for
any continuous function f on'Y, we have

Jf )| det(J,, |da:—ff

If one wants to remember this formula, the mnemonic is that when y = ¢(z), we have
dy = |det(J,(x))|dx.

EXAMPLE 4.4.3. (1) The simplest (but very important) case of the formula is when
o(r) = = + x¢ is a translation. Intuitively, this shouldn’t change the volume, or the
integral. Indeed, since ¢ is affine-linear, we have J,(z) = 1,,, the identity matrix, for all
x. The change of variable formula becomes

JX fz + zo)dx = L0+X f(z)dz

for any compact subset X and any continuous function f on zq+ X. With f = 1, we see
that the volume of X and that of zq + X are the same.

(2) The next most important special case is when ¢ is the restriction of a bijective
linear map, namely p(x) = Az, where A is an invertible matrix of size n. Then J,(z) = A
for all x € R™, with constant determinant det(A).

Let X = X UB be a compact set as above and Y = ¢(X). Then p(X) = ¢o(X)up(B).
The change of variable formula becomes

J e i = !Jf

for any continuous function f on Y.

Take especially f to be the function equal to 1 on Y, so that the integral of f over Y
is the n-dimensional volume of Y. Note that f(p(z)) is the characteristic function of the
set {xr € R" : Az € Y}, in other words of A™'Y. We get

Vol(Y) = | det(A)| Vol(A™'Y),

which shows how the volume is transformed (dilated or contracted) under a linear map.
If we replace A~'Y by X, which means that Y = AX, then we get equivalently

Vol(AX) = | det(A)] Vol(X)

for any compact subset X < R".
For instance, let X = [0, 1]™ be the unit cube in R™. Its volume is 1, and therefore

Vol(A[0,1]™) = | det(4)],

which provides the geometric interpretation of the determinant of real matrices.
It is actually possible to prove directly this last formula. For instance, observe that
if A is diagonal, with diagonal entries a4, ..., a,, then

A[0,1]" = [0,a;1] x -+ x [0, a,],
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which has volume |a;|---|a,| = |det(A)|. One can also argue directly when A is an
“elementary” matrix, for instance

1 01
A=10 1 0
0 01

for n = 3. Since A(z,y,2) = (z + 2,9, 2), one can check that A[0,1]? is the set
Y ={(z,y,2) : 0<y<1l, 0<z<1, z<z<l+z}

One can compute the volume of Y by applying Fubini’s Theorem (using the variable z
in the inner integral). This gives

1+z
Vol(Y) = f (f da:) dydz — f[o . dydz = 1 = det(A).

[0,1]
One can also intuitively observe that

Y=Y 0uY;,
where
Vi={(z,y,2) : 0<y<1l, 0<z<1, z<z<l}
Yy ={(z,5,2) : 0<y<1, 0<z<1, l1<z<1+z)}
and if translate Y5 by the vector (—1,0,0), we obtain

V3=Y,—(1,0,02={(z,9,2) - 0<y<1, 0<z<1, 0<uz<z}
and then Yz3uY; = [0, 1]2. Since Y3 nY] is negligible, and the volume of Y3 is equal to that
of Y3 (by (1), since Y3 is a translate of Y3), we get 1 = Vol([0,1]3) = Vol(Y}) + Vol(Y3) =
Vol(Y), again.
(3) We consider the function
flz,y) = e )
and we want to compute its integral over the compact disc
Yr={(z,y) e R* : 2° +9* < R?*}
where R > 0 is a parameter. Note that Yz = Yz u O with
Ye={(r,y) e R* : 0 <a2*+y* < R*>, y#+0ifz <0},
which is open, and Cf is the union of the segment [—R, 0] x {0} and of the circle of radius
R, each of which is a parameterized curve, so that Cr is negligible.
Consider the polar coordinate change of variable
v: Xp — Yg,
where
XR = [07R] X [_7T77T]
and
o(r,0) = (rcos(d),rsin(6))
(see Example 3.6.2). Note that ¢ is continuous on Xp, and that the restriction of ¢ to a
map from Xy to Y, where
Xr :]07 R[X] -, 7T[7
is bijective and of class C! (see Figure 4.3).
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FIGURE 4.3. Polar coordinates and boundaries

The Jacobian matrix is

100 = (Gnie) Temit) )

with determinant equal to
det(J,(r,8)) = r.
We have Xp = Xp U Br where
Br={(r,f)e Xp : r=00rr=Ror |0 =}

is negligible (it is the union of four line segments). Note that the Jacobian matrix is a
function that makes sense and is continuous on the whole of Xp.
The change of variable formula is applicable, and it means that

J e " rdrd = J e~ @) dady.

X Y;

We can compute the integral in the left-hand side easily using Fubini’s Theorem:
R R

R m 1
f e rdrd = f re"” (J d€> dr = 27Tf e rdr = 2n [——e_TQ] = (1l —e ™).
% 0 pi 0 2 0

If we let R — +o0, we conclude that the improper Riemann integral of f over R? converges
and satisfies

f e_($2+y2)dxdy = T.
R2

We can go further and derive an interesting consequence of this computation. Consider
instead the integral of f over a square, namely

f e~ @) dady
Sgr

where Sk = [—R, R]. Since f is a function with separated variables, we can reduce this
integral to a one-variable integral by Fubini’s Theorem (see (4.5)): we have

2 2 R 2 2
f e @) dady = (J e ” dx) )
Sk -R
But now observe that f > 0 and that
Yr © Sk < Yag,
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FIGURE 4.4. A sector

so that by positivity (Property (3) of the integral), we know that

2 2 f‘R
f e ) dady < (
Yr

which means that

2
e’xQd:c> <J e~ @) dady,
Yor

J-R

rR

_R2 —x? 2 —4R?
m(l—e )<<J exd$> <7m(l—e ).
-R
If we let R — +00, both the first and the third quantities converge to 7. We conclude
that the improper Riemann integral of e~ over R exists and satisfies

J e dr = /7.
R

There are standard examples of change of variable (in the sense also of Section 3.6)
that are often used to perform integrals over specific domains that have particularly nice
parameterizations in the new variables.

(1) Polar coordinates (r,6) are useful for integrating over a disc in R? centered
at 0, or more generally over a disc sector A = A(a, b, R) defined by
0<r<R, —T<a<0<b<m

for some parameters (a,b, R).
We computed the jacobian determinant in the previous example, and one
gets the general formula

R (b
(4.7) JAf(x,y)dxdy = fo f f(rcosf,rsinf)rdrdd.

Taking r to vary between 0 < ry < r < R, we obtain an annulus.

(2) Spherical coordinates (7,0, ) in R* (Example 3.10.3 (2)) are useful for in-
tegrating over balls centered at 0, or parts of them. We computed the jacobian
and its determinant —r?sin() in (3.5) and (3.6). So, for integrating a function
f over a ball B of radius R in R3, we have the formula

R r2m pw
J flx,y, z)dxdydz = f f f f(r cos @ sin o, rsin 0 sin @, 7 cos @)r? sin(p)drdfdy
B o Jo Jo

(since it is easy to see that the boundary parts are neligible). Note that sin(p) >
0 for 0 < ¢ < m, so that the absolute value of the jacobian determinant is indeed

r? sin(¢).
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EXAMPLE 4.4.4. (1) We compute the integral I of 2%y over the sector given by
A={0<r<2, w/6<6<mr/2}.
In polar coordinates, this becomes
2 pr/2 rAq2 [7/2
I zf f 73 cos? 0 sin Odrdf = [—] f cos?(0) sin(6)d6.
0 Jr/6 4 1o 7/6

If we replace the trigonometric functions by their exponential versions, the function
cos?(6) sin(f) becomes
L i

cos?(0) sin() = g(e +e )2 — e

1 . . . ,
_ —(62Z9 +92 4 6—219)(619 o e—z@)

81
(4.8) _ é(e?’w B it ity _ i(sin(fﬂ@) + sin(6)).
i
Therefore
1 7T/2 1 7T/2
I=4x —J (sin(360) + sin(0))dh = [—— cos(36) — cos(@)] = cos(m/6) = \/_ﬁ
4 71'/6 3 ﬂ'/ﬁ 2

(2) We compute the integral I of z? over the spherical shell in R? given by 1 < r < 2
in spherical coordinates. Since

z =rcos(p),

we get

2 r2m pm
I :f J f r cos? () sin(p)drdfdy
1 Jo Jo

We use the formula (4.8) to write this finally as

5

r°12 1 (7. ) 32 1 2
= 27 X [3]1 X ZL (sin(3¢) + sin(yp))de = 27 x <E - g> X g =

1247
15

4.5. Geometric applications of integrals

Besides the fact that the integral can be used to define and compute volumes of subsets
of R™, there are quite a few other natural geometric quantities that can be expressed in
terms of integrals. We present some of them in this section.

(1) [Center of mass] Let X be a compact subset of R™, such that the volume of
X is positive. The center of mass (or barycenter) of X is the point Z € R™ such
that = (Zy,...,%,) with

1 J'd
T NOI(X) T

Intuitively, z; is the average over X of the i-th coordinate, and Z is the point
where X is “perfectly balanced”.
Note that Z is not necessarily in X (for instance, for an annulus

X ={(r,y)eR? : 1 <2® +¢y* <2}

in R?, the center of mass is (0,0)), but this is the case if X is convex.
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(2) [Surface area] Consider a continuous function
f:la,b] x[c,d] - R
which is C! on ]a, b[x]c, d|. Let
I ={(z,y,2)eR® : (x,9) € [a,b] x [c,d], z= f(x,y)} = R?

be the graph of f. Intuitively, this is a surface, and it should have an area. This
is in fact given by

Lb Ld \/1 + (0uf (2, 1))2 + (0,f (x, y))2dxdy.

Such a result also holds for the graphs of functions defined on other sets, such
as discs, provided they are C! in the “interior” of the domain.

There is an analogue formula for the length of the graph of a function
f: [a,b] = R, namely it is equal to

b
| Vit T

EXAMPLE 4.5.1. (1) What is the center of mass of a cone
X={(r,y,2)eR*: 0<2<1, 22+ <(1-2)%

in R3? (This is a cone because for a given z, the “slice” of X where z is fixed is a disc
centered at 0 with radius 1 — z). For symmetry reasons, we have £ = § = 0 (you should
check that), so the question is to compute z. First we compute the volume, using Fubini’s
Theorem

Vol(X) = L drdydz = Ll <7r(1 - z)z)dz - %

Next we compute

1
_ 2\ = &~
fX zdzrdydz = J; z<7r(1 2) >dz 13’

so that the center of mass is (0,0, 1/4).
(2) What is the surface S of the sphere

X ={(2,y,2) : 2?*+ 92+ 22 =1}
of radius 1 in R3? Geometrically, this is twice the area of the graph of the function
flay) =/1—a? =y

defined for (z,y) such that z* 4+ y? < 1. Although this is not defined over a rectangle, an
analogue of the formula above holds, and we have

S = 2f \/1 + (0. f)% + (0, f)?dxdy
D
where D is the disc of radius 1 centered at (0,0) in R%. We have
x
Of =~ Oyf =2

«/1—932—3;27 «/1—x2—y2’

hence the surface is
2 2

S 2] <1+ ’ Y )1/2d d 2J ! dxd
= X = — Y ) I S .
D 1—a2?2—9y?2 1—2a2—y? 4 A1 — a2 — 2 y
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Using polar coordinates (4.7), this becomes

4#[—@]1 = 4.

0

1
)
S =4 ——dr =
), =

4.6. The Green formula

In the last sections, we will discuss two important formulas which are of the form

LX /= JX I
where

(1) fis a C! vector field defined on R™;

(2) X < R™ is a compact m-dimensional subset, with 1 < m < n;

(3) 0X is the “boundary” of X, which has dimension m — 1, and the integral on 0.X
is a generalization of a line integral;

(4) Df is some expression computed using the partial derivatives of first order of f.

In fact, there exist versions of these results in all dimensions, but we focus here on
the cases n = m = 2 (Green’s formula) and, in the next section, on the case n = m = 3
(Gauss—Ostrogradski formula).*

In all cases, the prototype is the Fundamental Theorem of Calculus, in the form

(49) | @ = 50) - r(@.

where X = [a,b] and the boundary is simply the set {a, b} with two elements.

The Green formula concerns the case of relating an integral over a subset X of R?
with a line integral over its boundary. The typical example is an integral over a compact
disc of radius r > 0 centered at x(, which is related to a line integral over the circle of
radius r centered at xg.

The difficulty in a rigorous formulation of this formula is mostly in precisely under-
standing which subsets X are allowed, and what “boundary” means. Moreover there is
an issue of orientation of the boundary (reflected in (4.9) in the fact that the sign of f(b)
and f(a) is not the same on the right-hand side).

DEFINITION 4.6.1. A simple closed parameterized curve v: [a,b] — R? is a closed
parameterized curve such that v(t) £ ~(s) unless t = s or {s,t} = {a,b}, and such that
v (t) # 0 for a < t < b. (If v is only piecewise C! inside |a, b[, this condition only applies
where 7/(t) exists).

EXAMPLE 4.6.2. (1) A circle parameterized by
v(t) = (xo + rcos(t), yo + rsin(t))

for 0 <t < 27 is a simple closed parameterized curve. But if we consider the circle twice
over (i.e., for 0 <t < 4n), then it is not.

(2) The lemniscate A (Figure 4.1) defined by (4.1) is not a simple closed curve, since
Am/2) = A(37/2) = 0.

1 The most general statement is known as the Stokes formula.
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FIGURE 4.5. The set is on the left

FIGURE 4.6. The set is on the left

THEOREM 4.6.3 (Green’s formula). Let X < R? be a compact set with a boundary 0X
that is the union of finitely many simple closed parameterized curves v, ..., Vx. Assume
that

Yi: [ai, bz] — R2
has the property that X lies always “to the left” of the tangent vector ~i(t) based at ~;(t).
Let f = (f1, f2) be a vector field of class C' defined on some open set containing X. Then

we have i
J (%—%>dxdy=2 . ds.
x\dr 0Oy =

The condition that X be on the left of the boundary is illustrated in Figure 4.5. We
then say that the boundary is positively oriented by the corresponding parameterized
curves ;.

Note that if this condition is not met, it simply means that one must “reverse” the
corresponding curve, e.g., replace v: [0,1] — R? by J(¢) = y(1 — ¢) for 0 < ¢ < 1, which
reverses the orientation of the tangent vector.

Another case, where there are two boundary curves, shows again the way the boundary
must be oriented possibly in different directions depending on which part of the boundary
is involved (see Figure 4.6).

ExXAMPLE 4.6.4. (1) Suppose that the set X has only one boundary curve 7, and
that f is a conservative vector field. Then we see that the Green formula holds, since
both sides are then zero (the right-hand side by Remark 4.1.9, and the left-hand side by
Example 4.1.14 (2)).
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(2) If X is a closed disc of radius r > 0 around (zo,%) € R?, then the boundary is
the circle which is the image of the parameterized curve

v(t) = (zg + rcos(t), xg + rsin(t))
for 0 <t < 2. Note that this is a simple closed curve; the tangent vector is
v (t) = (—rsin(t), 7 cos(t))

and one sees on a picture that the disc is to the left of v/(t) (e.g., v/(0) = (0,r) is a
vertical vector based at (0) = (r,0), so the disc is located to the left).
Hence the Green formula becomes

L(% _ %—J;l)dxdy _ Lf-d§

Let us specialize the vector field to f(z,y) = (0,2). Then the formula becomes

J dxdy=Jf-d§.
X Y

Indeed, the left-hand side is the area 7?2 of the disc, and we can check that the right-hand
side is

J%(xo + 7 cos(t))(r cos(t))dt = f

0 0

21 21

1
r? cos®(t)dt = TQJ 5 <1 + cos(2t)>dt = mr?,
0
In this case, it is most likely the computation of the area of the disc that is the main

interest. Many other vector fields have the property that

oh o _

or Oy

(e.g. f(x,y) = (g(x),z) where g is an arbitrary function) but it is of course best to choose
a simple one to facilitate the computation of the line integral.

(3) More generally, we can always use the Green formula to compute an integral over
X. Indeed, for any function g, we can find many vector fields f = (fi, f2) such that

9= 0Ouf2—0yfr.

For instance, we can put f; = 0 and find f; by solving 0, fo = g (computing a primitive
with respect to the z variable).

As an example, let g(x,y) = 2%y* and let X be the interior of an ellipse centered at
0 with axes lengths a > 0 in the z-direction and b > 0 in the y-direction. We want to
compute

f 9(x, y)dxdy.

X

We put f(z,y) = (0, 22*y?) to have 0, f» = g, and we parameterize the boundary by
v(t) = (acos(t),bsin(t)), 0<t<2m,

which is a simple closed parameterized curve. So
J 9(x,y)dedy = J f-ds
X v

1 ) 27
= §a362 f cos®(t) sin?(t) x bcos(t)dL.
0
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Using trigonometric computations as in Example 4.4.4, we find that
2m T
J cos*(t) sin®(t)dt = —,
0 8

so the integral is wa3b3/24.
(4) Consider the square X = [0,1]*> = R? and the vector field f(z,y) = (zy, 2> — 3?).
We want to compute the line integral over the boundary

fd§7
0X

where the boundary is taken counterclockwise (so that it satisfies the “set is on the left”
condition). We do not even need to write a parameterization of the boundary square. By
Green’s Formula and Fubini’s Formula, we get

1 pl
1

f-d§—JJ 20 — x |dxdy = —.
ox 0 o< ) 2

(5) Green’s formula is equivalent with a variant where we integrate the divergence of

a vector field f = (f1, f2), which we recall is defined by

le(f) = TI(Jf) = ﬁxfl + any
(see Definition 3.3.11). Indeed, note that

div(f) = Oufo — Oy f1,

where f(x,y) = (—fa, f1). So we have, under the assumptions that Green’s Formula is
valid for X and its boundary, the relation

k
L@ﬁmmzZ f-ds

i=1Y7i

It is customary to note that the line integral for the boundary component ~; is the integral
of

Aa@)via (@) + f2(i))7i2(t) = —f2(vi@)vi1 () + fr(3i () 1,:(E) = f(i(1)) - 7i(2)
where
1i(t) = (Vig(t), =i (t))-
For this reason, this variant of the Green formula is often written

k
fdmnm@zz f-di.
X i=1Y7i

For each parameterized curve, note that 7i(t) - 7/(¢) = 0 for all ¢: in other words, 7i(t) is
a vector perpendicular (or normal) to the tangent vector to the curve, and that it points
“outwards” of X (i.e., it goes “to the right” since 4’ has the property that X is “to the
left”). In fact, this vector is characterized by the conditions that (1) the length of 7i(t)
is the same as the length of 7/(t); (2) it is perpendicular to ~'(¢); (3) 7i(t) is directed
“outwards”. One says that 77 is the “exterior normal vector”.

As a further special case of the divergence form of the Green formula, when we apply
it to the gradient field Vg of a function g, then we obtain

L A(g)dady = > | V(g)-dii

i=1v7i
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since div(Vg) = Ag is the Laplacian of g (Example 3.5.8). For instance, it follows that
if Vg is parallel to the boundary (i.e., orthogonal to 77), then the integral of Ag over X
is zero, which is not at all obvious from the definition!

We state separately the general example of using the Green formula for a suitable
vector field to compute the area of a region:

COROLLARY 4.6.5. Let X < R? be a compact set with a boundary 0X that is the
union of finitely many simple closed parameterized curves 7y, ..., Yx. Assume that

Yi = (Y1, Yi2): [as, bi] — R’
has the property that X lies always “to the left” of the tangent vector ~i(t) based at ~;(t).

Then we have
Vol(X ZJ T - dS—ZJ Vi1 ()i 2 (t)dt.

4.7. The Gauss—Ostrogradski formula

The Gauss—Ostrogradski formula is an analogue of the Green formula in R3. Thus it
concerns a 3-dimensional compact set X < R2, with boundary S = 0X which is a surface
(2-dimensional).

DEFINITION 4.7.1. A parameterized surface X: [a,b] x [c,d] — R? is a 2-set in R3
such that the rank of the Jacobian matrix is 2 at all (s, t) €]a, b[x]c, d|.

Note that since there are two variables, two is the maximal possible rank for the

jacobian matrix.

EXAMPLE 4.7.2. (1) Consider a function g: [a, b]x[c, d] — R that is C* in a, b[x]c, d].
Then the function
X(s,t) = (s,t,9(s,t))
defines a parameterized surface in R?, whose image is the graph of g. Indeed, the Jacobian
matrix is

1 0
Jg (S, t) = 0 1
asg atg

which has rank 2 for all (s, ), since the first two rows are linearly independent.
(2) The sphere of radius r > 0 centered at (xg, yo, 20) is the image of the parameterized
surface
xo + 7 cos(s) sin(t)
Y(s,t) = | yo + rsin(s)sin(t)
2 + 1 cos(t)

for (s,t) € [0,27] x [0, 7]. The Jacobian matrix is
—rsin(s)sin(t) 7 cos(s) cos(t)

rcos(s)sin(t) rsin(s) cos(t)
0 —rsin(t)

It has rank 2 if (s,t) €]0,27w[x]0,7[ (in that case, the second and third rows define an
invertible 2 x 2 matrix unless cos(s) = 0; but when that is the case, namely s = 7/2 or
37/2, the first and the third rows define an invertible 2 x 2 matrix).
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(3) Another parameterization of the same sphere is given by

1 To + 2rs
Y(s,t) = ———— + 2rt
(5,2) (14 s%2+12) zo+7g”/(01—82—t2)

for (s,t) € R? (although this is not a compact set in R?).

Indeed, first note that

1

(1+ 8% +12)2
for all (s,t) € R?, so that the image of ¥ is contained in the sphere. It covers the whole
sphere, except (0,0, —1). Indeed, we may assume by translating that (x,vo,20) = 0.
Then consider (s,t) with s? + ¢ = u? fixed (in other words, a circle of radius u). The
image of this subset of R? is the circle centered at (0,0, (1—u?)/(1+wu?)) that is contained
in the unit sphere. The function u — (1 —u?)/(1 + u?) = —1 + 2/(1 + u?) is strictly
decreasing for u > 0, going from 1 to the limit —1 as u — +o0.

The Jacobian matrix is
1 2r —4rs?/(1+ 8% + %) —drst/(1 +1? + §°)
———— | —Arst/(L+s*+17)  2r —4rt? /(1 + 5% + 1?)
T8+ 85 _grs/(1 + 82 + £2) —drt)(1+ s® + t2)

I2(s,t) — (20, Yo, 20)[* = (47“252 +4r*t? +r?(1 — 5% — t2)2> = 2

It is of rank 2 for all (s,t) (check that the second and third rows are independent unless
s = 0, in which case the first and second rows are independent).

We next recall a definition from linear algebra.

DEFINITION 4.7.3. Let 2 and y be two linearly independent vectors in R3. The vector
product, or cross product z = x x y is the unique vector in R3 such that (z,y, z) is a basis

of R? with det(z,y, z) > 0, and
Izl = ll] ] sin(6),
where 0 is the angle between x and y.

If x and y are not linearly independent, we just define x x y = 0, the zero vector. The
formula for the length of the cross-product is still valid.
We recall that there is in fact an elementary formula: if x = (1,22, 23) and y =

(yla Yo, 93)7 then

ToYs — T3Y2 €1 €2 €3
rxy=|x3y1 —T1y3 | = det |21 w2 3|,
T1Y2 — T2l Y1 Y2 Y3

(with the same formal style of computation as in Remark 4.1.21, where (eq, ey, €3) is the
canonical basis of R?).

REMARK 4.7.4. In particular, note the useful formulas
€1 X eg = €3, €y X e3 = €1, €3 X €1 = €9,

and y x x = —x X .

If (f1, f2, f2) is a basis basis in R?, there are two possibilities: either det(fy, fo, f3) > 0
or det(fi, f2, f3) < 0. The first type are called positively oriented. An example is the
canonical basis (eq, ey, €3), which has determinant 1.

If the basis (f1, f2, f3) is orthogonal, it is possible to check that all positively oriented
orthonormal bases, for instance (fi/|fi], f2/[ f2[, f3/[ f3]), are of the form (Ae;, Aea, Aes)
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where A is a rotation matrix (an element of SO3(R)). Intuitively, that means they can
be obtained from the canonical basis by rotation.

Let ¥: [a,b] x [¢,d] — R? be a parameterized surface such that X is injective on
Ja,b[x]c,d[. For all (s,t), the vector i = 0s%(s,t) x ;X(s,t) is orthogonal to the two
vectors 0s2(s,t) and 0;2(s,t), which are linearly independent since the Jacobian matrix
of ¥ has rank 2. Intuitively, the two vectors span the tangent plane to the surface, hence
this vector 7 is perpendicular to the surface.

Consider now a 3-dimensional compact subset X of R? with boundary 0X given by
the image of the parameterized surface X: [a,b] x [¢,d] — 0X. (For instance, S could
be a ball in R? of some radius r > 0, and the boundary 0S5 would be the corresponding
sphere sphere.)

For the boundary surface X, the orientation condition that is the correct analogue of
that concerning the boundary curves in Theorem 4.6.3 is now that the normal vector 7
based at any point of the boundary should point away from X: it should be an “exterior
normal vector”.

ExAMPLE 4.7.5. Consider the parameterized sphere of Example 4.7.2. Then

—rsin(s) sin(¢) r cos(s) cos(t)
0s% = | rcos(s)sin(t) |, 0% = | rsin(s) cos(t)
0 —rsin(t)

We compute the cross product

cos(s) sin(t)
0.% x ;% = —r*sin(t) | sin(s)sin(t
cos(t)

~—

One can check that this is an interior normal vector. For instance, let s = 7w and t = 7/2,
so that X(s,t) = (xg — 7,90, 20); then 0,3 = —rey and 0, = —res, so that the cross
product is

0,5 X 0% = ey X €5 = 1€,

which points inside the ball from the point (zg — 7, yo, 20)-

Here is the formula:

THEOREM 4.7.6 (Gauss-Ostrogradski formula). Let X < R? be a compact set with
a boundary 0X that is a parameterized surface X: [a,b] x [c,d] — R3. Assume that ¥
is injective in |a, b x]c,d|, and that ¥ has the property that the normal vector il points
away from X at all points. Let @ = 7i/||7i| be the unit exterior normal vector.

Let f = (f1, fa, f3) be a vector field of class C defined on some open set containing
X. Then we have

L div(f)dadydz — f (f - @)do.

b
In this case, both the left and right-hand sides require come explanation:
(1) For a vector field f = (f1, fa, f3) on X < R?, we denote div(f) = 0, f+0,f+0.f,

which is called the divergence of the vector field f (similarly to the case n = 2).
Hence the left-hand side of the formula is

L{ div(f)dzdzdz = J;((g—i + 2—?]; + Z—ﬁ)dxdydz.
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(2) For a parameterized surface ¥: [a,b] x [c,d] — R? in R? with exterior normal
vector field 77 = (ny,ng,n3) = 05X x %, and a function g defined on the image
of 3, we define the surface integral

Lg do — J b f G(5(s, 1)) (s, £)dsd

where
o(s,t) = (02 x o, % = ||7i(s, t)]|-

Like the line integral for a parameterized curve, the key property of the sur-
face integral (and especially the explanation for the complicated-looking factor
|02 x 0,X]|) is that it is independent of the chosen parameterization of the surface
(see Proposition 4.1.5). This can be proved by applying the change of variable
formula, as in the case of line-integrals.

Next, for a C* vector field f = (fy, fo, f3) on R3, we define

|.riao = [ ga

3

9(S(s,1)) = F(E(s,1)) - iils, 1) = D usls, 1) fi(S(s,1)).

i=1

where

This particular surface integral is called the flux of the vector field f through
the surface X.
Note that in the flux, the expression u(s,t)o(s,t) simplifies always to 7(s, t)

(s, t)o(s,t) = %o(s,t) = 17i(s,1).

EXAMPLE 4.7.7. (1) We illustrate first the surface integral. Suppose ¥ is a parame-
terized surface given by 3(s,t) = (s,t, f(s,t)) for some function f: [a,b] x [¢,d] — R (so
the image is the graph of f). We take g(x,y, z) = 1, and we claim that

J do = the surface area of the graph of f,
b

which is a natural result. Indeed, we have

1 0
(352 = 0 s atE = 1 3
as.f atf
hence
_asf
02X X O = | —0if
1
so that
) ) 1/2
0.5 % a3 = ((@uf? + (@) +1)
hence

L do = Lb f((asf)2 + () + 1)1/2dsdt

is the surface area of the graph according to Section 4.5.
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(2) We can use the Gauss—Ostrogradski formula to compute volumes, similarly to the
computation of areas using the Green formula. Consider the vector field f(x,y,z) =
(7,0,0), so that div(f) = 1. Then if X < R? has boundary : [a,b] x [¢,d] — R? (an
injective parameterized surface) with positive orientation, we have

Vol(X) f (f - i)do — f: Ldnl(s,t)x(x,t)a(s,t)dsdt,

b
where (s, t) = (z(s,t),y(s, 1), z(s,t)).

Consider the example of the volume of a ball B centered at 0 with radius r in R3
again, where the boundary is parameterized as in Example 4.7.2. We computed d,3 x 0,2
in Example 4.7.5. Since this normal vector is interior, and

o(s,t) = [0,2 x 0,3 = r?sin(t) (COS2(S) sin?(¢) + sin?(s) sin?(¢) + COSQ(t)>1/2 = r?sin(t)

we get

Vol(B) fw L " cos(s) sin(t) x 1 cos(s) sin(t)dsdt
- L " cos?(s)ds) ( L ' sin’(1)dt) = 47;”3,

cos?(s) = %(1 + cos(2s))

using the formulas

1 . . . . 1
sin®(t) = —g(e?”t — 3¢ 4+ 3¢ — 7)) = 1(3 sin(t) — sin(3t)),
i
which imply that

27
f cos*(s)ds = 7

0
and

fﬁ sin (1)t =~ ([~ cos(t)]y - %[cos(:st)]g) - (32~ 2 2) = %"
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