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CHAPTER 1

Preliminaries

We assume knowledge of the contents of Analysis I (for instance, properties of real
numbers, sequences and series, continuous functions on intervals, differentiable functions
on intervals, Riemann integral, improper integrals). These can be found in the script [1]
of Prof. M. Burger.

We denote by N “ t0, 1, 2, . . .u the set of all natural numbers, by Q the rational
numbers, by R the real numbers and by C the complex numbers.

In addition to continuous and differentiable functions defined on intervals with values
in R, as in [1, Kap. III, IV], we will also consider functions f : I Ñ Rd, where d ě 2
and I is an interval. This means that

fpxq “ pf1pxq, . . . , fdpxqq

for some functions fi : I Ñ R. We then say:

‚ That f is continuous (on I, or at a point x0 P I) if each coordinate function fi
is continuous (on I or at x0);

‚ That f is differentiable (on I, or at a point x0 P I) if each coordinate function fi
is differentiable (on I or at x0), in which case we write

f 1px0q “ pf
1
1px0q, . . . , f

1
dpx0qq.

A primitive F of a continuous function f : I Ñ Rd is a differentiable function F : I Ñ
Rd such that F 1 “ f . A primitive always exists, for instance

F pxq “
´

ż x

x0

f1ptqdt, . . . ,

ż x

x0

fdptqdt
¯

when writing f “ pf1, . . . , fdq as before.
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CHAPTER 2

Ordinary differential equations

2.1. Introduction

A differential equation is an equation where the unknown (or unknowns) is a function
f , and the equation relates values of f at a point x with values of derivatives of the
function at the same point x. If the function has one variable only (as is the case in this
chapter), one speaks of ordinary differential equations.1

Example 2.1.1. (1) The exponential function fpxq “ ex, defined for x P R, satisfies
f 1pxq “ fpxq for all x P R. One says that this function is a solution (on R) of the
differential equation y1 “ y. This is not the only solution: in fact, for any constant a P R,
the function fapxq “ aex also satisfies f 1apxq “ fapxq for all x P R. Later, we will see that
there are no other solutions.

(2) In the mechanics of Newton, the movement of a particle P with mass m ą 0, given
by its position fptq “ pxptq, yptq, zptqq P R3 for all times t is determined by the equation

mf2ptq “ sum of forces acting on P at time t,

and by the “initial condition”, which means the specification of the position fp0q and
speed f 1p0q at some starting time t0. Note that the forces acting on the particle at time t
are expressions involving fptq (position) and f 1ptq (speed), at the same time t. Also, the
solution is unique because of the initial conditions (otherwise, as in Example (1), there
would be infinitely many solutions).

Since f is a function with one variable t but with values in R3, we recall again that
the derivatives of f are simply taken for each coordinate separately

f 1ptq “ px1ptq, y1ptq, z1ptqq, f2ptq “ px2ptq, y2ptq, z2ptqq.

For example, a particle subject to no external force satisfies the equation mf2ptq “ 0,
so that f2ptq “ 0 for all t, which means that the motion is a straight line (each of the
coordinates is of the form xptq “ a0t` b0, yptq “ a1t` b1, zptq “ a2t` b2).

Classical newtonian mechanics (and its solutions) forms a basic tool to simulate phys-
ical behavior of objects in applications (such as computer games, computer generated
videos, etc).

(3) For any given continuous function a, the differential equation f 1 ´ a “ 0 has a
solution, namely any primitive of the function a. The existence of the solutions follows
from the Fundamental Theorem of Calculus ([1, §5.4]): we may define

fpxq “

ż x

x0

aptqdt.

In general, differential equations are closely related with integration theory.
(4) An equation like f 1px ` 1q ´ fpxq “ 0 is not an ordinary differential equation,

because it relates the value of f at the point x with the derivative at another point.

1When there is more than one variable, one speaks of partial differential equations, referring to partial
derivatives in multi-variable calculus (see Chapter 3).
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Remark 2.1.2. In computer science, besides simulations of physical systems, differ-
ential equations arise frequently in the analysis of algorithms, for instance the running
time of certain algorithms might be a solution of a differential equation, or might be
approximated by such a solution.

It is customary to write down a differential equation without writing the evaluation
fptq or fpxq but only the function’s name (or its derivatives), and to use the letter x or t
for the variable when it appears elsewhere in the equation. In physics, the time variable t
plays an important role, and derivation with respect to time is often denoted by a dot: 9y
instead of y1, and :y instead of y2. When one needs to specify initial conditions (values of
the unknown function at some fixed value that specify the solution uniquely), one writes
for instance yp0q “ a, y1p0q “ b to say that the function f should satisfy fp0q “ a and
f 1p0q “ b.

Example 2.1.3. The important function fpxq “ e´x
2
, for x P R, satisfies the differ-

ential equation y1 “ ´2xy, i.e., for every x P R, we have f 1pxq “ ´2xe´x
2
“ ´2xfpxq.

In a physics context, where the variable is understood as time, this might be written
9y “ ´2ty.

Ordinary differential equations are classified according to their order, which is the
highest derivative that appears in the equation. So Newton’s equations are of order 2
(because forces are expressed in terms of y and y1, and acceleration involves y2).

There is a trick to reduce any ordinary differential equation of order k ě 2 to an
equation of order 1, but for a function that takes values in a higher-dimensional space
(keeping however a single variable). We illustrate it with an example.

Example 2.1.4. The differential equation

(2.1) y2 “ xpx` 1qy1 ´ 3y,

with unknown a differentiable function f : R Ñ R, can be transformed into the equation

(2.2) Y 1 “

ˆ

0 1
´3 xpx` 1q

˙

Y

with unknown a differentiable function F : R Ñ R2, where the right-hand side is a matrix

product. Indeed, if F is a solution of this equation and we write F pxq “

ˆ

f0pxq
f1pxq

˙

, then

the equation for F means that
ˆ

f 10pxq
f 11pxq

˙

“

ˆ

0 1
´3 xpx` 1q

˙ˆ

f0pxq
f1pxq

˙

“

ˆ

f1pxq
´3f0pxq ` xpx` 1qf1pxq

˙

for all x. So we have f1 “ f 10, and therefore F pxq “

ˆ

f0pxq
f 10pxq

˙

, where the function

f0 : R Ñ R satisfies (second row of the equation) the ordinary differential equation

f20 pxq “ f 11pxq “ ´3f0pxq ` xpx` 1qf 10pxq

for all x. Conversely, given a solution f of (2.1), putting F pxq “

ˆ

fpxq
f 1pxq

˙

gives a solution

of (2.2).

This trick explains why many general results are stated for equations of order 1. On
the other hand, the solution of specific equations of order 2 or higher might be easier
without using this trick.

3



Although it is “physically” clear that Newton’s equation have solutions, it is not at
all obvious that ordinary differential equations should have solutions in general. In fact,
it is possible that a solution only exists “locally” around an initial point.

Example 2.1.5. Consider the equation 2yy1 “ 1 on R with the initial condition
yp0q “ 1. Writing the left-hand side as py2q1, we see that y2 satisfies y2 “ x` a for some
constant a P R, and we have a “ 1 because of the initial condition. Hence the solution is
fpxq “

?
x` 1. But although the equation can be asked for all x P R, here the solution

only makes sense for x ą ´1.

At least one can prove that this local existence always holds, for nice enough equations
of the form y1 “ F px, yq (and many others that can be brought to this form).

Theorem 2.1.6. Suppose F : R2 Ñ R is a differentiable function of two variables
(see Chapter 3). Let x0 P R and y0 P R2. Then the ordinary differential equation

y1 “ F px, yq

has a unique solution f defined on a “largest” open interval I containing x0 such that
fpx0q “ y0. In other words, there exists I and a function f : I Ñ R such that for all
x P I, we have f 1pxq “ F px, fpxqq, and one cannot find a larger interval containing I
with such a solution.

As is the case for polynomial equations, it is in general impossible to write down
“explicitly” the solution to such an equation.

Example 2.1.7. The function F can be arbitrary, for instance

F pt, uq “ u3 exppcosptu2
´ 1qq ` 3 sinptq

for the complicated differential equation

y1 “ y3 exppcospxy2
´ 1qq ` 3 sinpxq

whose solutions f : I Ñ R (for some interval I) satisfy

f 1pxq “ fpxq3 exppcospxfpxq2 ´ 1qq ` 3 sinpxq “ 0,

for all x P I.

2.2. Linear differential equations

The simplest differential equations are the linear differential equations.

Definition 2.2.1. Let I Ă R be an open interval and k ě 1 an integer. An ho-
mogeneous linear ordinary differential equation of order k on I is an equation of the
form

ypkq ` ak´1y
pk´1q

` ¨ ¨ ¨ ` a1y
1
` a0y “ 0

where the coefficients a0, . . . , ak´1 are complex-valued functions on I, and the unknown
is a complex-valued function from I to C that is k-times differentiable on I.

An equation of the form

(2.3) ypkq ` ak´1y
pk´1q

` ¨ ¨ ¨ ` a1y
1
` a0y “ b,

where b : I Ñ C is another function, is called an inhomogeneous linear ordinary differen-
tial equation, with associated homogeneous equation the one with b “ 0.

Note that if the coefficients are real-valued, it is often of interest to find only the
real-valued solutions.
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Example 2.2.2. The equations

y1 “ y, y2 “ ´y, y1 ` 2xy “ 0

(which admit as particular solutions the functions exppxq, cospxq and expp´x2q, respec-
tively) are linear and homogeneous. The equation

y1 ´ y “ cospxq

is linear and inhomogeneous. The equations

2yy1 “ 1, y1 “ y2, cospy2q “ exppx` yq, py ` y1q3 “ 1, y1 ´ y “ xey

are not linear.

The main property of linear differential equations (explaining the adjective) is that if
we write Dpfq for the left-hand side of the equation, so that

Dpfq “ f pkq ` ak´1f
pk´1q

` ¨ ¨ ¨ ` a1f
1
` a0f,

then the operation D is linear: for any numbers z1 and z2 and (k-times differentiable)
functions f1 and f2, we have Dpz1f1 ` z2f2q “ z1Dpf1q ` z2Dpf2q. Indeed, let f “
z1f1 ` z2f2, then

Dpfq “ f pkq ` ¨ ¨ ¨ ` a1f
1
` a0f

“ z1pf
pkq
1 ` ak´1f

pk´1q
` ¨ ¨ ¨ ` a0f1q ` z2pf

pkq
2 ` ak´1f

pk´1q
¨ ¨ ¨ ` a0f2q

“ z1Dpf1q ` z2Dpf2q.

The main theoretical results concerning linear differential equations are summarized
in the following result:

Theorem 2.2.3. Let I Ă R be an open interval and k ě 1 an integer, and let

ypkq ` ak´1y
pk´1q

` ¨ ¨ ¨ ` a1y
1
` a0y “ 0

be a linear differential equation over I with continuous coefficients.
(1) The set S of k-times differentiable solutions f : I Ñ C of the equation is a complex

vector space which is a subspace of the space of complex-valued functions on I.
(1bis) If the functions ai are real-valued, the set S of real-valued solutions is a real

vector space which is a subspace of the space of real-valued functions on I.
(2) The dimension of S is k, and for any choice of x0 P I and any py0, . . . , yk´1q P Ck,

there exists a unique f P S such that

fpx0q “ y0, f 1px0q “ y1, . . . , f pk´1q
px0q “ yk´1.

(2bis) If the functions ai are real-valued, the dimension of the space of real-valued
solutions, as a real vector space, is k, and for any choice of x0 P I and any py0, . . . , yk´1q P

Rk, there exists a unique real-valued solution f such that

fpx0q “ y0, f 1px0q “ y1, . . . , f pk´1q
px0q “ yk´1.

If b and the coefficients ai are real-valued, there exists a real-valued solution.
(3) Let b be a continuous function on I. There exists a solution f0 to the inhomoge-

neous equation
ypkq ` ak´1y

pk´1q
` ¨ ¨ ¨ ` a1y

1
` a0y “ b,

and the set Sb is the set of functions f ` f0 where f P S.
(4) For any x0 P I and any py0, . . . , yk´1q P Ck, there exists a unique f P Sb such that

fpx0q “ y0, f 1px0q “ y1, . . . , f pk´1q
px0q “ yk´1.
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Remark 2.2.4. (1) If b ­“ 0, the set Sb of solutions is not a vector space.
(2) Statement (1) of this theorem is elementary: the set S is just the kernel of the

linear map that sends a function f to Dpfq. In other words, if f1 and f2 are elements of
S and z1, z2 are complex numbers and f “ z1f1 ` z2f2, then

Dpfq “ z1Dpf1q ` z2Dpf2q “ 0.

Also, if we can find any element f0 of the set Sb, then it is elementary that all other
elements are of the form f ` f0 where Sb, since for f1 P Sb, we get

pf1 ´ f0q
pkq
` ak´1pf1 ´ f0q

pk´1q
` ¨ ¨ ¨ ` a0pf1 ´ f0q

“ Dpf1 ´ f0q “ Dpf1q ´Dpf0q “ b´ b “ 0,

so that f1 “ f ` f0 where f “ f1 ´ f0 P S.

We will illustrate this result in the next sections by explaining how to solve, in practice,
two important types of linear differential equations.

Remark 2.2.5. The linearity of the equation has also consequences when trying
to solve the inhomogeneous equation. Indeed, for instance, if we know a function f1

solving (2.3) with the right-hand side b1, and one function f2 solving (2.3) with the right-
hand side b2, then f1 ` f2 solves (2.3) with right-hand side b1 ` b2, since Dpf1 ` f2q “

Dpf1q `Dpf2q “ b1 ` b2.

2.3. Linear differential equations of order 1

Let I Ă R be an open interval. We consider here the linear differential equation

y1 ` ay “ b,

when a and b are general continuous functions defined on I.
The solution has two steps: first solving the homogeneous equation y1 ` ay “ 0 (say

that S is the space of solutions, which is a one-dimensional vector space according to
Theorem 2.2.3), and then finding a solution f0 of the inhomogeneous equation, so that
the set Sb contains exactly the functions f0 ` f where f P S. If f1 is a basis of S (which
only means that f1 is in S and is not the zero function), this means that the solutions
are given by f0 ` zf1, where z P C is arbitrary.

If a is real-valued, then there exists a real-valued non-zero element f1 of S, and a
real-valued solution f0, so that the real-valued solutions of the equation are the functions
of the form f0 ` xf1, where x P R is arbitrary.

If one wishes the solve the problem with initial value fpx0q “ y0, then it suffices to
solve the equation

f0px0q ` zf1px0q “ y0

to determine the value of z. (It might be thought that there is a problem if f1px0q “ 0,
but we will see that this never happens for a non-zero function f1 P S).

Step 1 (solving the homogeneous equation). Formally, the idea is to transform
y1 ` ay “ 0 into y1{y “ ´a, so that plog |y|q1 “ ´a, which implies by integration that

y “ z expp´Aq,

where z P C and A is a primitive of the function a. There is a potential problem with
this argument, since we divided by y, which is a function so that y might vanish at some
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point in the interval. However, it is easy to check that the conclusion is correct. First, if
we define a function fpxq “ z expp´Apxqq, then we get by the chain rule the relation

f 1pxq “ ´zA1pxq expp´Apxqq “ ´apxqfpxq,

so that f is a solution of the equation y1 ` ay “ 0.
Conversely, suppose that f is a solution of the equation y1 ` ay “ 0, and define

gpxq “ fpxq exppApxqq. Then we obtain, by the Leibniz rule and the chain rule, the
formula

g1pxq “ f 1pxq exppApxqq ` A1pxqfpxq exppApxqq

“ ´apxqfpxq exppApxqq ` apxqfpxq exppApxqq “ 0,

which means that g is a constant, say z, in which case fpxq “ z expp´Apxqq, as we
guessed.

We conclude:

Proposition 2.3.1. Any solution of y1 ` ay “ 0 is of the form fpxq “ z expp´Apxqq
where A is a primitive of a. The unique solution with fpx0q “ y0 is

fpxq “ y0 exppApx0q ´ Apxqq.

Step 2 (solving the inhomogeneous equation). Now consider the equation

y1 ` ay “ b.

We know that it suffices to find a single solution f0 to obtain all of them by adding one
of the solutions of y1 ` ay “ b found in the previous step.

Example 2.3.2. Sometimes, we can make a clever guess that finds a suitable function
f0. Consider for instance the equation y1 “ y ` x2. We might guess that a polynomial
can be a solution; it should be of degree 2, so we can try fpxq “ ax2 ` bx ` c, for some
constants a, b, c. In that case we get

f 1pxq ´ fpxq “ 2ax` b´ pax2
` bx` cq “ ´ax2

` p2a´ bqx` b´ c

so this function is a solution provided
$

’

&

’

%

a “ ´1

2a´ b “ 0, hence b “ ´2

b´ c “ 0, hence c “ ´2.

So we can take f0pxq “ ´x
2 ´ 2x´ 2.

If there is no obvious guess of the form of a special solution f0, there is a general
method that works (but might lead to complicated formulas). It is called “variation
of the constant”, because it starts with the formula for a solution of the homogeneous
equation, namely

fpxq “ z expp´Apxqq, z P C,

and looks for a solution f0 of this form, but where now z is considered to be itself
a function of x. If we assume this, and compute the derivative f 1, then we see that
f0pxq “ zpxq expp´Apxqq is a solution of y1 ` ay “ b if and only if

z1pxq expp´Apxqq ´ A1pxqzpxq expp´Apxqq ` apxqzpxq expp´Apxqq “ bpxq,

which (since A1pxq “ apxq) translates into

z1pxq “ bpxq exppApxqq.
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In other words, we can take z to be a primitive Cpxq of the continuous function bpxq exppApxqq,
and the special solution is

f0pxq “ Cpxq expp´Apxqq.

If we use the fundamental theorem of calculus to write primitives (taking the value 0 at
x0) of a and b exppAq, this becomes the rather complicated expression

f0pxq “ exp
´

´

ż x

x0

aptqdt
¯

ż x

x0

bptq exp
´

ż t

x0

apuqdu
¯

dt,

which is a special solution such that f0px0q “ 0.

Remark 2.3.3. When solving concrete equations, do not forget the last step of mul-
tiplying the “constant” zpxq by expp´Apxqq at the end!

2.4. Linear differential equations with constant coefficients

Let k ě 1 be an integer, and let a0, . . . , ak´1 be complex constant coefficients. We
consider the linear differential equation

ypkq ` ak´1y
pk´1q

` ¨ ¨ ¨ ` a1y
1
` a0y “ b.

Note that the coefficients ai are fixed numbers, but the right-hand side b is still assumed
to be a general continuous function.

Example 2.4.1. The equation y2 ´ xy “ 0 does not belong to this class, but the
equations y1 ´ y “ 0 and y2 ` y “ 0 (satisfied by the exponential and by trigonometric
functions) have constant coefficients.

The solution of the homogeneous equation is very simple in principle. One looks for
solutions of the special form fpxq “ eαx for some complex number α P C. Then we have
f pjqpxq “ αjeαx for all j ě 0 and for all x, which means that

f pkqpxq ` ak´1f
pk´1q

pxq ` ¨ ¨ ¨ ` a1f
1
pxq ` a0fpxq “ eαxpαk ` ak´1α

k´1
` ¨ ¨ ¨ ` a1α ` a0q.

We conclude that f is a solution of the homogeneous equation if and only if P pαq “ 0,
where P is the polynomial with coefficients a0, . . . , ak´1:

P pXq “ Xk
` ak´1X

k
` ¨ ¨ ¨ ` a1X ` a0.

According to the Fundamental Theorem of Algebra, this polynomial of degree k has k
complex roots, counted with multiplicity: there exist complex numbers α1, . . . , αk such
that

P pXq “ pX ´ α1q ¨ ¨ ¨ pX ´ αkq.

This polynomial is called the companion or characteristic polynomial of the homogeneous
differential equation.

Remark 2.4.2. We repeat that this is only defined when the coefficients of the equa-
tion are constant.

Remark 2.4.3. Although it is natural to look for complex-valued solutions, one is
often interested in situations where the coefficients ai are real and we know that the
solution should take real values, or we want such solutions.

Suppose that a root α “ β` iγ is not real, so the imaginary part γ is non-zero. Then
the solution fpxq “ eαx does not take real values. However, in that case, the conjugate
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β ´ iγ “ ᾱ ­“ α is also a root of the companion polynomial (which has real coefficients,

so that P pz̄q “ P pzq for any z P C) and one can replace the two solutions

f1pxq “ eαx, f2pxq “ eᾱx

by the real-valued functions

rf1pxq “ eβx cospγxq, rf2pxq “ eβx sinpγxq

(note for instance that f1 “
rf1 ` i rf2 and that rf1 “ f1 ` f2 since eiθ “ cospθq ` i sinpθq).

The possible existence of multiple roots requires some care in the next step, so we
begin by discussing the simple case where this does not happen.

Case 1: no multiple roots. Assume that αi ­“ αj for i ­“ j. Then we have
found k distinct solutions fjpxq “ eαjx of the homogeneous equation. It is not very
difficult to check that these functions are linearly independent, so that the space of linear
combinations of these functions has dimension k. According to Theorem 2.2.3, (2), this
must be the full vector space S of solutions of the homogeneous linear differential equation.
In other words, any solution of

ypkq ` ak´1y
pk´1q

` ¨ ¨ ¨ ` a1y
1
` a0y “ 0

is of the form

fpxq “ z1e
α1x ` ¨ ¨ ¨ ` zke

αkx,

for some complex numbers pz1, . . . , zkq that can be chosen arbitrarily.
If one wishes to find the unique solution with

fpx0q “ y0, . . . , f
pk´1q

px0q “ yk´1

for given py0, . . . , yk´1q, one may simply view z1, . . . , zk as unknowns. Substituting
x “ x0 in the formula for fpxq and solving for these initial conditions becomes a linear
system with unknowns z1, . . . , zk. It is a fact that the system has a unique solution (the
determinant is always non-zero), which provides the required function.

Remark 2.4.4. If the constants ai are real, the space of real-valued solutions of the
equation is obtained as follows: order the roots αj so that α1, . . . , αm are the real
solutions of the polynomial P , and αm`1, . . . , αk are the solutions which are not real.
Write αj “ aj ` ibj for j ě m ` 1. (Note that we may have m “ 0, if there is no real
solution, or m “ k, if all solutions are real). Then the space of real-valued solutions of
the homogeneous differential equation is the space of functions of the form

fpxq “ x1e
α1x ` ¨ ¨ ¨ ` xme

αmx`

xm`1e
am`1x cospbm`1xq ` ym`1e

am`1x sinpbm`1xq`

¨ ¨ ¨ ` xke
akx cospbkxq ` yke

akx sinpbkxq.

Because such expressions are more complicated to handle, it is often better to work with
complex-valued solutions as long as possible.

Example 2.4.5. (1) Consider the equation y1 ` ay “ 0, with a constant. The com-
panion polynomial is X ` a, so the only solution is α1 “ ´a, and we get the solutions
fpxq “ ze´ax. This coincides with the solution in Section 2.3, since a primitive of a is
Apxq “ ax.

(2) Consider the equation y2 ´ ay “ 0. The companion polynonial is P “ X2 ´ a.
There are then three cases.
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‚ (Case 1). If a ą 0, then P “ pX ´
?
aqpX `

?
aq has two real roots, and the

solutions take the form

fpxq “ z1e
?
a x
` z2e

´
?
a x.

‚ (Case 2). If a ă 0, then P “ pX ´ i
a

|a|qpX ` i
a

|a|q, and the solutions take
the form

fpxq “ z1e
i
?
|a|x

` z2e
´i
?
|a|x

“ pz1 ` z2q cosp
a

|a|xq ` ipz1 ´ z2q sinp
a

|a|xq.

‚ (Case 3). If a “ 0, then we have only found one solution (namely fpxq “ 1).
However, the equation is easily solved in that case: f is a solution of y2 “ 0
means that fpxq “ z1x`z2 for some complex numbers z1 and z2. So the function
f1pxq “ x is a second solution linearly independent of the first.

(3) What is the solution f to y2 ` y1 ` y “ 0 such that fp0q “ 1 and f 1p0q “ 0?
The companion polynomial is P pXq “ X2 ` X ` 1 “ pX ´ αqpX ´ ᾱq with α “

p´1` i
?

3q{2. Since we are interested in real solutions, it is easier to work with the two
basic solutions

f1pxq “ e´x{2 cos
´

?
3

2
x
¯

, f2pxq “ e´x{2 sin
´

?
3

2
x
¯

.

We know that there exist numbers z1 and z2 such that

fpxq “ z1f1pxq ` z2f2pxq,

and the initial conditions transform into the linear equations
#

z1 “ 1

´1
2
z1 `

?
3

2
z2 “ 0

for z1 and z2 (since, for instance, we have

f 11pxq “ ´
1

2
e´x{2 cos

´

?
3

2
x
¯

´

?
3

2
e´x{2 sin

´

?
3

2
x
¯

,

so f 11p0q “ ´1{2, and similarly for f 12p0q “
?

3{2). It follows that z1 “ 1 and z2 “ 1{
?

3.

Case 2 (multiple roots). Suppose that α is a multiple root of order j of the
polynomial P , with 2 ď j ď k. Then the k functions

fα,0pxq “ eαx, fα,1pxq “ xeαx, ¨ ¨ ¨ , fα,j´1pxq “ xj´1xαx

are linearly independent, and are solutions of the homogeneous linear differential equa-
tion. Taking the union of the functions fα,j for all roots of P , each with its multiplicity,
gives a basis of the space of solutions.

Remark 2.4.6. To say that α is a root of P with multiplicity j ě 1 means either of
the following two equivalent conditions:

(1) We have P pαq “ ¨ ¨ ¨ “ P pj´1qpαq “ 0.
(2) We have a factorization P pXq “ pX ´ αqjQpXq, where Q is a polynomial and

Qpαq ­“ 0.

We now check the assertion about fα,j being a solution in the case of a double root
(j “ 2). Note that

f 11pxq “ αxeαx ` eαx, f21 pxq “ α2xeαx ` 2αeαx, . . .

10



so that we find the formula

f
pkq
1 pxq ` ak´1f

pk´1q
1 pxq ` ¨ ¨ ¨ ` a1f

1
1pxq ` a0f1pxq “ xeαxP pαq ` eαxP 1pαq.

Since P pαq “ P 1pαq “ 0 for a double root, the function f1 is a solution of the homogeneous
differential equation. The general case is similar.

Once a basis of S is found (using this kind of functions for each root), one can find
the unique solution with given initial conditions by again substituting x0 in a linear
combination, and solving a system of linear equations.

Example 2.4.7. Suppose that the companion polynomial factors as

P pXq “ XpX ´ 4q3pX ´ p1` iqqpX ´ p1´ iqq.

Then a basis of the solution space S are the functions

f0pxq “ 1 (for the solution 0 of P )

f1pxq “ e4x, f2pxq “ xe4x f3pxq “ x2e4x (for the solution 4, which is a triple root)

f4pxq “ ep1`iqx “ pcospxq ` i sinpxqqex, f5pxq “ ep1´iqx “ pcospxq ´ i sinpxqqex.

If one is interested in real-valued solutions, it might be easier to use the alternate basis
where f4 and f5 are replaced by

rf4pxq “ ex cospxq, rf5pxq “ ex sinpxq.

We now go back to the general case. If we need to solve an inhomogeneous equation,
there remains to find a special solution for

(2.4) ypkq ` ak´1y
pk´1q

` ¨ ¨ ¨ ` a1y
1
` a0y “ b.

There are some useful tricks that can be used to avoid the analogue of the method
of variation of constants, which is often rather complicated to implement (as we will see
below). The first is Remark 2.2.5 (following from linearity). The second is that there
are special cases of right-hand sides b where one can search explicitly for solutions of a
special form. The most important are the following:

(1) If bpxq “ xdeβx for some integer d ě 0 and some number β which is not a
root of the companion polynomial P , then one looks for a solution of the form
fpxq “ Qpxqeβx, where Q is a polynomial of degree d.

(2) If bpxq “ xd cospβxq or bpxq “ xd sinpβxq for some integer d ě 0 and some
number β which is not a root of the companion polynomial P , then one can
either transform it to a combination of complex exponentials (and apply linearity
and (1)), or one may look for a solution of the form

fpxq “ Q1pxq cospβxq `Q2pxq sinpβxq,

where Q1 and Q2 are polynomials of degree d.
(3) If b is of the form of the previous two examples but where β is a root of mul-

tiplicity j of the companion polynomial, then one looks for fpxq “ Qpxqeβx (or
the analogue with cosine and sine), but where Q has degree d` j.

(4) The special case β “ 0 of (1), (2), (3) corresponds to the situation when b is a
polynomial of degree d ě 0. So one should search for a polynomial solution f of
the same degree d, unless 0 is a root of the companion polynomial, in which case
one should look for a polynomial of degree d ` j, where j is the multiplicity of
0 as a root of P .

11



Example 2.4.8. (1) We can illustrate Example (3) (and in fact remember the way
it works) by considering the case where P pXq “ Xj, so that α “ 0 is a root of order j.
The equation is ypjq “ b, and if bpxq “ xdeαx “ xd, then a solution is

fpxq “
1

pd` 1q ¨ ¨ ¨ pd` jq
xd`j,

which is indeed a polynomial of degree d` j.
(2) Consider the equation y2 ` 3y1 ` y “ 3x2 ` cospxq. Here we use linearity to find

a special solution: a solution is f “ 3f1 ` f2, where f1 is a solution of y2 ` 3y1 ` y “ x2

and f2 is a solution of y2 ` 3y1 ` y “ cospxq.
The companion polynomial is P “ X2 ` 3X ` 1 with roots α1 “ p´3 `

?
5q{2 and

α2 “ p´3´
?

5q{2.
To find f1, we note that β “ 0 is not a root of P , so we look for f1pxq “ ax2` bx` c.

Then

f21 ` 3f 11 ` f1 “ ax2
` pb` 6aqx` pc` 3b` 2aq,

and the linear system to solve is
$

’

&

’

%

a “ 1

b` 6a “ 0 hence b “ ´6

c` 3b` 2a “ 0 hence c “ 18´ 2 “ 16.

This means that f1pxq “ x2 ´ 6x` 16.
To find f2, since β “ 1 is not a root of P , we consider f2pxq “ a cospxq ` b sinpxq.

Then

f22 ` 3f 12 ` f2 “ pa` 3b´ aq cospxq ` pb` 3a´ bq sinpxq “ 3b cospxq ` 3a sinpxq,

and that means that we can take b “ 1{3, a “ 0, and f2pxq “
1
3

sinpxq.
We conclude that a special solution of the inhomogeneous equation is

fpxq “ 3f1pxq ` f2pxq “ 3x2
´ 18x` 48`

1

3
sinpxq.

Finally we discuss the method of variation of constants for linear differential equations
of order ě 2; it does not, in fact, necessarily require that the coefficients are constant,
although the computations are often very difficult in general situations.

We consider the inhomogeneous equation

(2.5) ypkq ` ak´1y
pk´1q

` ¨ ¨ ¨ ` a1y
1
` a0y “ b,

and we assume that a basis pf1, . . . , fkq of the space S of solutions of the homogeneous
equation

ypkq ` ak´1y
pk´1q

` ¨ ¨ ¨ ` a1y
1
` a0y “ 0

has been found (it may be any basis). We then search for a solution to (2.5) of the form

fpxq “ z1pxqf1pxq ` ¨ ¨ ¨ ` zkpxqfkpxq,

where z1, . . . , zk are functions such that, moreover, we have
$

’

’

’

&

’

’

’

%

z11pxqf1pxq ` ¨ ¨ ¨ ` z
1
kpxqfkpxq “ 0

z11pxqf
1
1pxq ` ¨ ¨ ¨ ` z

1
kpxqf

1
kpxq “ 0

¨ ¨ ¨

z11pxqf
pk´2q
1 pxq ` ¨ ¨ ¨ ` z1kpxqf

pk´2q
k pxq “ 0

12



for all x. The justification for requiring these k ´ 1 extra constraints is that we need to
find k different functions, and we may hope to succeed if they satisfy k different equations;
one of these will be the original one (2.5), in combination with the k´1 extra conditions.
Indeed, one can prove that this method works.

The most important example is k “ 2. Write again f “ z1f1`z2f2, and the constraint

z11f1 ` z
1
2f2 “ 0.

The reason this condition is useful is that we get by differentiation the formulas

f 1 “ z11f1 ` z
1
2f2 ` z1f

1
1 ` z2f

1
2 “ z1f

1
1 ` z2f

1
2

f2 “ z11f
1
1 ` z

1
2f
1
2 ` z1f

2
1 ` z2f

2
2 ,

and therefore

y2 ` a1y
1
` a0y “ z1pf

2
1 ` a1f

1
1 ` a0f1q ` z2pf

2
2 ` a1f

1
2 ` a0f2q ` z

1
1f
1
1 ` z

1
2f
1
2.

But f1 and f2 solve the homogeneous equation, and hence

y2 ` a1y
1
` a0y “ z11f

1
1 ` z

1
2f
1
2.

We conclude that z1, z2 lead to a solution of the inhomogeneous equation provided they
satisfy the equations

#

z11f1 ` z
1
2f2 “ 0

z11f
1
1 ` z

1
2f
1
2 “ b.

For any given value of x, this is a linear system of equations with unknowns pz11pxq, z
1
2pxqq.

Once it is solved, we can obtain (in principle) the required functions z1 and z2 by com-
puting primitives of pz11, z

1
2q. It is a fact that the determinant f1f

1
2 ´ f 11f2 of the system

will not vanish when solving this linear system of equations, corresponding to the fact
that pf1, f2q is a basis of the space S of solutions of the homogeneous equation.

Example 2.4.9. We wish to solve the inhomogeneous equation

y2 ` y1 ´ 6y “
1

1` x2
.

The roots of the companion polynomial X2`X´6 are α1 “ 2 and α2 “ ´3, so we search
for a solution of the type

fpxq “ z1pxqe
2x
` z2pxqe

´3x

satisfying

z11pxqe
2x
` z12pxqe

´3x
“ 0

for all x. Substituting into the equation, we obtain the system
#

z11pxqe
2x ` z12pxqe

´3x “ 0

2z11pxqe
2x ´ 3z12pxqe

´3x “ 1
1`x2

.

The determinant is ´5e´x so is indeed never zero, and we find the solutions for z11 and
z12 given by

#

z11pxq “
e´2x

5p1`x2q

z12pxq “ ´
e3x

5p1`x2q
.

This means that a solution is

fpxq “
1

5
e2x

ż x

0

e´2t

1` t2
dt´

1

5
e´3x

ż x

0

e3t

1` t2
dt.

13



2.5. An example: the harmonic oscillator

One of the most basic example of linear differential equation with constant coefficients
is given by the harmonic oscillator.

Case 1 (harmonic oscillator without friction). Here we have a particle with
mass m ą 0 attached at the end of a vertical spring, moving without the effect of gravity
or of any friction. We measure its position along the axis of movement by a single function
yptq, where t is time, and where the origin of the y-axis refers to the equilibrium position.
Then the only force acting on the particle is the restoring force from the spring, which
is of the form F “ ´ky for some coefficient k ą 0 that depends on the “strength” of the
spring.

The Newtonian equations of motion takes the form of the differential equation

m:y “ ´ky,

or in other words x is solution of the homogeneous linear differential equation of order 1
given by

:y `
k

m
y “ 0.

Since k{m ą 0, the real-valued solutions are of the forme

yptq “ a cospωtq ` b sinpωtq

where ω “
a

k{m, for some real numbers a and b. It is customary to rephrase this in the
form

yptq “ A cospωt` ϕq

where A “ pa2` b2q1{2 and ϕ is some real number. The advantage of this formula is that
it clearly shows not only that the movement of the particle is periodic, with period 2π{ω,
but also that its maximal amplitude (around the equilibrium position corresponding to
y “ 0) is A.

To see why this formula holds, note that
´ a

A

¯2

`

´ b

A

¯2

“ 1,

so that there exists a real number ϕ such that cospϕq “ a{A and sinpϕq “ ´b{A; we get

a cospωtq ` b sinpωtq “ Apcospϕq cospωtq ´ sinpϕq sinpωtqq “ A cospωt` ϕq.

Case 2 (damped harmonic oscillator). Suppose now that the particle also encoun-
ters resistance, and that this other force is proportional to velocity (this is an assumption
true in many cases, at least approximately). Then the Newton equation for yptq becomes

m:y “ ´b 9y ´ ky,

where b ą 0 is another parameter measuring the strength of the friction force. We write
this as

:y `
b

m
9y `

k

m
y “ 0,

which has companion polynomial X2 ` b
m
X ` k

m
. There are correspondingly three cases,

depending on the sign of

∆ “
b2 ´ 4km

m2
.

14



If ∆ ą 0, a basis of the space S of solutions is

y1ptq “ exp
´´

´
b

2m
`

1

2

?
∆
¯

t
¯

, y2ptq “ exp
´´

´
b

2m
´

1

2

?
∆
¯

t
¯

.

Observe that the sum of the two solutions of the quadratic equation is ´b{m ă 0 and the
product is k{m ą 0, so that both solutions of the quadratic equations are negative. This
means that, as t Ñ `8, we have y1ptq Ñ 0 and y2ptq Ñ 0. Since the condition ∆ ą 0
corresponds to b “large”, the physical behavior is that the friction force is strong enough
to essentially bring the motion to a stop, without oscillations.

If ∆ “ 0, there is a double root, and a basis of the space S of solutions is

y1ptq “ exp
´

´
bt

2m

¯

, y2ptq “ t exp
´

´
bt

2m

¯

.

We have then also an exponentially fast “return to equilibrium” without oscillations.
If ∆ ă 0, we get oscillatory functions as basis for the real solutions of the equation,

namely

y1ptq “ exp
´

´
bt

2m

¯

cosp1
2

a

|∆| tq y2ptq “ exp
´

´
bt

2m

¯

sinp1
2

a

|∆| tq.

The solution can now, as above, be expressed in the form

yptq “ Ae´bt{p2mq cosp1
2

a

|∆| t` ϕq,

(with A ą 0 and ϕ P R). Since b ą 0, the physical behavior is again return to equilibrium
due to friction, but in an oscillatory manner around the equilibrium position. Note that
the period 2π{p1

2

a

|∆|q is larger than the period 2π{pk{mq of the oscillator with the same
parameters but without friction.

2.6. Other methods

Besides the techniques described in the previous sections, it is useful to know two
other commong methods that can be helpful to solve certain differential equations that
are not of the type previously considered.

Change of variable. If a function fpxq is replaced by hpyq “ fpgpyqq, where g is a
“new variable”, then any equation satisfied by f corresponds to an equation satisfied by
h, and this equation may be simpler to solve, leading to a solution of the original one.

Example 2.6.1. If we make the change of variable hptq “ fpetq, then we have relations

h1ptq “ etf 1petq, h2ptq “ etf 1petq ` e2tf2petq.

If, for instance, we try to solve x2y2 ` xy1 “ y, for x ą 0, then we see that his is
equivalent to

h2ptq “ hptq

for hptq “ fpetq. So the solutions are given by

hptq “ aet ` be´t

which means that

fpxq “ ax`
b

x
.

15



Separation of variable. Suppose that a differential equation of order 1 can be
written in the form pgpyqq1 “ b for some functions g and b (in other words, g1pyqy1 “ b).
Then this can be solved by writing gpfpxqq “ Bpxq, where B is a primitive of b, and then
“inverting” g.

Example 2.6.2. Consider the equation e2yy1 “ x with x ą 0. To say that f is a
solution means that the derivative of 1

2
e2fpxq is x, hence

e2fpxq
“ x2

` a

for some constant a, or in other words

fpxq “
1

2
logpx2

` aq.
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CHAPTER 3

Differential calculus in Rn

In this chapter, n and m are always integers ě 1.

3.1. Introduction

We are interested in functions defined on subsets of Rn which take values in R, or C,
or even in another space Rm, where m ě 1 is an integer.

Here are some basic examples of such functions that should be kept in mind.

(1) Linear maps f : Rn Ñ Rm, or in other words, functions defined by fpxq “ Ax,
where A is a matrix with n columns and m rows, and x is interpreted as a column
vector. For instance, for n “ 2 and m “ 1, one can consider fpx, yq “ x` y for
px, yq P R2. Slightly more generally, if in addition we fix y0 P Rm, we can define
the affine-linear map fpxq “ y0 ` Ax.

(2) Quadratic forms Q : Rn Ñ R, or in other words, functions of the type

Qpxq “
n
ÿ

i“1

n
ÿ

j“1

ai,jxixj

for all x “ px1, . . . , xnq, where pai,jq are real numbers. For instance, for n “ 2,
one can consider Qpx, yq “ xy; for arbitrary n, one has the quadratic form

Qpx1, . . . , xnq “ x2
1 ` ¨ ¨ ¨ ` x

2
n.

(3) Polynomials in n variables: these generalize the previous two examples. Given
an integer d ě 0, a polynomial in n variables of degree ď d is a finite sum of
monomials of degree e ď d, namely a finite sum of functions Rn Ñ R of the
type

(3.1) fpx1, . . . , xnq “ αxd11 ¨ ¨ ¨ x
dn
n

where the degree of the monomial, that is the integer

e “ d1 ` ¨ ¨ ¨ ` dn,

satisfies e ď d. For instance, the function

fpx, y, zq “ x3
´ 12xy5z ` xyz

is a polynomial of degree 7. Example (1) (affine-linear maps) corresponds to
polynomials of degree ď 1, and Example (2) to certain polynomials of degree 2.

(4) “Cartesian product” functions: two functions f1 : Rn Ñ Rm1 and f2 : Rn Ñ Rm2

combine to produce a function f “ pf1, f2q : Rn Ñ Rm1`m2 , defined by

fpxq “ pf1pxq, f2pxqq.

An important point is that any function f : Rn Ñ Rm is a cartesian product
f “ pf1, . . . , fmq of functions fi : Rn Ñ R, where fipxq is just the i-th coordinate
of fpxq as a vector in Rm. This means that many definitions and results for
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Figure 3.1. Graphs of fpx, yq “ x2 ` y2 and fpx, yq “ sinp1
2
x2 ` xyq

functions Rn Ñ Rm may be reduced easily to the case m “ 1 by considering
each coordinate separately.

(5) Functions with separated variables: if f1, . . . , fn are functions on R (or on a
subset of R, the same for each of them), we can define a function f : Rn Ñ R
by

fpx1, . . . , xnq “ f1px1q ¨ ¨ ¨ fnpxnq,

where the variables are “separated”. For instance, any monomial (3.1) is a
function with separated variables.

(6) Composition of functions: given any function f : Rn Ñ R, and a function
g : R Ñ R, we can consider the composition g ˝ f . For instance, composing
the quadratic form

Qpx1, . . . , xnq “ x2
1 ` ¨ ¨ ¨ ` x

2
n

with the square root, one obtains
b

x2
1 ` ¨ ¨ ¨ ` x

2
n,

which is the euclidean norm (length from the origin to the point x P Rn). Com-
posing with expp´yq, one gets

expp´px2
1 ` ¨ ¨ ¨x

2
nqq.

Note that this last function is a function with separated variables (but the eu-
clidean norm is not).

For functions f : R2 Ñ R, one can visualize the graph of f , which is

tpx, y, zq P R3 : z “ fpx, yqu

as a surface in R3 (see Figure 3.1 for two examples; using an interactive software is better
to understand such pictures, as one can manipulate the graph easily). This visualization
is not possible anymore when there are 3 variables or more. This is one reason why multi-
variable calculus is often more difficult to understand intuitively than the one-variable
case.

Remark 3.1.1. Another interesting visualization possibility concerns the case of
f : R2 Ñ R2, where one can show fpxq as a vector based at x, at least for a subset
of values of x. Figure 3.2 illustrates this for the function

fpx, yq “ p´x2
` y ´ 1, x´ y2

` 1q.
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Figure 3.2. Vector plot

3.2. Continuity in Rn

The first notion that we want to generalize is that of a continuous function. To
follow the example of functions of one variable, we need first to recall the definition of
convergence and limit of a sequence (or of a function) in Rn.

We define

}x} “
b

x2
1 ` ¨ ¨ ¨ ` x

2
n

for x P Rn (the norm of x in the euclidean space Rn; see Section 1.2 in [1])). This
function satisfies the following properties:

}x} ě 0, and }x} “ 0 if and only if x “ 0

}tx} “ |t|}x} for all t P R

}x` y} ď }x} ` }y} (triangle inequality).

The definition of convergence on Rn is given in [1, Def. 2.6.1].

Definition 3.2.1. Let pxkqkPN where xk P Rn. Write

xk “ pxk,1, . . . , xk,nq.

Let y “ py1, . . . , ynq P Rn. We say that the sequence pxkq converges to y as k Ñ `8 if
for all ε ą 0, there exists N ě 1 such that for all n ě N , we have

}xk ´ y} ă ε.

Lemma 3.2.2. The sequence pxkq converges to y as k Ñ `8 if and only if one of the
following equivalent conditions holds:

(1) For each i, 1 ď i ď n, the sequence pxk,iq of real numbers converges to yi.
(2) The sequence of real numbers }xk ´ y} converges to 0 as k Ñ `8.

Proof. The equivalence of the two conditions is elementary: first, since

|xk,i ´ yi|
2
ď

n
ÿ

j“1

|xk,j ´ yj|
2
“ }xk ´ y}

2,

the second condition implies that xk,i Ñ yi for each i; conversely, if the first condition
holds, then

}xk ´ y}
2
“

n
ÿ

j“1

|xk,j ´ yj|
2
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is the sum of n sequences, each converging to 0, hence converges to 0. The fact that these
are equivalent to the convergence of pxkq to y is proved in [1, Satz 2.6.3]. �

We next extend the definition of continuity given in [1, Def. 3.2.1, 3.2.2].

Definition 3.2.3. Let X Ă Rn and f : X Ñ Rm.
(1) Let x0 P X. We say that f is continuous at x0 if for all ε ą 0, there exists δ ą 0

such that, if x P X satisfies ‖x´ x0‖ ă δ, then

}fpxq ´ fpx0q} ă ε.

(2) We say that f is continuous on X if it is continuous at x0 for all x0 P X.

Similarly to [1, Satz 3.2.4], we can test if a function is continuous using sequences.

Proposition 3.2.4. Let X Ă Rn and f : X Ñ Rm. Let x0 P X. The function f is
continuous at x0 if and only if, for every sequence pxkqkě1 in X such that xk Ñ x0 as
k Ñ `8, the sequence pfpxkqqkě1 in Rm converges to fpxq.

From this proposition, we can immediately see that most functions that we encounter
are continuous.

In a similar way, we can define the limit of a function at a point (see [1, §3.10]).

Definition 3.2.5. Let X Ă Rn and f : X Ñ Rm. Let x0 P X and y P Rm. We say
that f has the limit y as x Ñ x0 with x ­“ x0 if for every ε ą 0, there exists δ ą 0, such
that for all x P X, x ­“ x0, such that ‖x´ x0‖ ă δ, we have }fpxq ´ y} ă ε. We then
write

lim
xÑx0
x ­“x0

fpxq “ y.

Remark 3.2.6. In this definition, we could also remove the assumption that x0 P X,
because if x0 R X, we could always extend f to XYtx0u by, for instance, defining fpx0q “

0.

The “sequence” test for this condition is:

Proposition 3.2.7. Let X Ă Rn and f : X Ñ Rm. Let x0 P X and y P Rm. We
have

lim
xÑx0
x ­“x0

fpxq “ y.

if and only if, for every sequence pxkq in X such that xk Ñ x as k Ñ `8, and xk ­“ x0,
the sequence pfpxkqq in Rm converges to y.

Example 3.2.8. Let X Ă Rn and f : X Ñ Rm. Let x0 P X. Then f is continuous
at x0 if and only if

lim
xÑx0
x ­“x0

fpxq “ fpx0q.

The easiest way to prove continuity is in general to use composition:

Proposition 3.2.9. Let X Ă Rn, Y Ă Rm and p ě 1 an integer. Let f : X Ñ Y
and g : Y Ñ Rp be continuous functions. Then the composite g ˝ f is continuous.

Proof. We apply Proposition 3.2.4. If pxkq is a sequence in X converging to x P X
in Rn, then by continuity of f , the sequence pfpxkqq is a sequence in Y converging to
y “ fpxq. Then by continuity of g, the sequence pgpfpxkqq converges to gpfpxqq. By
definition of g ˝ f , this implies that g ˝ f is continuous. �
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Example 3.2.10. (1) Cartesian products of continuous functions are continuous: if
f1 : Rn Ñ Rm1 and f2 : Rn Ñ Rm2 are continuous, then f “ pf1, f2q : Rn Ñ Rm1`m2 is
also continuous. In particular, a function f : Rn Ñ Rm is continuous if and only if its
coordinates f1, . . . , fm are continuous. This follows from the definition and is left as an
exercise.

(2) Any linear map f : Rn Ñ Rm is continuous. In particular, the identity map is
continuous. To see this, note that according to (1) it is enough to assume that m “ 1.
Then there exist numbers a1, . . . , an such that

fpx1, . . . , xnq “ a1x1 ` ¨ ¨ ¨ anxn.

Let y “ py1, . . . , ynq P Rn and let pxkq be a sequence converging to y. Then, writing
xk “ pxk,1, . . . , xk,nq, we have xk,i Ñ yi for all i, and therefore it follows that aixk,i Ñ aiyi,
and then that

fpxkq “ a1xk,1 ` ¨ ¨ ¨ ` anxk,n Ñ a1y1 ` ¨ ¨ ¨ ` anyn “ fpyq

(see [1, Satz 2.1.8]: for convergent sequences, limpak ` bkq “ lim ak ` lim bk).
A similar argument shows that if f1 : X Ñ Rm and f2 : X Ñ Rm are continuous on

X, then f1`f2 is also continous. Alternatively, one can write f1`f2 “ a˝ pf1, f2q, where
a : Rm ˆRm Ñ Rm is the addition map. Since a is linear and pf1, f2q is continuous, the
sum f1 ` f2 is continuous by composition (Proposition 3.2.9).

(3) Functions with separated variables are continuous if the factors are continuous:
if f1, . . . , fn are continuous functions on R (or on a subset of R, the same for each of
them), then f defined by

fpx1, . . . , xnq “ f1px1q ¨ ¨ ¨ fnpxnq

is continuous on Rn. This follows easily from the rule

lim
kÑ`8

akbk “ ab

for convergent sequences ([1, Satz 2.1.8]).
(4) Combining addition and functions with separated variables, one deduces that

polynomials in x1, . . . , xn are continuous.
(5) Similarly, using the rules

lim
kÑ`8

akbk “ ab, lim
kÑ`8

ak{bk “ a{b

when real numbers ak Ñ a and bk Ñ b, with b ­“ 0 in the second case (again [1, Satz
2.1.8]), one checks that if f1 and f2 are continuous functions from X Ă Rn to R, then
f1f2 is continuous, and if moreover f2pxq ­“ 0 for all x P X, then f1{f2 is continuous.

(6) Analogues of the previous results exist for limits of functions, for instance

lim
xÑx0

pfpxq ` gpxqq “ lim
xÑx0

fpxq ` lim
xÑx0

gpxq, lim
xÑx0

fpxqgpxq “ lim
xÑx0

fpxq lim
xÑx0

gpxq

if both f and g have limits as xÑ x0.
(7) Suppose that f : R2 Ñ R is continuous. Then, if we fix a value y0 P R, then

the function g defined on R by gpxq “ fpx, y0q is continuous (for instance, it is the
composition of f and of the function x ÞÑ px, y0q, which is continuous). However the
converse is not true. For instance, define

fpx, yq “

#

x if y ě 0

´x if y ă 0.
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Then each function gpxq “ fpx, y0q is continuous, but f itself is not continuous. For
instance, we have fp1, 0q “ 1. However, the sequence pxk, ykq “ p1,´1{kq converges to
p1, 0q but we have fp1,´1{kq “ ´1 for any k ě 1, which does not converge to 1.

One of the first difficulties in extending the definitions of Analysis I to functions of
n ě 2 variables is that the sets on which they are defined can be much more complicated
than those used with one variable, which are often just intervals. For n “ 2, one can draw
many different possible “two-dimensional” shapes, each of which is a possible definition
set for a function.

We need analogues of closed and compact intervals (Definitions 2.5.1 and 3.4.2 in [1]).

Definition 3.2.11. (1) A subset X Ă Rn is bounded if the set of }x} for x P X is
bounded in R.

(2) A subset X Ă Rn is closed if for every sequence pxkq in X that converges in Rn

to some vector y P Rn, we have y P X.
(3) A subset X Ă Rn is compact if it is bounded and closed.

Example 3.2.12. (1) The empty set and Rn are both closed.
(2) Let r ą 0 and x0 P Rn. The open disc D “ tx P Rn : }x ´ x0} ă ru is bounded

(since, by the triangle inequality, we have

}x} ď }x´ x0} ` }x0} ď r ` }x0}

for all x P D). It is not closed, since for instance the sequence

xk “ x0 ` pr ´ 1{k, 0, . . . , 0q Ñ x0 ` r

where x0 ` r R D.
(3) The closed disc ∆ “ tx P Rn : }x ´ x0} ď ru is closed and bounded. Indeed, let

xk P ∆ be a sequence that converges to y P Rn. We have
b

pxk,1 ´ x0,1q
2 ` ¨ ¨ ¨ ` pxk,n ´ x0,nq

2 ď r

for all k and xk,i Ñ yi. Taking k Ñ `8, and using the property

pak ď a for all kq ñ lim
k
ak ď a

for converging sequences of real numbers, we deduce that
b

py1 ´ x0,1q
2 ` ¨ ¨ ¨ ` pyn ´ x0,nq

2 ď r

so that y P ∆.
In particular, for n “ 1, this means that a closed interval is a closed set. An interval

is compact if, furthermore, it is bounded.
(4) If X1 Ă Rn and X2 Ă Rm are bounded (resp. closed, resp. compact), then so is

X1 ˆX2 Ă Rn`m. In particular, the set

B “ I1 ˆ ¨ ¨ ¨ ˆ In “ tpx1, . . . , xnq P Rn : xi P Iiu

is closed (resp. compact) if each interval Ii is closed (resp. compact).

Using basic examples of closed sets as above, one can construct many more using the
following fundamental property:

Proposition 3.2.13. Let f : Rn Ñ Rm be a continuous map. For any closed set
Y Ă Rm, the set

f´1
pY q “ tx P Rn : fpxq P Y u Ă Rn

is closed.
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Proof. Indeed, let X “ f´1pY q. If pxkq is a sequence in X that converges to y P Rn,
then by continuity we get fpxkq Ñ fpyq. But then fpyq P Y because it is the limit of
fpxkq P Y and Y is closed. This means that y P f´1pY q. �

Example 3.2.14. Let f : Rn Ñ R be a continuous function. The zero set Z “ tx P
Rn : fpxq “ 0u is closed in Rn because t0u Ă R is closed.

For instance for r ě 0, a circle or a sphere of radius r, defined by

tx P R2 : }x´ x0} “ ru, tx P R3 : }x´ x0} “ ru,

is closed.
Similarly, for any r ě 0, the set

tx P Rn : |fpxq| ď ru

is f´1pr´r, rsq, hence is closed since the interval r´r, rs is closed.
In practice, the closed sets that we will use will very often be of one of these forms.

The following Theorem generalizes Theorem 3.4.5 of [1] to more than one variable.

Theorem 3.2.15. Let X Ă Rn be a non-empty compact set and f : X Ñ R a contin-
uous function. Then f is bounded and achieves its maximum and minimum, or in other
words, there exist x` and x´ in X such that

fpx`q “ sup
xPX

fpxq, fpx´q “ inf
xPX

fpxq.

Another difficulty in working with functions of n ě 2 variables is that for n ě 2, the
notion of continuity (or of limit) is much stronger than in dimension 1. One intuitive
reason is that there are “many more ways” for a sequence to converge to x P Rn than in
R.

For instance, all of the following sequences converge to p0, 0q in R2, but the way they
do it is quite different:

(1) (Limit along a ray) Take pcospθq{k, sinpθq{kq, where θ P R is fixed. All these
points are on the line with angle θ from the x-axis.

(2) (Spiraling limit) Take pcospkq{k, sinpkq{kq; here the angle from the x-axis is k,
and there is no special direction of convergence.

A priori, the limit of fpxk, ykq could exist but be different for each of these sequences, or
there could be limits in some directions but not others, the “spiraling” limit may or may
not exist even if the “ray” limits exist, etc.

Example 3.2.16. Define fp0, 0q “ 0 and

fpx, yq “
xy

x2 ` y2
.

Note that f is continuous when defined on R2ztp0, 0qu, since the denominator is contin-
uous and is never zero there.

Then

fpcospθq{k, sinpθq{kq “
sinpθq cospθq{k2

cos2pθq{k2 ` sin2pθq{k2
“ cospθq sinpθq

so the limit exists for every θ, but its value depends on θ. This implies in particular that
the function f is not continuous at p0, 0q, hence is not continuous on Rn.

On the other hand, for the spiral, we get

fpcospkq{k, sinpkq{kq “ cospkq sinpkq
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which has no limit as k Ñ `8.

3.3. Partial derivatives

We now consider the generalization of derivability in Rn. In one variable, we restricted
to open intervals to define the derivative. The analogue in Rn is the following:

Definition 3.3.1. A subset X Ă Rn is open if, for any x “ px1, . . . , xnq P X, there
exists δ ą 0 such that the set

ty “ py1, . . . , ynq P Rn : |xi ´ yi| ă δ for all iu

is contained in X.
In other words: any point of Rn obtained by changing any coordinate of x by at most

δ is still in X.
The basic example to keep in mind is just X “ Rn (and one may assume at first that

this is the case for the definitions of partial derivatives and of the differential below).
The following proposition often leads to an easy way to show that a set is open:

Proposition 3.3.2. A set X Ă Rn is open if and only if the complement

Y “ tx P Rn : x R Xu

is closed.

Corollary 3.3.3. If f : Rn Ñ Rm is continuous and Y Ă Rm is open, then f´1pY q
is open in Rn.

Proof. This is because the complement of f´1pY q is the set of points x P X such
that fpxq belongs to the complement of Y , which is closed according to the proposition,
so this follows from Proposition 3.2.13. �

The following examples are the most important open sets for us.

Example 3.3.4. (1) The empty set and Rn are open. In fact, they are the only
two sets in Rn that are both open and closed (this is intuitively reasonable, although a
rigorous proof requires some care).

(2) The open ball of center x0 and radius r

D “ tx P Rn : }x´ x0} ă ru

is open in Rn. We can check this both using the definition and the corollary.
For the definition: let x P D and define s “ }x ´ x0} ă r. Put δ0 “

1
2
pr ´ sq ą 0.

Then any z P Rn such that }z} ă δ0 satisfies

}x` z ´ x0} ď }x´ x0} ` }z} ď s` δ0 ă r.

Define δ “ δ0{
?
n. If |xi ´ yi| ă δ for all i, then putting z “ y ´ x, we get

}y ´ x} “
a

py1 ´ x1q
2 ` ¨ ¨ ¨ ` pyn ´ xnq2 ă δ

?
n “ δ0

so }y ´ x0} “ }x` z ´ x0} ă δ.
Using the corollary, let fpxq “ }x}, which is a continuous function; then D “ f´1ps ´

r, rrq, so it is open.
On the other hand, the closed ball ∆ is not open: for instance, if we take x “

x0 ` pr, 0, . . . , 0q, then for any δ ą 0, the point

x0 ` pr ` δ, 0, . . . , 0q

is not in ∆.
(3) Let I1, . . . , In be open intervals in R. Then I1 ˆ ¨ ¨ ¨ ˆ In is open in Rn.
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(4) Arguing as in Example (2), we see more generally that X Ă Rn is open if and
only if, for any x P X, there exists δ ą 0 such that the open ball of center x and radius
δ is contained in X.

Now we can define partial derivatives.

Definition 3.3.5. Let X Ă Rn be an open set. Let f : X Ñ Rm be a function. Let
1 ď i ď n. We say that f has a partial derivative on X with respect to the i-th variable,
or coordinate, if for all x0 “ px0,1, . . . , x0,nq P X, the function defined by

gptq “ fpx0,1, . . . , x0,i´1, t, x0,i`1, . . . , x0,nq

on the set
I “ tt P R : px0,1, . . . , x0,i´1, t, x0,i`1, . . . , x0,nq P Xu

is differentiable at t “ x0,i. Its derivative g1px0,iq at x0,i is denoted

Bf

Bxi
px0q, Bxifpx0q, Bifpx0q.

Intuitively, this definition means that we “freeze” all variables except the i-th one, and
consider the derivative of the corresponding function of one variable. We recall once more
that if m ě 2, so that gptq “ pg1ptq, . . . , gmptqq for some real-valued functions gj : I Ñ R,
then g is differentiable if and only if all gj are differentiable, and that

g1ptq “ pg11ptq, . . . , g
1
mptqq.

Remark 3.3.6. (1) Note that by definition of an open set, the set I always contains
an open interval containing x0,i, so that it makes sense to ask that g be differentiable at
x0,i.

(2) The notation Bxif can sometimes be confusing. It is important to remember that
here xi refers to a variable, and not to a specific real value. This is especially a problem
when one writes a value of the partial derivative at a point: in

Bx1fpx1, . . . , xnq,

we think of x1 in the partial derivative as a variable (indicating for which variable we
compute the derivative), but we think of px1, . . . , xnq as a point in Rn where we evaluate
the partial derivative. Writing Bifpxq is sometimes clearer for this reason.

It follows immediately from the definition that partial derivatives have all the prop-
erties of the usual derivative of a function of one variable.

Proposition 3.3.7. Consider X Ă Rn open and f , g functions from X to Rm. Let
1 ď i ď n.

(1) If f and g have partial derivatives with respect to the i-th coordinate on X, then
f ` g also does, and

Bxipf ` gq “ Bxipfq ` Bxipgq.

(2) If m “ 1, and if f and g have partial derivatives with respect to the i-th coordinate
on X, then fg also does and

Bxipfgq “ Bxipfq g ` fBxipgq.

Furthermore, if gpxq ­“ 0 for all x P X, then f{g has a partial derivative with respect to
the i-th coordinate on X, with

Bxipf{gq “ pBxipfq g ´ fBxipgqq{g
2.

Moreover, computing partial derivatives is as easy as computing ordinary derivatives.
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Example 3.3.8. (1) Let f be linear from Rn to R. Then if we write

fpx1, . . . , xnq “ a1x1 ` ¨ ¨ ¨ ` anxn,

then we see that

Bifpxq “ ai

for all x P Rn and 1 ď i ď n.
(2) Let f be a function with separated variables, say

fpxq “ f1px1q ¨ ¨ ¨ fnpxnq.

If each fi is differentiable on R, then f has partial derivatives, which are

Bifpxq “ f1px1q ¨ ¨ ¨ fi´1pxi´1qf
1
ipxiqfi`1pxi`1q ¨ ¨ ¨ fnpxnq

(so all partial derivatives also have separated variables).
(3) Let fpx, y, zq “ cospxy2z3q ´ 12x2. Then we have

Bxf “ ´y
2z3 sinpxy2z3

q ´ 24x

Byf “ ´2xyz3 sinpxy2z3
q

Bzf “ ´3xy2z2 sinpxy2z3
q.

(4) Let fpx, yq be the function of Example 3.2.16. Since fp0, yq “ fpx, 0q “ 0, we
obtain the partial derivatives Bxfp0, 0q “ Byfp0, 0q “ 0.

Definition 3.3.9. Let X Ă Rn open and f : X Ñ Rm a function with partial
derivatives on X. Write

fpxq “ pf1pxq, . . . , fmpxqq.

For any x P X, the matrix
Jf pxq “ pBxjfipxqq1ďiďm

1ďjďn

with m rows and n columns is called the Jacobi matrix of f at x.

Example 3.3.10. Let f : R2 Ñ R3 be defined by

fpx, yq “

¨

˝

cospx2 ` yq
esinpπxyq ´ 1
y ` 1

x2`1

˛

‚

(the variables px, yq should be thought of as a column vector). Then the function has
partial derivatives, and for any px, yq P R2, the Jacobi matrix is

Jf px, yq “

¨

˝

´2x sinpx2 ` yq ´ sinpx2 ` yq
πy cospπxyqesinpπxyq πx cospπxyqesinpπxyq

´2x
p1`x2q2

1

˛

‚

(the first column has the partial derivatives with respect to x, and the second with respect
to y).

If we want to evaluate this at some point, say p1, 0q, we obtain

Jf p1, 0q “

¨

˝

´2 sinp1q ´ sinp1q
0 ´π
´1
2

1

˛

‚
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As is clear from examples, often the partial derivatives Bxif of a function themselves
admit partial derivatives BxjpBxifq, and so on. Some of thee notation that are used for
multiple partial derivatives are:

BxipBxifq “ Bx2i f “
B2f

Bx2
i

, BxipBxjfq “ Bxi,xjf “
B2f

BxiBxj
.

Definition 3.3.11 (Gradient, Divergence). Let X Ă Rn be open.
(1) Let f : X Ñ R be a function. If all partial derivatives of f exist at x0 P X, then

the column vector
¨

˝

Bx1fpx0q

¨ ¨ ¨

Bxnfpx0q

˛

‚

is called the gradient of f at x0, and is denoted ∇fpx0q.
(2) Let f “ pf1, . . . , fnq : X Ñ Rn be a function with values in Rn such that all partial

derivatives of all coordinates fi of f exist at x0 P X. Then the real number

TrpJf px0qq “

n
ÿ

i“1

Bxifipx0q,

the trace of the Jacobi matrix, is called the divergence of f at x0, and is denoted
divpfqpx0q.

3.4. The differential

Although partial derivatives are very easy to define and compute, their existence is
not the correct analogue of differentiability. To be more precise, we want this analogue to
provide a way to approximate a function by a linear map, just as the fact that a function
f : R Ñ R is differentiable with derivative a at 0 means that

fpxq “ fp0q ` ax` Epxq

where the “error” Epxq has the property that limxÑ0Epxq{x “ 0, so that the affine-linear
map gpxq “ fp0q ` ax “ fp0q ` f 1p0qx is a good approximation to fpxq when x is close
to 0.

If we consider a function f : Rn Ñ R with n ě 2, the problem is that Bx1fp0q, for
instance, only gives some information on how f behaves when the first variable tends to
0, the others being fixed. It is quite believable that, for certain functions, we will not be
able to deduce an approximation for fpxq when x is close to 0 from the approximations
along the coordinate axes!

Example 3.4.1. (1) Let fpx, yq be the function of Examples 3.2.16 and 3.3.8. We
have seen that Bxfp0, 0q “ Byfp0, 0q “ 0, but from Example 3.2.16, the function f is not
continuous at p0, 0q! So the partial derivatives can not be combined in any reasonable
manner to give a good approximation of f for px, yq close to p0, 0q.

(2) Let g : R2 Ñ R be defined by gp0, 0q “ 0 and

gpx, yq “
xy

a

x2 ` y2

(see Figure 3.3 for its graph). This function is now continuous at p0, 0q because, for
px, yq ­“ p0, 0q, we have

|gpx, yq| ď
1
2
px2 ` y2q
a

x2 ` y2
“

1

2

a

x2 ` y2 Ñ 0

27



Figure 3.3. Graph of gpx, yq “ xy{
a

x2 ` y2

as px, yq Ñ p0, 0q. Since gpx, 0q “ gp0, yq “ 0, the partial derivatives exist and are both 0
again. But if we compute gpr cospθq, r sinpθqq as r Ñ 0, corresponding to approximating
g along a line with angle θ with respect to the x axis, then we get for r ą 0 the formula

gpr cospθq, r sinpθqq “
r2 cospθq sinpθq

r
“ r cospθq sinpθq,

which is a linear approximation, in terms of r, but one that cannot be constructed
reasonably from the values of the partial derivatives.

It turns out that the correct definition of the generalization of differentiability is to
take the approximation property as the defining condition.

Definition 3.4.2. Let X Ă Rn be open and f : X Ñ Rm be a function. Let u be a
linear map Rn Ñ Rm and x0 P X. We say that f is differentiable at x0 with differential
u if

lim
xÑx0
x ­“x0

1

}x´ x0}
pfpxq ´ fpx0q ´ upx´ x0qq “ 0

where the limit is in Rm. We then denote dfpx0q “ u.
If f is differentiable at every x0 P X, then we say that f is differentiable on X.

This definition means that, close to x0, we can approximate fpxq by the affine-linear
function g : Rn Ñ Rm defined by

gpxq “ fpx0q ` upx´ x0q,

with an error that becomes much smaller than }x´ x0} as x gets close to x0.

Remark 3.4.3. (1) If we write

fpxq “ pf1pxq, . . . , fmpxqq

and similarly write
upxq “ pu1pxq, . . . , umpxqq

where f1, . . . , fm are functions X Ñ R and u1, . . . , um are linear maps Rn Ñ R, then
the definition of limit shows that f is differentiable with differential u if and only if, for
each i, the function fi is differentiable with differential ui.

Furthermore, a linear map u : Rn Ñ R (or linear form) has the simple form

upx1, . . . , xnq “ a1x1 ` ¨ ¨ ¨ ` anxn
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for some coefficients a1, . . . , an in R. So, in the case m “ 1, the approximation for fpxq
is

fpx0q ` a1x1 ` ¨ ¨ ¨ ` anxn,

and depends only on the n numbers pa1, . . . , anq. These are the analogues of the single
derivative f 1px0q when n “ 1, and we will see that these coefficients are just the values
of the partial derivatives of f at x0.

(2) Suppose n “ 1 and m “ 1. Then the definition is equivalent to

0 “ lim
xÑx0
x ­“0

fpxq ´ fpx0q ´ apx´ xq
x´ x0

“ lim
xÑx0
x ­“0

fpxq ´ fpx0q

x´ x0

´ a

where a is the (unique) coefficient representing the linear map u : R Ñ R (because
}x ´ x0} “ |x ´ x0| and a function tends to 0 if and only if its absolute value does).
In other words, f is differentiable according to the definition above if and only if f is
differentiable at x0 in the sense of Analysis I, with derivative f 1px0q “ a.

The following proposition shows that differentiable functions have some good proper-
ties: they are continuous, and have partial derivatives, which can be computed easily in
terms of the differential.

Proposition 3.4.4. Let X Ă Rn be open and f : X Ñ Rm be a function that is
differentiable on X.

(1) The function f is continuous on X.
(2) The function f admits partial derivatives on X with respect to each variable.
(3) Assume that m “ 1. Let x0 P X, and let

upx1, . . . , xnq “ a1x1 ` ¨ ¨ ¨ ` anxn

be the differential of f at x0. We then have

Bxifpx0q “ ai

for 1 ď i ď n.

Proof. (1) Let x0 P X. For x ­“ x0, write

fpxq “ fpx0q ` upx´ x0q ` Epxq

for some Epxq P R. According to the definition, we have

lim
xÑx0

Epxq

}x´ x0}
“ 0,

which implies that Epxq Ñ 0 as x Ñ x0. Since u is continuous and up0q “ 0, we deduce
that

lim
xÑx0

fpxq “ fpx0q,

which means that f is continuous on X.
(2) and (3): we consider only the case n “ 2, m “ 1 and i “ 1 for simplicity, using

px, yq for the coordinates. Let px0, y0q P X. We define Epx, yq by

fpx, yq “ fpx0, y0q ` a1px´ x0q ` a2py ´ y0q ` Epx, yq.

It follows that if we put y “ y0 and vary x only, we have

fpx, y0q ´ fpx0, y0q

x´ x0

“ a1 ` 0`
Epx, y0q

x´ x0

.
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Since |x´ x0| “ }px, yq ´ px0, y0q}, the definition implies that

lim
xÑx0

Epx, y0q

x´ x0

“ 0,

and therefore

lim
xÑx0

fpx, y0q ´ fpx0, y0q

x´ x0

“ a1,

which means that the partial derivative Bxf exists at px0, y0q and is equal to a1. �

Example 3.4.5. (1) The simplest example of a differentiable function is an affine
linear function

fpxq “ y0 ` upxq

where y0 P Rm and u : Rn Ñ Rm is linear. Indeed, since fpx0q “ y0 ` upx0q, we get

fpxq “ y0 ` upxq “ fpx0q ` upx´ x0q

which means that f is differentiable at all x0, with differential dfpx0q “ u, independent
of x0.

(2) Consider the function g : R2 Ñ R of Example 3.4.1 (2). This is not differentiable
at p0, 0q. Indeed, if it were, then since the two partial derivatives at p0, 0q are equal to 0
(as we saw earlier), the proposition shows that the differential u “ dfp0, 0q would be the
zero linear map. But then we find that

1

}px, yq}
pgpx, yq ´ gp0, 0q ´ upx, yqq “

gpx, yq

}px, yq}
“

xy

x2 ` y2
,

and from Example 3.2.16, this quantity does not have a limit as px, yq Ñ p0, 0q.
(3) Consider the case m “ 1 in general. If a function f : X Ñ R is differentiable, then

according to Proposition 3.4.4 (3), its differential at x0 is the linear map u : Rm Ñ R
such that

upt1, . . . , tnq “
n
ÿ

i“1

Bf

Bxi
px0qti

for all t “ ptiq P Rn. A convenient way to represent this is to write

uptq “ ∇fpx0q ¨ t,

where ∇fpx0q is the gradient of f at x0, and x ¨ y denotes the scalar product of two
vectors:

x ¨ y “ x1y1 ` ¨ ¨ ¨ ` xnyn.

The affine linear map that approximates f is then

gpxq “ fpx0q `∇fpx0q ¨ px´ x0q.

The next issue is to know when a function is differentiable and to construct more
differentiable functions (they would not be useful if they didn’t exist). For this purpose,
there are two basic results: (1) showing that various operations preserve differentiability;
(2) giving a supply of functions for which it is easy to know that they are differentiable.

Proposition 3.4.6. Let X Ă Rn be open, f : X Ñ Rm and g : X Ñ Rm differentiable
functions on X.

(1) The function f ` g is differentiable with differential dpf ` gq “ df ` dg, and if
m “ 1, then fg is differentiable.

(2) If m “ 1 and if gpxq ­“ 0 for all x P X, then f{g is differentiable.

The next proposition immediately implies that most elementary functions are differ-
entiable:
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Proposition 3.4.7. Let X Ă Rn be open, f : X Ñ Rm a function on X. If f has all
partial derivatives on X, and if the partial derivatives of f are continuous on X, then f
is differentiable on X, with differential determined by its partial derivatives, in the sense
that the matrix of the differential dfpx0q, with respect to the canonical basis of Rn and
Rm, is the Jacobi matrix of f at x0.

Example 3.4.8. (1) Let n “ 2, m “ 1 and consider fpx, yq “ cospx ` y2q ´ xey.
Pick px0, y0q “ pπ{4, 0q. The function f is differentiable on R2 because its has partial
derivatives and Jacobi matrix

Jf px, yq “ p´ sinpx` y2
q ´ ey,´2y sinpx` y2

q ´ xeyq

where the components are continuous functions on R2.
At px0, y0q, the Jacobi matrix becomes

Jf pπ{4, 0q “ p´ sinpπ{4q ´ 1, 0´ π{4q “ ´p1` 1{
?

2, π{4q.

so that the differential u “ dfpx0, y0q is the linear form

upx, yq “ ´p1` 1{
?

2qx` πy{4,

and the affine-linear approximation gpx, yq to fpx, yq close to px0, y0q is given by

gpx, yq “ fpπ{4, 0q ` upx´ x0, y ´ y0q “

?
2

2
´
π

4
´

´

1`
1
?

2

¯´

x´
π

4

¯

`
πy

4
.

(2) Any polynomial in n variables is differentiable on Rn. Its partial derivatives are
also polynomials in n variables.

(3) If f1, . . . , fn are functions of class C1 on R (so that their derivatives are defined
and continuous), then the function

fpxq “ f1px1q ¨ ¨ ¨ fnpxnq

is differentiable on Rn.

The other important rule about differentiable functions is the chain rule.

Proposition 3.4.9 (Chain rule). Let X Ă Rn be open, Y Ă Rm be open, and
let f : X Ñ Y and g : Y Ñ Rp be differentiable functions. Then g ˝ f : X Ñ Rp is
differentiable on X, and for any x P X, its differential is given by the composition

dpg ˝ fqpx0q “ dgpfpx0qq ˝ dfpx0q.

In particular, the Jacobi matrix satisfies

Jg˝f px0q “ Jgpfpx0qqJf px0q

where the right-hand side is a matrix product.

Example 3.4.10. (1) To see this formula concretely, assume n “ m “ p “ 2, and
write

fpx, yq “

ˆ

f1px, yq
f2px, yq

˙

, gpu, vq “

ˆ

g1pu, vq
g2pu, vq.

˙

Then the Jacobi matrices are

Jf px, yq “

ˆ

Bxf1 Byf1

Bxf2 Byf2

˙

, Jgpu, vq “

ˆ

Bug1 Bvg1

Bug2 Bvg2

˙

.

The matrix product JgJf gives us the Jacobi matrix of g ˝ f , namely

Jg˝f px, yq “

ˆ

Bug1Bxf1 ` Bvg1Bxf2 Bug1Byf1 ` Bvg1Byf2

Bug2Bxf1 ` Bvg2Bxf2 Bug2Byf1 ` Bvg2Byf2

˙

.
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When evaluating such a Jacobi matrix at a given point x0, it must be remembered that all
partial derivatives of f are evaluated at x0, and all partial derivatives of g are evaluated
at y0 “ fpx0q.

(2) Suppose p “ 1, so that g ˝ f is real-valued. For the partial derivative of g ˝ f with
respect to x1, for instance, we get

Bpg ˝ fq

Bx1

px0q “
Bg

By1

py0q
Bf1

Bx1

px0q `
Bg

By2

py0q
Bf2

Bx1

px0q ` ¨ ¨ ¨ `
Bg

Bym
py0q

Bfm
Bx1

px0q,

or in other words

Bpg ˝ fq

Bx1

px0q “

m
ÿ

j“1

Bg

Byj
py0q

Bfj
Bx1

px0q,

where y0 “ fpx0q and the variables in Rm are py1, . . . , ymq.
(A way to remember the formula is to think that the j-th coordinate variable yj in the

“denominator” of the partial derivative for g corresponds to the “numerator” fj, which
is the j-th coordinate of f).

(3) Let f , g : Rn Ñ R be two functions. Define hpx, yq “ pfpx, yq, gpx, yqq and
mpu, vq “ uv, so that m ˝ hpx, yq “ fpx, yqgpx, yq. The Jacobi matrices of h and m are

Jhpx, yq “

ˆ

Bxf Byf
Bxg Byg

˙

, Jmpu, vq “ pv, uq

(the Jacobi matrix for m is just a row vector). It follows therefore that

Bpfgq

Bx
“ vBxf ` uBxg,

evaluated at px, yq, which (since we must replace u and v by the coordinates of hpx, yq)
means that

Bpfgq

Bx
“ gpx, yqBxfpx, yq ` fpx, yqBxgpx, yq,

a formula that we can recognize as the Leibniz rule.
(4) Let I Ă R be an open interval. Consider f : I Ñ Rm and g : Rm Ñ R, so that

the composite is a function g ˝ f : I Ñ R. If f is differentiable on I (which means that
each component is a differentiable function of one variable) and if g is differentiable on
Rn, then g ˝f is differentiable on I, and its derivative, which is just the partial derivative
with respect to the only variable is determined by

pg ˝ fq1ptq “ dgpfptqq f 1ptq,

i.e., the linear map dgpfptqq : Rm Ñ R (whose coefficients are the partial derivatives of
g), applied to the vector f 1ptq P Rm. If we write fptq “ pf1ptq, . . . , fmptqq, this is just

pg ˝ fq1ptq “
Bg

By1

pfptqqf 11ptq ` ¨ ¨ ¨ `
Bg

Bym
pfptqqf 1mptq.

Another convenient expression as a scalar product is just

pg ˝ fq1ptq “ ∇gpfptqq ¨ f 1ptq.
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Figure 3.4. Graph of fpx, yq “
a

1´ x2 ´ y2 and tangent space at p1{2, 1{3q

Figure 3.5. Graph of gpx, yq “ xy{
a

1´ x2 ´ y2 and horizontal plane

Definition 3.4.11. Let X Ă Rn be open and f : X Ñ Rm a function that is differ-
entiable. Let x0 P X and u “ dfpx0q be the differential of f at x0. The graph of the affine
linear approximation

gpxq “ fpx0q ` upx´ x0q

from Rn to Rm, or in other words the set

tpx, yq P Rn
ˆRm : y “ fpx0q ` upx´ x0q

is called the tangent space at x0 to the graph of f .

The tangent space at a point generalizes the tangent line for the graph of a function
of one variable. It is the affine subspace in Rm that is “the best” fit to the graph of the
function f around x0. It is an affine space of dimension n, since it can be parameterized
by x P Rn, which determines uniquely the corresponding point y “ fpx0q ` upx ´ x0q

such that px, yq belongs to the tangent space.
We can also write the points of the tangent space in the form

px, yq “ px0, fpx0qq ` px´ x0, upx´ x0qq

which shows that it is the set of points px0, y0q ` w, where w belongs to the graph of u,
which is a linear subspace of dimension n in Rn`m. We say that this linear subspace is
the linear subspace parallel to the tangent space at x0.

Example 3.4.12. (1) Figure 3.4 illustrates (from two different angles) the graph of
the function

fpx, yq “
a

1´ x2 ´ y2

(which is demi-sphere of radius 1 centered at p0, 0q) and the tangent space at the point
px, yq “ p1{2, 1{3q.

(2) Consider again the function gpx, yq “ xy{
a

x2 ` y2 of Example 3.4.5. Figure 3.5
shows the graph of g and the horizontal plane z “ 0 in R3 that “would be” the tangent
plane if the function was differentiable at p0, 0q.
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(3) Define

fpx, yq “
a

x2 ` y2.

Let px0, y0q “ p3, 4q. The tangent plane to the graph of f at the point px0, y0q is the set
of all px, y, zq in R3 such that

z “ fp3, 4q `∇fp3, 4q ¨ px´ 3, y ´ 4q.

We have fp3, 4q “
?

9` 16 “ 5, and the gradient at an arbitrary point is given by

∇fpx, yq “

˜ x?
x2`y2

y?
x2`y2

¸

so that ∇fpx0, y0q “ p3{5, 4{5q. The equation of the tangent plane becomes

z “ 5` 3px´ 3q{5` 4py ´ 4q{5.

If a function is differentiable at a point x0 P Rn, one meaning of the linear map
u “ dfpx0q is that the value upvq, for a vector v P Rn, gives the “directional derivative”
in the direction v, in the sense of the following definition:

Definition 3.4.13. Let X Ă Rn be an open set and let f : X Ñ Rm be a function.
Let v P Rn be a non-zero vector and x0 P X. We say that f has directional derivative
w P Rm in the direction v, if the function g defined on the set

I “ tt P R : x0 ` tv P Xu

by
gptq “ fpx0 ` tvq

has a derivative at t “ 0, and this is equal to w.

In other words, this means that the limit

lim
tÑ0
t­“0

fpx0 ` tvq ´ fpx0q

t

exists and is equal to w.

Remark 3.4.14. It is easy to see that because X is open, the set I contains an open
interval s ´ δ, δr for some δ ą 0, so that the derivability of g at t “ 0 makes sense.

Proposition 3.4.15. Let X Ă Rn be an open set and let f : X Ñ Rm be a differen-
tiable function. Then for any x P X and non-zero v P Rn, the function f has a directional
derivative at x0 in the direction v, equal to dfpx0qpvq.

Remark 3.4.16. (1) What is important to notice in this proposition, is that the
values of the directional derivatives are linear with respect to the vector v. So if we know
the directional derivatives w1 and w2 in directions v1 and v2, then it follows that the
directional derivative in direction v1 ` v2 is w1 ` w2.

(2) If we take v to be the vector ei of the canonical basis of Rn, then the directional
derivative in direction ei is simply the partial derivative with respect to the i-th variable.

Example 3.4.17. (1) Consider the function gpx, yq “ xy{
a

x2 ` y2 of Example 3.4.5,
(2). Although it is not differentiable at p0, 0q, it has directional derivatives in all directions
pu, vq ­“ p0, 0q, since gp0, 0q “ 0 and

gptu, tvq ´ gp0, 0q

t
“

uv
?
u2 ` v2

.
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Figure 3.6. Directional derivative

(In fact, this is just gpu, vq). But this expression is not linear with respect to pu, vq.
(2) Suppose that m “ 1. Then the directional derivative in direction u is a real number

which has the following geometric meaning: intersect the graph of f in Rn`1 with the
plane perpendicular to the hyperplane Rn “ Rn ˆ t0u, which passes through px0, 0q and
px0 ` v, 0q. This gives a set Γ which is the graph of the function gptq “ fpx0 ` tvq. Now,
if v has length 1, then the slope of the tangent line to Γ at px0, fpx0qq is equal to the
directional derivative at that point.

For instance, define fpx, yq “ cospxyq and consider the point p0,´1q and the direction
p1, 1q. Figure 3.6 displays the graph and the corresponding perpendicular plane.

We now suppose m “ 1. Let f : X Ñ R be differentiable, and let x0 P X. The
tangent space at x0 to the graph of f is the set of px, yq P Rn ˆR such that

y “ fpx0q `∇fpx0q ¨ px´ x0q.

This is an affine space of dimension n, and the corresponding linear subspace in Rn is
the graph of the linear map

x ÞÑ ∇fpx0q ¨ x,

in other words the set of all px, yq P Rn ˆR such that y “ ∇fpx0q ¨ x. A good way to
visualize or interpret this linear space is to observe that it is the set of vectors orthogonal
to the vector

n0 “ p´∇fpx0q, 1q P Rn
ˆR.

Indeed, we have
y ´∇fpx0q ¨ x “ px, yq ¨ n0

where the right-hand side is now a scalar product in Rn`1.
The gradient has another important interpretation, which generalizes the fact that

for a function of one variable, the sign of the derivative indicates whether the function is
(locally) increasing or decreasing. Precisely, suppose that the gradient vector ∇fpx0q is
non-zero. Then the vector w0 “ ∇fpx0q points in the “direction of greatest increase” of
the function f . In other words, it points in the direction where the directional derivative
is the largest. This follows from the fact that

fpxq ´ fpx0q “ ∇fpx0q ¨ px´ x0q ` (small error)

and that we know (Cauchy-Schwarz inequality) that

|∇fpx0q ¨ px´ x0q| ď }∇fpx0q} }x´ x0} “ }w0} }x´ x0}
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Figure 3.7. Some level curves of fpx, yq “ x3 ´ xy ` 2y

with equality if x ´ x0 is proportional to w0, which corresponds to varying x in the
direction of w0.

Another way to see this is in terms of directional derivatives. Let v P Rn be a vector
of length one. If we remember that the scalar product of two vectors in Rn is the product
of their lengths with the cosine of the angle, the directional derivative of f in the direction
v at x0 is

∇fpx0q ¨ v “ }∇fpx0q} cospθq

where θ P r0, πs is the angle between the gradient and the direction v. This is maximal
when θ “ 0, which means that v is proportional to ∇fpx0q.

Example 3.4.18. Think of the graph of f : R2 Ñ R as giving the height of a mountain
above the point with coordinates px, yq of the map of a region of the earth. Then the
gradient ∇fpx0q is a vector in R2, and it points in the direction in which the height grows
faster: if one wants to climb the slope as quickly as possible, one should walk always in
the direction of the gradient.

Yet another related geometric property of the gradient is that it is perpendicular to
the “level sets” determined by an equation of the form fpxq “ c, where c P R is a fixed
real number.

To be more precise, fix c, and denote by Lc the set of all x P X where fpxq “ c. Let
x0 P Lc be any point in this set. Then, for any differentiable function of one variable
γ : s´ 1, 1rÑ Rn such that fpγptqq “ c for all t P I and γp0q “ x0, the gradient ∇fpx0q is
orthogonal in Rn to the vector γ1p0q, which is “tangent” to the level set. This is simply
because, by the Chain Rule, we have the relation

0 “ pf ˝ γq1p0q “ ∇fpx0q ¨ γ
1
p0q.

Example 3.4.19. The simplest example is fpx, yq “ x2 ` y2. Then the level sets Lc
are empty if c ă 0, a single point if c “ 0, and a circle of radius

?
c if c ą 0. In this

last case, the gradient vector at any point of Lc is p2x, 2yq, and therefore points in the
direction orthogonal to the circle.
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3.5. Higher derivatives

We can often straightforwardly compute partial derivatives of a function f : Rn Ñ Rm,
and check that not only they exist, and are continuous, but also themselves admit further
continuous partial derivatives, etc. This leads naturally to the notion of function of class
Ck.

Definition 3.5.1. Let X Ă Rn be open and f : X Ñ Rm.
We say that f is of class C1 if f is differentiable on X and all its partial derivatives

are continuous. The set of functions of class C1 from X to Rm is denoted C1pX; Rmq.
Let k ě 2. We say, by induction, that f is of class Ck if it is differentiable and each

partial derivative Bxif : X Ñ Rm is of class Ck´1. The set of functions of class Ck from
X to Rm is denoted CkpX; Rmq.

If f P CkpX; Rmq for all k ě 1, then we say that f is of class C8. The set of such
functions is denoted C8pX; Rmq.

In practical terms, this means that one has to check all possible combinations of k
derivatives, with respect to any combination of k variables, and always obtain continuous
functions.

Example 3.5.2. (1) If fpxq “ pf1pxq, . . . , fmpxqq, then f is of class Ck if and only if
each fi is of class Ck.

(2) If f , g are of class Ck, then so is f ` g; if m “ 1, then so is fg, and if gpxq ­“ 0
for all x P X, then so is f{g of class Ck.

(3) If fpxq “ f1px1q ¨ ¨ ¨ fnpxnq has separated variables, and if fi is of class Ck, then f
is of class Ck.

(4) Any polynomial in n variables is of class C8.
(5) Any partial derivative is a linear operation on the functions.
(6) Suppose that f is of class Ck, and that fpXq Ă Y , where Y Ă Rm is open, and

that g : Y Ñ Rp is also of class Ck. Then the composite g ˝ f is also of class Ck. This
follows, by induction on k, from the chain rule that expresses partial derivatives of g ˝ f
in terms of partial derivatives of f and g.

Suppose that k “ 2. Then, in order to show that a function f is of class C2, we first
check that f is differentiable with continuous partial derivatives. There are n such checks
to make since f has n partial derivatives. Next there are apparently n2 second order
derivatives, namely

Bx1pBx1fq, Bx1pBx2fq, ¨ ¨ ¨ Bx1pBxnfq,

until

BxnpBx1fq, BxnpBx2fq, ¨ ¨ ¨ BxnpBxnfq.

However, if we do it in practice, we see that these derivatives are not independent at
all.

Example 3.5.3. Let fpx, yq “ e´x
2?y for x P R, y ą 0. Then

∇fpx, yq “ p´2x
?
y expp´x2?yq,´ x2

2
?
y

expp´x2?yqq.
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Now we compute the four partial derivatives of order 2:

Bx2f “ ´2
?
y expp´x2?yq ` 4x2?y expp´x2?yq

Bxyf “ ´
x
?
y

expp´x2?yq `
x3

?
y

expp´x2?yq

Byxf “ ´
x
?
y

expp´x2?yq `
x3

?
y

expp´x2?yq

By2f “
x2

4y3{2
expp´x2?yq `

x4

4y
expp´x2?yq.

We see here that Bxyf “ Byxf . This is a general fact.

Proposition 3.5.4 (Mixed derivatives commute). Let k ě 2. Let X Ă Rn be open
and let f : X Ñ Rm be a function of class Ck. Then the partial derivatives of order k
are independent of the order in which the partial derivatives are taken: for any variables
x and y, we have

Bx,yf “ By,xf,

and for any variables x, y, z, we have

Bx,y,zf “ Bx,z,yf “ By,z,xf “ Bz,x,yf “ ¨ ¨ ¨

etc...

Example 3.5.5. (1) To convince oneself that this should be true, it is best to look at
a monomial first. Say

fpx, y, zq “ xaybzc.

Then

Bx,yf “ abxa´1yb´1zc “ By,xf

and

Bx,y,zf “ abcxa´1yb´1zc´1

is the same however we order x, y and z when taking the derivatives.
(2) Let k “ 2. In order to ensure that Bx,yf “ By,xf , it is essential to know that f

is of class C2 (so that all partial derivatives of order 2 are continuous), and there are
counterexamples otherwise. For instance, one can easily check that

fpx, yq “
xypx2 ´ y2q

x2 ` y2
, px, yq ­“ 0, fp0, 0q “ 0

defines a function R2 Ñ R which is differentiable (with ∇fp0, 0q “ 0) and admits partial
derivatives of order ď 2, but at p0, 0q, we have

Bx,yfp0, 0q “ 1, By,xfp0, 0q “ ´1.

In polar coordinates, we have fpx, yq “ r sinp4θq{4.

Because of the symmetry, we introduce a more compact notation for mixed derivatives
of “large order”. If we want to take a derivative of order k, we select the first variable (say
xi1), compute the partial derivative, then select a second (say xi2), compute the second
derivative Bxi2 ,xi1 , etc, up to the ik-th variable. But, provided Proposition 3.5.4 applies

(i.e., f is of class Ck), the resulting partial derivative

Bxik
Bxik´1

¨ ¨ ¨ Bxi1f

38



Figure 3.8. Function with non-symmetric mixed second derivatives

only depends on how many times we took the derivative with respect to each variable. In
other words, let m1 be the number of indices j such that ij “ 1, . . . , mn be the number
of j such that ij “ n. Then

Bxik
Bxik´1

¨ ¨ ¨ Bxi1f “ Bx
m1
1 ,x

m2
2 ,...,xmn

n
f.

Let m “ pm1, . . . ,mnq. This is a vector of non-negative integers, with

m1 ` ¨ ¨ ¨ `mn “ k

(since, in total, we have taken k derivatives). We may use any of the following notation
for these expressions:

Bxm1
1 ,...,xmn

n
f “

Bkf

Bxm
“ B

m
x f “ Dmf “ Bmf.

Remark 3.5.6. The linearity of the partial derivatives means that

B
m
x paf1 ` bf2q “ aBmx f1 ` bB

m
x f2

whenever both partial derivatives on the right-hand side exist.

Example 3.5.7. Suppose n “ 3 and k “ 4. There are then 15 possible derivatives of
order 4, corresponding to the tuples

m “ p4, 0, 0q, m “ p3, 1, 0q, m “ p3, 0, 1q, m “ p2, 2, 0q, m “ p2, 1, 1q

m “ p2, 0, 2q, m “ p1, 3, 0q, m “ p1, 2, 1q, m “ p1, 1, 2q, m “ p1, 0, 3q

m “ p0, 4, 0q, m “ p0, 3, 1q, m “ p0, 2, 2q, m “ p0, 1, 3q, m “ p0, 0, 4q.

For instance, m “ p1, 1, 2q corresponds to the derivative

B4f

BxByB2z
.

Example 3.5.8. (Laplace operator) Let X be open in Rn, and let f P C2pXq. The
gradient of f belongs to C1pX; Rnq, so we can compute its divergence (Definition 3.3.11).
We obtain

divp∇pfqq “
n
ÿ

i“1

B

Bxi

´

Bf

Bxi

¯

“

n
ÿ

i“1

B2f

Bx2
i

.

This differential expression is called the Laplacian of f , and is denoted ∆f .
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For the case k “ 2, m “ 1, we organize in a matrix the partial derivatives of order 2
of a function X Ñ R, namely the derivatives

B2f

BxiBxj
,

where 1 ď i, j ď n. For a function f of class C2, this matrix will be symmetric.

Definition 3.5.9 (Hessian). Let X Ă Rn be open and f : X Ñ R a C2 function.
For x P X, the Hessian matrix of f at x is the symmetric square matrix

Hessf pxq “
`

Bxi,xjf
˘

1ďi,jďn
.

We also sometimes write simply Hf pxq.

Example 3.5.10. Let n “ 3 and fpx, y, zq “ x2y ´ cospxz3q. Then we compute

Bxf “ 2xy ` z3 sinpxz3
q, Byf “ x2, Bzf “ 3xz2 sinpxz3

q

and then we obtain the Hessian by further differentiation

Hessf px, y, zq “

¨

˝

2y ` z6 cospxz3q 2x 3z2 sinpxz3q ` xz6 cospxz3q

2x 0 0
3z2 sinpxz3q ` xz6 cospxz3q 0 6xz sinpxz3q ` 9x2z6 cospxz3q

˛

‚.

3.6. Change of variable

An important application of the chain rule concerns the computation of partial deriva-
tives after a change of variable. Here we have an open set U Ă Rn (with variables that
we write py1, . . . , ynq, the “new” variables) and a change of variable g : U Ñ X is a map
that expresses the variables px1, . . . , xnq in terms of py1, . . . , ynq, i.e., we consider

x1 “ g1py1, . . . , ynq, xn “ gnpy1, . . . , ynq.

We should think of g as something “fixed” and very standard (such as going to polar
coordinates, or to spherical coordinates, etc).

Whenever a function f : X Ñ R is given, the composite h “ f ˝ g : U Ñ R is the
function f expressed in terms of the “new” variables y.

The chain rule then provides a way to express all partial derivatives of h in terms of
those of f , and of the Jacobian matrix of the change of variable g. For instance

By1h “
Bf

Bx1

Bg1

By1

` ¨ ¨ ¨ `
Bf

Bxn

Bgn
By1

.

Here, since we think that g is fixed, the corresponding partial derivatives are known
quantities.

There are very common abuses of notation that may be very confusing at first, but
that are extremely convenient:

(1) one thinks of f and h as being the same function, simply expressed in different
coordinate systems, and one writes simply

By1f “
Bf

Bx1

Bg1

By1

` ¨ ¨ ¨ `
Bf

Bxn

Bgn
By1

.

(2) one thinks of gi as being the variable xi, expressed in terms of the new variables
py1, . . . , ynq, and replaces gi by xi, so the expression becomes

By1f “
Bf

Bx1

Bx1

By1

` ¨ ¨ ¨ `
Bf

Bxn

Bxn
By1

.
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Remark 3.6.1. The first of these two simplification is very natural if we think of a
function like “the distance to the origin”, which we can describe without referring to any
particular choice of coordinate system.

The point of a change of variable is often to go back and forth, and one can solve for
y in terms of x, and write down the corresponding relations

Bx1f “
Bf

By1

By1

Bx1

` ¨ ¨ ¨ `
Bf

Byn

Byn
Bx1

.

In practice, this can be done by solving the linear system of equations represented by the
chain rule.

Example 3.6.2. One of the most important example is the change of variable to
polar coordinates in R2. The polar coordinates are pr, θq P U “s0,`8rˆR (or sometimes
U “s0,`8rˆr0, 2πr) and they parameterize the plane minus the origin p0, 0q by

#

x “ r cos θ

y “ r sin θ.

In other words, we consider the map

g : U Ñ R2

such that gpr, θq “ pr cos θ, r sin θq, and to express a function f : R2 Ñ R in polar coor-
dinates means replacing f by h “ f ˝ g : U Ñ R, so that

hpr, θq “ fpr cos θ, r sin θq.

The Jacobian matrix of the change of variable is given by

Jgpr, θq “

ˆ

cos θ ´r sin θ
sin θ r cos θ

˙

(with determinant r). The chain rule leads to the formulas

Brh “ cospθqBxf ` sinpθqByf

Bθh “ ´r sinpθqBxf ` r cospθqByf

(where all partial derivatives of f are evaluated implicitly at pr cos θ, r sin θq.) This is also
often expressed as

rBrh “ xBxf ` yByf

Bθh “ ´yBxf ` xByf.

With the short-hand notation discussed earlier, this becomes

rBrf “ xBxf ` yByf

Bθf “ ´yBxf ` xByf.

Solving for Bxf and Byf , we obtain the relations

Bxf “ cospθqBrh´
1

r
sinpθqBθh

Byf “ sinpθqBrh`
1

r
cospθqBθh
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(where all partial derivatives of h are evaluated implicitly at px, yq such that x “ r cos θ,
y “ r sin θ), or

Bxf “ cospθqBrf ´
1

r
sinpθqBθf(3.2)

Byf “ sinpθqBrf `
1

r
cospθqBθf(3.3)

in abbreviated form.
One can iterate applying these partial derivatives to obtain expressions for higher

derivatives. For instance, let us compute the Laplace operator

∆f “ Bx2f ` By2f

in polar coordinates (see Example 3.5.8). Using the formula (3.2) twice, we have

Bx2f “ cospθqBrpBxfq ´
1

r
sinpθqBθpBxfq

“ cospθqBr

´

cospθqBrf ´
1

r
sinpθqBθf

¯

´
1

r
sinpθqBθ

´

cospθqBrf ´
1

r
sinpθqBθf

¯

.

Computing further these expressions, this gives

Bx2f “ cospθq
!

cospθqBr2f `
1

r2
sinpθqBθf ´

1

r
sinpθqBrθf

)

´
1

r
sinpθq

!

´ sinpθqBrf ` cospθqBrθf ´
1

r
cospθqBθf ´

1

r
sinpθqBθ2f

)

“ cos2
pθqBr2f `

2

r2
cospθq sinpθqBθf ´

2

r
cospθq sinpθqBrθf `

1

r
sin2

pθqBrf `
1

r2
sin2

pθqBθ2f.

A similar computation using instead (3.3) twice gives the formula

By2f “ sin2
pθqBr2f´

2

r2
cospθq sinpθqBθf`

2

r
cospθq sinpθqBrθf`

1

r
cos2

pθqBrf`
1

r2
cos2

pθqBθ2f.

We conclude that (for a C2 function f), we have

Bx2f ` By2f “ Br2f `
1

r
Brf `

1

r2
Bsθ

2f.

We look at a concrete example. Let fpx, yq “ exppx2 ` y2q. The corresponding
expression in polar coordinates is hpr, θq “ exppr2q. We can compute the gradient of f
and ∆f using the polar coordinates by writing

∇f “
ˆ

Bxf
Byf

˙

“

ˆ

cospθqBrh´ r
´1 sinpθqBθh

sinpθqBrh` r
´1 cospθqBθh

˙

“

ˆ

2r cos θ exppr2q

2r sin θ exppr2q

˙

“

ˆ

2x exppx2 ` y2q

2y exppx2 ` y2q

˙

,

and

∆f “ Br2f `
1

r
Brf `

1

r2
Bθ2f “ Br2pe

r2
q` 2er

2

“ p2` 4r2
qer

2

` 2er
2

“ 4p1`x2
` y2

qex
2`y2 .
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3.7. Taylor polynomials

We consider in this section the case m “ 1, and a function f : X Ñ R. The affine-
linear approximation for fpxq when x is close to a point x0 P X involves only the first
derivatives of f , and is given by T1fpx ´ x0;x0q, where T1fpy;x0q is the function on Rn

such that

T1fpy;x0q “ fpx0q `∇fpx0q ¨ y “ fpx0q `

n
ÿ

i“1

Bf

Bxi
px0qyi.

As a function of y, this is a polynomial of degree ď 1 (it is of degree exactly 1 unless
∇fpx0q is zero).

In the case n “ 1, we know that we obtain better approximations to a function
when considering higher derivatives, and building the Taylor polynomials of the function,
defined by

Tkfpy;x0q “ fpx0q ` f
1
px0qy `

f2px0q

2
y2
` ¨ ¨ ¨ `

f pkqpx0q

k!
yk,

in the sense that

fpxq “ Tkfpx´ x0;x0q ` (remainder)

with, roughly speaking, a remainder that is much smaller than |x´ x0|
k when xÑ x0.

The same is true in general, but the Taylor polynomials have now n variables.

Definition 3.7.1 (Taylor polynomials). Let k ě 1 be an integer. Let f : X Ñ R be
a function of class Ck on X, and fix x0 P X. The k-th Taylor polynomial of f at the
point x0 is the polynomial in n variables of degree ď k given by

Tkfpy;x0q “ fpx0q `

n
ÿ

i“1

Bf

Bxi
px0qyi ` ¨ ¨ ¨

`
ÿ

m1`¨¨¨`mn“k

1

m1! ¨ ¨ ¨mn!

Bkf

Bxm1
1 ¨ ¨ ¨ Bxmn

n

px0qy
m1
1 ¨ ¨ ¨ ymn

n

where the last sum ranges over the tuples of n non-negative integers such that the sum
is k.

This seems a complicated formula, but comparing with the previous section, this
means that the polynomial is a sum of monomials

1

m1! ¨ ¨ ¨mn!

Bjf

Bxm1
1 ¨ ¨ ¨ Bxmn

n

px0qy
m1
1 ¨ ¨ ¨ ymn

n

where j runs over all integers with 0 ď j ď k, and for a given j, we consider all possible
partial derivatives of order j (so that m1 ` ¨ ¨ ¨ `mn “ j) with the factorial coefficient.

Moreover, with clever notation, we can simplify this a lot. First, for any n-tuple
m “ pm1, . . . ,mnq of non-negative integers, we define |m| “ m1`¨ ¨ ¨`mn and we denote

m! “ m1! ¨ ¨ ¨mn!

and moreover, for variables y1, . . . , yn, we denote by ym the monomial

ym “ ym1
1 ¨ ¨ ¨ ymn

n .

Then using the abbreviated notation for partial derivatives from the previous section, we
can write

Tkfpy;x0q “
ÿ

|m|ďk

1

m!
B
m
x fpx0qy

m

43



(by convention, the 0-th partial derivative is just the function f itself, and p0, . . . , 0q! “
0! “ 1).

Example 3.7.2. For k “ 1, we recover the affine-linear map

T1fpy;x0q “ fpx0q `

n
ÿ

i“1

Bxifpx0qyi.

For k “ 2, we obtain a polynomial of degree ď 2 which is

T1fpy;x0q “ fpx0q `

n
ÿ

i“1

Bxifpx0qyi `
1

2

n
ÿ

i“1

B
2
x2i
fpx0qy

2
i `

ÿ

1ďiăjďn

B
2
xixj

fpx0qyiyj.

The term of order 2 corresponds to the partial derivatives of order 2, in other words to
the tuples pm1, . . . ,mnq with m1 ` ¨ ¨ ¨ `mn “ 2. Indeed, two cases can arise:

(1) either all except one mi are zero, and mi “ 2, in which case we obtain the second
derivative with respect to xi taken twice, with coefficient 1{m! “ 1{2! “ 1{2.

(2) or two of the mi’s are non-zero, equal to 1, and all others are zero; assume that
mi “ 1 and mj “ 1 with i ă j, then we get the partial derivative Bxixj with
coefficient 1{m! “ 1{p1!1!q “ 1.

Another way to express this second term (and to remember it) is to notice that

1

2

n
ÿ

i“1

B
2
x2i
fpx0qy

2
i `

ÿ

1ďiăjďn

B
2
xixj

fpx0qyiyj “
1

2
yt Hessf px0qy

where yt is the transpose of the column vector y. Hence we can express the second Taylor
polynomial concisely in the form

fpx0q `∇fpx0q ¨ y `
1

2
yt Hessf px0qy

for y P Rn.
For instance, take n “ 2, and suppose that

Hessf px0q “

ˆ

a b
b d

˙

.

Then
1

2
yt Hessf px0qy “

1

2
py1 y2q

ˆ

a b
b d

˙ˆ

y1

y2

˙

“
1

2
ay2

1 ` by1y2 `
1

2
dy2

2.

The following statement indicates one way that Taylor polynomials give a better and
better approximation to a function of class Ck (there are more precise versions, but we
will not need them).

Proposition 3.7.3 (Taylor approximation). Let k ě 1 be an integer. Let X Ă Rn be
open and f : X Ñ R be a function of class Ck. For x0 in X, if we define Ekfpx;x0q by

fpxq “ Tkfpx´ x0;x0q ` Ekfpx;x0q

then we have

lim
xÑx0
x ­“x0

Ekfpx;x0q

}x´ x0}
k
“ 0.

For k “ 2, this means that for a function of class C2, we have

lim
xÑx0

1

}x´ x0}
2

´

fpxq ´
´

fpx0q `∇fpx0q ¨ px´ x0q `
1

2
px´ x0q

t Hessf px0qpx´ x0q

¯¯

“ 0.
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Figure 3.9. fpx, yq and its approximations of order 1 and 2

Example 3.7.4. Take n “ 2 and fpx, yq “ e3x´sinpxyq, around the point p0, 0q where
fp0, 0q “ e0 “ 1.

The gradient is

∇fpx, yq “
ˆ

p3´ y cospxyqq expp3x´ sinpxyqq
´x cospxyq expp3x´ sinpxyqq

˙

so that ∇fp0, 0q “
ˆ

3
0

˙

. The Hessian matrix is

Hessf px, yq “ e3x´sinpxyq

ˆ

a b
b d

˙

with

a “ y2 sinpxyq ` p3´ y cospxyqq2

b “ ´ cospxyq ` xy sinpxyq ´ x cospxyqp3´ y cospxyqq

d “ x2 sinpxyq ` x2 cospxyq2,

so that

Hessf p0, 0q “

ˆ

9 ´1
´1 0

˙

Hence the first order approximation at px, yq close to p0, 0q is

apx, yq “ 1` 3x

and the second-order approximation at px, yq is

gpx, yq “ T2fpx, y; p0, 0qq “ 1` 3x`
9x2

2
´ xy.

As a numerical illustration, we find that

fp´0.0015, 0.003q « 0.99551458963514434461139384694367021911

ap´0.0015, 0.003q “ 0.9955

gp´0.0015, 0.003q “ 0.995514625

so the precision has increased considerably (the difference goes from « 1.46 ¨ 10´5 to
« 3.5 ¨ 10´8).

Figure 3.9 displays the graph of f , as well as that of a and g over r´2, 2s ˆ r´2, 2s.
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3.8. Critical points

Recall that for a function of 1 variable, an important application of the derivative is its
use for finding extrema of a function, using the necessary criterion that if a differentiable
function f has a local maximum or minimum at a point x that is not a boundary of an
interval, we have f 1pxq “ 0.

Proposition 3.8.1. Let X Ă Rn be open and f : X Ñ R a differentiable function.
If x0 P X is such that

fpyq ď fpx0q for all y close enough to x0 (local maximum at x0)

or
fpyq ě fpx0q for all y close enough to x0 (local minimum at x0).

Then we have dfpx0q “ 0, or in other words ∇fpx0q “ 0, or equivalently

Bf

Bxi
px0q “ 0

for 1 ď i ď n.

Proof. Let 1 ď i ď n. Define

gptq “ fpx0 ` teiq

for t such that x0 ` tei P X (this contains an open interval around 0 since X is open).
Then g has a local extremum at t “ 0 by construction, and is differentiable, so g1ptq “
Bxifpx0q “ 0. �

This proposition justifies the following definition:

Definition 3.8.2 (Critical point). Let X Ă Rn be open and f : X Ñ R a differen-
tiable function. A point x0 P X such that ∇fpx0q “ 0 is called a critical point of the
function f .

Proposition 3.8.1 is enough to determine the maximum and minimum of a function
of more than one variable in many cases. One issue requires some care however: the
existence of a point where a continuous function f : X Ñ R is maximal or minimal is not
automatic if X Ă Rn is open.

Such points do exist, however, if f is defined on a set X̄ that is compact (Defini-
tion 3.2.11), namely if the set X̄ is bounded and closed. But the necessary condition of
Proposition 3.8.1 does not apply in this case. The most common strategy is be in such a
situation (a continuous function defined on a compact set X̄), so that a maximum and a
minimum are known to exist, and to have a decomposition

X̄ “ X YB,

where X is open and B is a “boundary” part. Suppose then that the restriction of f to
the open set X is differentiable. Then, if the maximum or minimum of f is reached in a
point of X, this must be a critical point of the restriction of f to X. One can attempt to
compute all these points, and evaluate f at these points to determine where the extremal
points are. One must in any case also evaluate f on the boundary B in order to compare
the values there, which might be larger (or smaller) than the values at the critical points
in X.

Remark 3.8.3. This problem already occurs with one variable, where one must check
the values fpaq and fpbq to find the maximum of a continuous function f : ra, bs Ñ R,
and not only the points x Psa, br where f 1pxq “ 0.
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Example 3.8.4. Let X̄ be the square r0, 1s ˆ r0, 1s in R2 and fpx, yq “ x2 ´ 2y2.
The set X̄ is compact, and X̄ “ X YB, where X is the open set s0, 1rˆs0, 1r, and B the
boundary of the square, which is itself the union of four line segments.

The function f is differentiable on X, and its gradient is

∇fpx, yq “
ˆ

2x
´4y

˙

so that the only critical point is p0, 0q, where fp0, 0q “ 0. It is already clear that this is
not the maximum, or the minimum, of f on X̄.

On the boundary B, we compute

fpx, 0q “ x2, fpx, 1q “ x2
´ 2, fp0, yq “ ´2y2, fp1, yq “ 1´ 2y2.

The maximal values of f on these four segments are respectively

1, ´1, ´2, 1

and the minimal values are

0, ´2, ´2, ´1.

We conclude that the maximum of f on X̄ is equal to 1 “ fp1, 0q, and that the minimum
is ´2 “ fp0, 1q.

In the case n “ 1, the most convenient sufficient criterion for the existence of a local
extremum at a point x where f 1pxq “ 0 is that the second derivative f2pxq at this point
should exist and be non-zero. Its sign then indicates whether x is a local maximum (if
f2pxq ă 0) or minimum (f2pxq ą 0). The analogue question for n ě 2 is more delicate. It
is natural to think that the second partial derivatives (hence the Hessian matrix) should
play the role of the second derivative, but the non-vanishing of Hessf px0q is not enough
to have a local extremum if n ě 2, as the following important example shows.

Example 3.8.5. Let n “ 2 and fpx, yq “ xy. Then ∇fpxq “ py, xq, so the only
critical point is p0, 0q, where fp0, 0q “ 0. We have

Hessf p0, 0q “

ˆ

0 1
1 0

˙

which is non-zero, but nevertheless, the critical point p0, 0q is not a local maximum
(since fpx, xq “ x2 ą fp0, 0q for x arbitrarily small) and is not a local minimum (since
fpx,´xq “ ´x2 ă fp0, 0q for x arbitrarily small).

This phenomenon reflects the fact that there is one line (namely, y “ x) in which the
restriction of the function has graph a downward parabola, and another (namely y “ ´x)
in which it is an upward parabola. Such situations are called “saddle points”.

Definition 3.8.6 (Non-degenerate critical point). Let X Ă Rn be open and f : X Ñ

R a function of class C2. A critical point x0 P X of f is called non-degenerate if the
Hessian matrix has non-zero determinant.

For a non-degenerate critical point x0 of f : X Ñ R, we can classify the behavior of
the function f around x0 in terms of the signs of the eigenvalues of the Hessian matrix.
Recall, from linear algebra, that if a symmetric matrix H of size n is non-degenerate (has
detpHq ­“ 0), then it is diagonalizable, with non-zero real eigenvalues, in an orthonormal
basis of Rn. Let p (resp. q) be the number of positive (resp. negative) eigenvalues of H.
There exists an orthogonal basis pv1, . . . , vnq of Rn such that, for

y “ t1v1 ` ¨ ¨ ¨ ` tnvn P Rn,
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Figure 3.10. fpx, yq “ xy

we have
ytHy “ t21 ` ¨ ¨ ¨ ` t

2
p ´ t

2
p`1 ´ ¨ ¨ ¨ ´ t

2
p`q,

where it is perfectly possible that p “ n (in which case, there are no terms with minus
sign) or q “ n (in which case, there are no terms with plus sign).

The coefficients t1, . . . , tn are given by linear functions

ti “ `ipy1, . . . , ynq

if y “ py1, . . . , ynq P Rn. Since ∇fpx0q “ 0 (it is a critical point), the second Taylor
polynomial of f at x0 is then given by

fpx0q `
1

2
yt Hessf px0qy “ fpx0q `

1

2

´

`1pyq
2
` ¨ ¨ ¨ ` `ppyq

2
´ `p`1pyq

2
´ ¨ ¨ ¨ ´ `p`qpyq

2
¯

.

When x is very close to x0, the function fpxq is approximated very closely by

fpx0q `
1

2

´

`1px´ x0q
2
` ¨ ¨ ¨ ` `ppx´ x0q

2
´ `p`1px´ x0q

2
´ ¨ ¨ ¨ ´ `p`qpx´ x0q

2
¯

,

and in particular the sign of fpxq ´ fpx0q, which tells us whether x0 is a local maximum,
or minimum, or neither, is the same as the sign of

`1pyq
2
` ¨ ¨ ¨ ` `ppyq

2
´ `p`1pyq

2
´ ¨ ¨ ¨ ´ `p`qpyq

2

This is very easy to determine, because when x ´ x0 is in the direction of vi, which
means when only `ipx ´ x0q is non-zero, and all other `jpx ´ x0q are zero, we get the
approximation

`ipx´ x0q
2, if 1 ď i ď p, ´`ipx´ x0q

2, if p` 1 ď i ď n.

If both of these cases occur for suitable choices of i, then there will be negative as well as
positive values of fpxq ´ fpx0q. So a local extremum is only possible if p “ n or q “ n.

Corollary 3.8.7. Let X Ă Rn be open and f : X Ñ R a function of class C2. Let
x0 be a non-degenerate critical point of f . Let p and q be the number of positive and
negative eigenvalues of Hessf px0q.

(1) If p “ n, equivalently if q “ 0, the function f has a local minimum at x0.
(2) If q “ n, equivalently if p “ 0, the function f has a local maximum at x0.
(3) Otherwise, equivalently if pq ­“ 0, the function f does not have a local extremum

at x0. One then says that f has a saddle point at x0.

Remark 3.8.8. (1) The condition p “ n means that the Hessian matrix H at x0

is a positive definite symmetric matrix (and q “ n means that it is a negative definite
matrix). This also means that ytHy ą 0 for any non-zero vector y P Rn. When pq ­“ 0,
the Hessian is also said to be indefinite.
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(2) From linear algebra, we know an often convenient criterion for a symmetric matrix
A “ pai,jq1ďi,jďn to be positive definite: this is so if and only if the n submatrices

Ak “ pai,jq1ďi,jďk,

for 1 ď k ď n, have positive determinant. (For negative definite matrices, apply this to
the opposite matrix; be careful that detp´Akq ­“ ´ detpAkq unless the size of the matrix
is odd!) For instance, when n “ 2, a matrix

ˆ

a b
b d

˙

is positive definite if and only if

a ą 0, ad´ b2
ą 0.

It is negative definite if and only if

a ă 0, ad´ b2
ą 0,

and indefinite if and only if ad ´ b2 ă 0 (note that if a “ 0, then the determinant is
´b2 ă 0 since a “ b “ 0 is not possible for an invertible matrix).

For the Hessian matrix at a critical point x0 of a C2 function f : R2 Ñ R, these
conditions become

B2f

Bx2
px0q ą 0,

B2f

Bx2
px0q

B2f

By2
px0q ´

´

B2f

BxBy
px0q

¯2

ą 0

for a local minimum at x0, or

B2f

Bx2
px0q ă 0,

B2f

Bx2
px0q

B2f

By2
px0q ´

´

B2f

BxBy
px0q

¯2

ą 0

for a local minimum at x0, or

B2f

Bx2
px0q

B2f

By2
px0q ´

´

B2f

BxBy
px0q

¯2

ă 0

for a saddle point.
If n “ 3, the matrix

A “

¨

˝

a b c
b e f
c f i

˛

‚

is positive definite if and only if

a ą 0, ae´ b2
ą 0, detpAq ą 0.

(3) If pq is non-zero, the description with the Taylor polynomial is much more precise:
it tells us that f behaves like a downward parabola in the directions corresponding to v1,
. . . , vp, and like an upward parabola in the directions vp`1,. . . , vn.

Example 3.8.9. (1) Consider again the function fpx, yq “ xy on R2 at the critical
point p0, 0q, as in Example 3.8.5. Since it is a polynomial of degree 2, it is in fact equal to
its second Taylor polynomial; the critical point is non-degenerate since detpHessf p0, 0qq “
´1. An orthogonal basis of eigenvectors is pv1, v2q with v1 “ p1, 1q (where Hpv1q “ v1)
and v2 “ p1,´1q (where Hpv2q “ ´v2). The expression

fpxq “ xy “
1

2

´1

2
px` yq2 ´

1

2
px´ yq2

¯
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Figure 3.11. The graph of ecospx´yq ` x2 and its behavior close to p0, πq

corresponds to our previous discussion, and we recover the directions y “ x and y “ ´x
where f has different behavior.

(2) Take n “ 2 and

fpx, yq “ ecospx´yq
` x2.

for px, yq P X “s ´ 4, 4r2. The gradient is

∇fpx, yq “
ˆ

´ sinpx´ yq exppcospx´ yqq ` 2x
sinpx´ yq exppcospx´ yqq

˙

.

The critical points are determined by ∇fpx0, y0q “ 0. The second equation becomes
sinpx0 ´ y0q “ 0, from which the first transforms to x0 “ 0, and hence sinpy0q “ 0. We
conclude that the critical points in the indicated region are x1 “ p0, 0q, x2 “ p0, πq and
x3 “ p0,´πq.

The Hessian is

Hessf px, yq “

ˆ

2 0
0 0

˙

` ecospx´yq

ˆ

´ cospx´ yq ` sin2px´ yq cospx´ yq ´ sin2px´ yq
cospx´ yq ´ sin2px´ yq ´ cospx´ yq ` sin2px´ yq

˙

.

The values H1, H2, H3 of the Hessian of f at these three critical points are given
respectively by

H1 “

ˆ

2´ e e
e ´e

˙

, H2 “ H3 “

ˆ

2` e´1 ´e´1

´e´1 e´1

˙

.

The matrix H1 is indefinite (the determinant being ´2e ă 0), but H2 and H3 are positive
definite (since 2 ` e´1 ą 0 and the determinant is 2{e ą 0). So p0, πq and p0,´πq are
local minimum of f , while p0, 0q is a saddle point.

It is interesting to note from the graphs that this is not so obvious!

Remark 3.8.10. If x0 is a degenerate critical point, the Hessian does not allow us
to conclude anything concerning local extrema at x0: there could be one (either a local
maximum or local minimum) or not.

For instance, take f1px, yq “ x4 ` y4, f2px, yq “ x4 ´ y4 and f3px, yq “ ´x
4 ´ y4. The

gradient of any of these functions vanishes if and only if px, yq “ p0, 0q, and f1p0, 0q “
f2p0, 0q “ f3p0, 0q “ 0. In all three cases, we also have Hessfip0, 0q “ 0, so the information
provided by the Hessian is the same. However, it is immediate that p0, 0q is a local
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Figure 3.12. The behavior close to p0, 0q

minimum of f1 (even a global one), a local maximum of f3, and that f2 has a saddle
point at p0, 0q.

3.9. Lagrange multipliers

A common type of optimization problem does not simply asks for the maximum (or
minimum) of a function, but adds constraints to the values of the variable. For instance,
we might want to solve a problem like “what is the largest value of fpxq if x is constrained
to satisfy an equation gpxq “ 0”.

Example 3.9.1. Let pa, b, cq P R3 be non-zero, and let pα, β, γq P R3, also non-zero.
We want to find the maximum of the quadratic form

Qpx, y, zq “ ax2
` by2

` cz2

for px, y, zq such that }px, y, zq} ď 1 and

αx` βy ` γz “ 0.

Geometrically, we intersect the sphere of radius 1 in R3 with a plane and we try to
maximize Qpx, y, zq on the intersection.

One idea to solve such a problem (which is often sufficient) is to parameterize the set
of solutions of the constraint gpxq “ 0 in terms of new variables (say u, so that x “ hpuq
describes the set of solutions of gpxq “ 0), and to maximize the function fphpuqq for u in
the set of parameters.

This method is often complicated because there is no simple parameterization of
the solutions of gpxq “ 0, or because the parameterization will destroy some natural
symmetry of the problem, with the effect that the calculations become more complicated
than they should.

The method of Lagrange multipliers can be used to solved this constrained maximiza-
tion problems without involving a parameterization of the solution set.
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Proposition 3.9.2. Let X Ă Rn be open and let f : X Ñ R and g : X Ñ R be
functions of class C1. If x0 P X is a local extremum of the function f restricted to the
set

Y “ tx P X : gpxq “ 0u

then either ∇gpx0q “ 0, or there exists λ0 P R such that
#

∇fpx0q “ λ∇gpx0q

gpx0q “ 0,

or in other words, there exists λ such that px0, λq is a critical point of the differentiable
function h : X ˆR Ñ R defined by

hpx, λq “ fpxq ´ λgpxq.

Such a value λ is called a Lagrange multiplier at x0.

Intuitive explanation. Suppose there is a local extremum satisfying the con-
straint at x0 and that ∇gpx0q ­“ 0. If we “move” x around x0, staying in the solution set
of the equation gpxq “ 0, which means moving perpendicularly to the gradient ∇gpx0q,
the function f varies approximately by px ´ x0q ¨ ∇fpx0q. This will take values both
positive and negative, unless all variations x´x0 are orthogonal to ∇fpx0q. But all these
possible variations represent the vectors orthogonal to ∇gpx0q, so the conclusion is that,
for a local extremum, the gradients of f and g at x0 are linearly dependent. And since
∇gpx0q ­“ 0 by assumption, this means that there exists λ P R such that

∇fpx0q “ λ∇gpx0q.

�

Compared to the problem of finding critical points of f (which has n equations
Bxifpx0q “ 0 and n unknowns), we have here n ` 1 equations and n ` 1 unknowns.
Note that the values of the Lagrange multipliers λ is usually irrelevant to the final prob-
lem: they are just auxiliary quantities that are useful to find the local extrema.

As in the case of Proposition 3.8.1, it is important to remember that the solutions of
the equations for Lagrange multipliers are only candidates for local extrema. As in the
previous situation, we still need to check whether they are indeed extrema or not, and we
may often need to handle a “boundary” component when f is defined on a set X̄ that is
compact, and is expressed as X YB with X open, and B the boundary.

Remark 3.9.3. (1) Suppose that f is defined and continuous on a compact set X̄ “

X Y B. If the function g defining the constraint gpxq “ 0 is also continuous, then the
intersection

Ȳ “ X̄ X tx P X̄ : gpxq “ 0u

is still a compact subset of Rn (indeed, it is bounded, as it is contained in X̄, and it is the
intersection of two closed sets – the second because g is continuous –, and it is elementary
from Definition 3.2.11 that the intersection of two closed sets is closed). By restriction,
f defines a continuous function f |Ȳ : Ȳ Ñ R, and in particular Theorem 3.2.15 applies
to f |Ȳ , which shows that f has a maximum and a minimum on Ȳ .

Suppose now that f is defined on Rn, which is not compact. Then there is another
important case in which the existence of a maximum and minimum for the constrained
problem is ensured: this is so if the set Y defined by gpxq “ 0 is itself compact, since then
we are maximizing or minimizing the continuous function f on this compact set. And
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since g is continuous, the set Y is always closed, and therefore the question is whether it
is bounded or not, which can often be determined very easily.

(2) Before deciding to use Lagrange multipliers, it is useful to check if some other
method could apply, since the difficulty of the computations may vary a lot depending
on the approach.

(3) The critical points of f on X are obvious candidates for local extrema of f re-
stricted to Y , if they happen to be elements of Y . They occur in Proposition 3.9.2
precisely when the Lagrange multiplier λ is zero, since in that case the equation becomes
∇fpx0q “ 0 (in addition to gpx0q “ 0).

Example 3.9.4. (1) Consider the problem of maximizing fpx, yq “ 2x2 ` 3xy ´ y2

on the circle of radius 1 in R2. The circle is compact, so we know that there exists a
maximum. The circle is represented by the constraint gpx, yq “ 0 with gpx, yq “ x2`y2´1.

Since ∇gpx, yq “ 0 only if px, yq “ 0, for which gpx, yq ­“ 1, only the case of a Lagrange
multiplier can occur in Proposition 3.9.2. So we write down the equations

$

’

&

’

%

x2 ` y2 “ 1

4x` 3y ´ 2xλ “ 0

3x´ 2y ´ 2yλ “ 0.

The last two equations are linear with respect to x and y and have only the zero solution,
which is incompatible with the first equation, unless the determinant is zero. This is

´p4´ 2λqp2` 2λq ´ 9 “ 4λ2
´ 4λ´ 17.

The discriminant of this equation is 288 “ 25 ¨ 32, so the solutions are

λ1 “
4` 12

?
2

8
“

1` 3
?

2

2
, λ2 “

4´ 12
?

2

8
“

1´ 3
?

2

2
.

Writing x “ ´3{p4´ 2λq, we obtain the possible values for y, namely

y “ ˘
4´ 2λ

a

p4´ 2λq2 ` 9
,

which gives, for the two values of λ, two values of y each, namely

˘y1 “ ˘0.382683432365089771 ¨ ¨ ¨ , ˘y2 “ ˘0.923879532511286756 ¨ ¨ ¨ .

One can check that y2
1 ` y

2
2 “ 1, so the corresponding values of x for a given y are ˘ the

“other” value of y. Taking all possibilities of the sign into account, this shows that the
maximum and minimum are taken at one of the values

py2, y1q, p´y2, y1q, py2,´y1q, p´y2,´y1q

py1, y2q, py1,´y2q, p´y1, y2q, p´y1,´y2q.

In fact, since fp´x,´yq “ fpx, yq, we only need to check the first two values of each row,
and for these we obtain

fpy2, y1q “
1

2
, fp´y2, y1q “ 2.621320343559642 ¨ ¨ ¨ ,

fpy1, y2q “ ´1.621320343559642 ¨ ¨ ¨ , fpy1,´y2q “
1

2
(In fact, in this case, we have fp´y2, y1q “ λ1 and fpy1, y2q “ λ2, but this is a coincidence.)

In that case, it is however much simpler to represent the circle by the parameterization
pcos θ, sin θq, since this reduces the problem to maximizing or minimizing the function

fpcos θ, sin θq “ 2 cos2 θ ` 3 cos θ sin θ ´ sin2 θ “ 2` 3 sin θpcos θ ´ sin θq.
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Simply by differentiating, we find that the extreme values are achieved for θ “ π{8
(maximum) or θ “ 5π{8 (minimum).

(2) Consider the maximum and minimum of the function fpx, y, zq “ x2´y2 with the
constraint gpx, y, zq “ 0, where gpx, y, zq “ x2`2y2`3z2´1. Here the set of solutions of
gpx, y, zq “ 0 is closed, since g is continuous, and it is bounded since x2 ď x2`2y2`3z2 “

1, and similarly 2y2 ď 1 and 3z2 ď 1 for any solution. Since f is also continuous, we
know that there exist a maximum and a minimum.

The gradient of g is

∇gpx, y, zq “ p2x, 4y, 6zq
and doesn’t vanish when gpx, y, zq “ 0. So we look for the Lagrange multipliers. The
equations ∇fpx, y, zq “ λ∇gpx, y, zq and gpx, y, zq “ 0 are

$

’

’

’

&

’

’

’

%

2x “ 2λx

´2y “ 4λy

0 “ 6λz

x2 ` 2y2 ` 3z2 ´ 1 “ 0.

The third equation shows that either λ “ 0 or z “ 0. In the first case, this implies
that x “ y “ 0, and therefore z “ ˘1{

?
3, giving two possibilities p1 “ p0, 0, 1{

?
3q and

p2 “ p0, 0,´1{
?

3q. We have

fpp1q “ fpp2q “ 0.

If z “ 0, then the equations for x and y become
$

’

&

’

%

2p1´ λqx “ 0

´2p1´ 2λqy “ 0

x2 ` 2y2 “ 1.

The first equation shows that either x “ 0 or λ “ 1. If x “ 0, then we have the solutions
with λ “ 1{2, y “ ˘1{

?
2, in other words p3 “ p0, 1{

?
2, 0q, p4 “ p0,´1{

?
2, 0q. Then

fpp3q “ fpp4q “ ´
1

2
.

Finally if λ “ 1, then the second equation shows that y “ 0, and the third gives the
solutions p5 “ p1, 0, 0q and p6 “ p´1, 0, 0q. Since

fpp5q “ fpp6q “ 1,

we conclude that the maximum of f with the constraint g “ 0 is 1, and the minimum is
´1{2.

(3) Here is an example with n arbitrarily large. Fix py1, . . . , ynq P Rn non-zero. We
want to maximize and minimize the function

fpx1, . . . , xnq “ x1y1 ` ¨ ¨ ¨ ` xnyn

(which is in fact a linear function of x), subject to the constraint x2
1 ` ¨ ¨ ¨ ` x

2
n “ 1. This

constraint defines a compact set, so we know that the maximum exists.
Since ∇gpxq “ p2x1, . . . , 2xnq is non-zero for all x satisfying gpxq “ 0, we solve the

Lagrange multiplier equations. These are
#

yi “ 2λxi for 1 ď i ď n

x2
1 ` ¨ ¨ ¨ ` x

2
n “ 1.
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Since y ­“ 0, we have λ ­“ 0 from any of the first n equations. Then these equations state
that xi “ yi{p2λq for 1 ď i ď n. It follows that

fpxq “
1

2λ
py2

1 ` ¨ ¨ ¨ ` y
2
nq.

On the other hand, the last equation shows that

1

4λ2
py2

1 ` ¨ ¨ ¨ ` y
2
nq “ 1,

and hence there are two solutions for λ, namely

λ “ ˘
1

2}y}
.

We find the values x “ ˘y{p2}y}q, and

fpxq “ ˘
1

a

y2
1 ` ¨ ¨ ¨ ` y

2
n

py2
1 ` ¨ ¨ ¨ ` y

2
nq “ ˘

b

y2
1 ` ¨ ¨ ¨ ` y

2
n “ ˘}y}.

Hence the constrained maximum of f is }y} and the constrained minimum is ´}y}.
If we now consider an arbitrary vector x ­“ 0, and replace it with rx “ x{}x}, which

satisfies the constraint gprxq “ 0, the result implies by homogeneity that

´}x}}y} ď x1y1 ` ¨ ¨ ¨ ` xnyn ď }x}}y}.

This is the Cauchy-Schwarz inequality that we have recovered as a case of constrained
optimization!

3.10. The inverse and implicit functions theorems

We finish this chapter by stating without proofs two important theoretical results
that are often used in the study of functions of more than 1 variable, and of their level
sets.

The first result is the analogue of the fact that a differentiable function f : I Ñ R
defined on an interval is bijective from I to its image if its derivative is always ą 0 (or
always ă 0). In other words, we want conditions that ensure that a function f : X Ñ Rn

can be used as a change of variable, i.e., that we can recover x uniquely from the value
fpxq.

Definition 3.10.1 (Change of variable). Let X Ă Rn be open and f : X Ñ Rn be
differentiable. Let x0 P X. We say that f is a change of variable around x0 if there is a
radius r ą 0 such that the restriction of f to the ball

B “ tx P Rn : }x´ x0} ă ru

of radius r around x0 has the property that the image Y “ fpBq is open in Rn, and if
there is a differentiable map g : Y Ñ B such that f ˝ g “ IdY and g ˝ f “ IdB.

Note that this definition is local: we do not require the existence of an inverse g for
f defined everywhere. For a given y P Y , there could well exist an element x P X, not in
B, such that fpxq “ y.
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Theorem 3.10.2 (Inverse function theorem). Let X Ă Rn be open and f : X Ñ Rn

be differentiable. If x0 P X is such that detpJf px0qq ­“ 0, i.e., such that the Jacobian
matrix of f at x0 is invertible, then f is a change of variable around x0. Moreover, the
Jacobian of g at x0 is determined by

(3.4) Jgpfpx0qq “ Jf px0q
´1.

In addition, if f is of class Ck, then g is of class Ck.

In contrast to the case n “ 1, there is no easy condition to ensure that f is a “global”
change of variable: this must be investigated case by case.

It is easy to see that the requirement that det Jf px0q ­“ 0 is necessary for such a
statement, and also to see that the formula (3.4) must be true if f is a change of variable.
Indeed, if we assume that there exists g differentiable such that g ˝ f “ Id, then by the
chain rule, it follows that

Jgpfpx0qq ¨ Jf px0q “ JIdpx0q “ 1n,

the identity matrix of size n (because the identity function is linear, so is its own differ-
ential). This formula implies that Jf px0q is invertible with inverse Jgpfpx0qq.

Example 3.10.3. (1) Consider the function

fpx, yq “ psinpxyq, ex ` yq.

Then

Jf px, yq “

ˆ

y cospxyq x cospxyq
ex 1

˙

with determinant

det Jf px, yq “ y cospxyq ´ xex cospxyq “ cospxyqpy ´ xexq.

This means that f is a change of variable around px, yq, unless either xy “ π{2` kπ for
some k P Z, or y “ xex.

(2) Consider the function

fpr, θ, ϕq “

¨

˝

r cospθq sinpϕq
r sinpθq sinpϕq
r cospϕq

˛

‚

for r ě 0, 0 ď θ ď 2π and 0 ď ϕ ď π (“spherical coordinates”).
The image of f is R3 and the function is differentiable and injective if the domain is

the open set
X “s0,`8rˆs0, 2πrˆs0, πr.

In fact, r is the distance to the origin of px, y, zq, θ is the angle in the horizontal plane
z “ 0 from the x axis to the point px, yq, and ϕ is the angle between the vertical axis
x “ y “ 0 and the line px, y, zq (so it is between 0 and π).

The Jacobian of f is

(3.5) Jf pr, θ, ϕq “

¨

˝

cospθq sinpϕq ´r sinpθq sinpϕq r cospθq cospϕq
sinpθq sinpϕq r cospθq sinpϕq r sinpθq cospϕq

cospϕq 0 ´r sinpϕq

˛

‚

with determinant

(3.6) det Jf pr, θ, ϕq “ ´r
2 cos2

pθq sin3
pϕq ´ r2 sin2

pθq sin2
pϕq cospϕq

´ r2 cos2
pθq cos2

pϕq sinpϕq ´ r2 sin2
pθq sin3

pϕq “ ´r2 sinpϕq.
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This is non zero for all pr, θ, ϕq in X, which confirms that the spherical coordinates give
a change of variable around any point in X.

The last theorem of this chapter concerns the problem of transforming an equation
gpx, yq “ 0 into a functional relation y “ fpxq – in other words, of “parameterizing” the
solutions of an equation.

We consider the case where y is a single value, whereas x runs over Rn. As in the
case of the Inverse Function Theorem, there is a general result that shows that such
parameterizations exist, but a priori only for x close to a given x0.

Theorem 3.10.4 (Implicit Function Theorem). Let X Ă Rn`1 be open and let
g : X Ñ R be of class Ck with k ě 1. Let px0, y0q P Rn ˆR be such that gpx0, y0q “ 0.
Assume that

Bygpx0, y0q ­“ 0.

Then there exists an open set U Ă Rn containing x0, an open interval I Ă R containing
y0, and a function f : U Ñ R of class Ck such that the system of equations

#

gpx, yq “ 0

x P U, y P I

is equivalent with y “ fpxq. In particular, fpx0q “ y0. Moreover, the gradient of f at x0

is given by

(3.7) ∇fpx0q “ ´
1

pBygqpx0, y0q
∇xgpx0, y0q,

where ∇xg “ pBx1g, . . . , Bxngq.

Idea of the proof. We will explain how to deduce at least the existence of the
function from the Inverse Function Theorem. Consider the function

ϕ : X Ñ Rn`1

defined by ϕpx, yq “ px, gpx, yqq. It is of class Ck. The Jacobian matrix is

Jϕpx, yq “

ˆ

1n 0
∇xg Byg.

˙

Its determinant at px0, y0q is

detpJϕpx0, y0qq “ pBygqpx0, y0q,

which is non-zero by assumption. This means that ϕ is a change of variable around
px0, y0q, by the Inverse Function Theorem. Therefore, by Theorem 3.10.2, there exists an
open set V Ă Rn`1 containing ϕpx0, y0q “ px0, 0q and a function ψ : V Ñ U of class Ck

such that

ϕ ˝ ψ “ Id.

We use pu, vq P Rn ˆ R for the variables in V and write ψpu, vq “ pψ1pu, vq, ψ2pu, vqq
where ψ1pu, vq P Rn and ψ2pu, vq P R. Then the relation ϕ ˝ ψ “ Id means that

pu, vq “ ϕpψ1pu, vq, ψ2pu, vqq “ pψ1pu, vq, gpψ1pu, vq, ψ2pu, vqqq.

In particular, this means that ψ1pu, vq “ u, and taking v “ 0, we get

0 “ gpu, ψ2pu, 0qq

which shows that we can take fpxq “ ψ2px, 0q to solve the equation, namely that
gpx, fpxqq “ 0 for all x.
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We can also quickly explain the formula (3.7): we start from the relation gpx, fpxqq “

0, which we write as g ˝ rf “ 0, where rfpxq “ px, fpxqq. Since rfpx0q “ px0, y0q, it follows
by the chain rule that

0 “ Jgpx0, y0q ¨ J rf px0q.

But we have

Jgpx, yq “ pp∇xgq
t, Bygq, J

rf pxq “

ˆ

1n
p∇fqt

˙

(a matrix with n`1 rows and n columns), and writing down the coefficients of the matrix
product, we obtain the relations

0 “ Bxigpx0, y0q ` pBygqpx0, y0qBxifpx0q

for 1 ď i ď n. �

Example 3.10.5. (1) Let gpx, yq “ x2 ` y2 ´ 1 and px0, y0q such that gpx0, y0q “ 0.
Then pBygqpx0, y0q “ 2y0. Therefore we can solve for y as a function of x, provided y0 ­“ 0.
In fact the solution is simply

(3.8) fpxq “

#?
1´ x2 if y0 ą 0

´
?

1´ x2 if y0 ă 0.

Suppose that y0 ą 0 for instance. Then note that, for a given x, the point px,
?

1´ x2q

is not the unique solution to gpx, yq “ 0, since px,´
?

1´ x2q is also a solution. This
explains the restriction to y belonging to some interval containing y0 in the theorem,
which is needed if we want to have an exact characterization of the solutions, and not
just a sufficient condition that gpx, fpxqq “ 0.

The formula (3.7) gives the derivative of f at x0, namely

f 1px0q “ ´
1

2y0

Bxgpx0q “ ´
x0

y0

.

If y0 ą 0, then this is equal to

f 1px0q “ ´
x0

a

1´ x2
0

,

which is of course the same that one obtains from the formula (3.8).
If we consider y0 “ 0, then the picture of the circle shows indeed that the solution set

is not the graph of a function of x when x is close to x0 “ ˘1.
What can be done when y0 “ 0 (and this is a common occurence) is to use y as a

variable to parameterize the solution, instead of x. Indeed, since pBxgqp˘1, 0q “ ˘2 ­“ 0,
it follows from the Implicit Function Theorem applied to rgpx, yq “ gpy, xq that there is a

parameterization as a function of y. In fact, it is simply x “
a

1´ y2 or x “ ´
a

1´ y2,
depending on whether x0 ą 0 or x0 ă 0.
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CHAPTER 4

Integration in Rn

This chapter is devoted to integration in Rn. There are in fact at least two different
importants aspects: (1) integrating functions f : X Ñ R, where X Ă Rn; (2) relating
integrals over different sets, of different dimensions.

In (1), besides defining integrals, one is led to analogues of the fundamental compu-
tational tools of the Riemann integral, such as the change of variable formula.

4.1. Line integrals

We begin with the simplest type of integrals in Rn, namely integration of functions
I Ñ Rn, where I is an interval, and other integrals that involve a single variable, which
is the integral of a function “along a curve”.

We use again the scalar product in Rn, which we denote

x ¨ y “
n
ÿ

i“1

xiyi.

Definition 4.1.1. (1) Let I “ ra, bs be a closed and bounded interval in R. Let

fptq “ pf1ptq, . . . , fnptqq

be a continuous function from I to Rn, i.e., fi is continuous for 1 ď i ď n. Then we
define

ż b

a

fptqdt “
´

ż b

a

f1ptq, . . . ,

ż b

a

fnptqdt
¯

P Rn.

(2) A parameterized curve in Rn is a continuous map γ : ra, bs Ñ Rn that is piecewise
C1, i.e., there exists k ě 1 and a partition

a “ t0 ă t1 ă ¨ ¨ ¨ ă tk´1 ă tk “ b

such that the restriction of f to stj´1, tjr is C1 for 1 ď j ď k. We say that γ is a
parameterized curve, or a pathx, between γpaq and γpbq.

(3) Let γ : ra, bs Ñ Rn be a parameterized curve. Let X Ă Rn be a subset containing
the image of γ, and let f : X Ñ Rn be a continuous function. The integral

ż b

a

fpγptqq ¨ γ1ptqdt P R

is called the line integral of f along γ. It is denoted
ż

γ

fpsq ¨ ds, or

ż

γ

fpsq ¨ d~s.

The integral of continuous functions I Ñ Rn satisfy much of the same rules as the
Riemann integral of a function I Ñ R, for instance

ż b

a

pfptq ` gptqqdt “

ż b

a

fptqdt`

ż b

a

gptqdt.
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Also, as in the one-variable case, we define
ż a

b

fptqdt “ ´

ż b

a

fptqdt,

if a ă b.
In the line integral, γ1ptq and fpγptqq are both vectors in Rn for all t (since γ takes

values in Rn), so that the final integral is a real number.
It is customary, when working with line integrals, to say that the function f : X Ñ Rn

is a vector field : a function that sends each point x in X Ă Rn to a vector in Rn, which
we display as based at x.

Example 4.1.2. (1) Let x “ px1, . . . , xnq and y “ py1, . . . , ynq be elements of Rn.
The function

γ : r0, 1s Ñ Rn

defined by γptq “ p1´ tqx` ty is a parameterized curve joining γp0q “ x to γp1q “ y. Its
image in Rn is exactly the line segment joining x to y. Note that γ1ptq “ y ´ x for all
t P r0, 1s (intuitively, this means that γ goes from x to y with constant speed).

Let f be a continuous function on X, expressed as fpxq “ pf1pxq, . . . , fnpxqq. Then
we have

ż

γ

fpsq ¨ d~s “
n
ÿ

i“1

pyi ´ xiq

ż 1

0

fipp1´ tqx` tyqdt.

In particular, suppose that yi “ xi for all i except a single value j (which means that the
segment γ joins two points along one of the coordinate axes). Then we get

ż

γ

fpsq ¨ d~s “ pyj ´ xjq

ż 1

0

fjpp1´ tqx` tyqdt.

(2) Define γ : r0, 2πs Ñ R2 by γptq “ pcosptq, sinptqq. This is a parameterized curve,
whose image is the circle centered at p0, 0q with radius 1. For fpx, yq “ pf1px, yq, f2px, yqq,
we have

ż

γ

fpsq ¨ d~s “

ż 2π

0

´

f1pcosptq, sinptqqp´ sinptqq ` f2pcosptq, sinptqq cosptq
¯

dt.

Take for instance

fpx, yq “

ˆ

´y
x

˙

.

Then we obtain
ż

γ

fpsq ¨ d~s “

ż 2π

0

psin2
ptq ` cos2

ptqqdt “ 2π.

Take now γ1ptq “ pcosptq, sinptqq, but defined for 0 ď t ď 4π. Then the parameterized
curve γ1 corresponds to “going twice over the circle”, so the image of γ1 is the same as
the image of γ. However, for the same vector field f as before, we have

ż

γ1

fpsq ¨ d~s “

ż 4π

0

dt “ 4π.

(3) A parameterized curve γ : ra, bs Ñ Rn is not required to map different times t
to different points: the trajectory described by γ may have points of self-intersection.
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Figure 4.1. Lemniscate

An example is the circle taken twice over of the previous example, another one is the
lemniscate of Bernoulli

(4.1) λptq “
´ cosptq

1` sin2ptq
,
cosptq sinptq

1` sin2ptq

¯

for 0 ď t ď 2π.
This is a closed curve, and we have also

λpπ{2q “ λp3π{2q “ p0, 0q.

Note however that

λ1ptq “
1

p1` sin2ptqq2

´

´ sinptq ´ sin3
ptq ´ 2 sinptq cos2

ptq, cos2
ptq ´ 2 sin2

ptq
¯

so that p´1{2,´1{2q “ λ1pπ{2q ­“ λ1p3π{2q “ p1{2, 1{2q.

Remark 4.1.3. (1) Let fpxq “ pf1pxq, . . . , fnpxqq. Another notation that is sometimes
used, in relation with the notion of differential form, is

ż

γ

fpsq ¨ d~s “

ż

γ

ω

where one writes
ω “ f1pxqdx1 ` ¨ ¨ ¨ ` fnpxqdxn,

using linearly independent “formal symbols” dx1, . . . , dxn to separate the components fi
of f .

(2) The line integral has a physical interpretation. Suppose we have a particle that
moves from x1 to x2 along the path γ, where γptq is the position and γ1ptq is the speed
of the particle at time t. Suppose further that a force f , represented by a vector giving
its direction and intensity, is applied to the particle during the motion. Then the line
integral

ż

γ

fpsq ¨ d~s

is the “work” that is done by the force f along this trajectory. If there are no other
forces, then the work is (in Newtonian mechanics) the difference in the kinetic energy of
the particle between the starting and end points of the trajectory.

The most important property of the line integral is that it (essentially) only depends
on the image curve γpra, bsq Ă Rn, and not on the chosen parameterization. More
precisely:

Definition 4.1.4. Let γ : ra, bs Ñ Rn be a parameterized curve. An oriented repa-
rameterization of γ is a parameterized curve σ : rc, ds Ñ Rn such that σ “ γ ˝ ϕ, where
ϕ : rc, ds Ñ ra, bs is a continuous map, differentiable on sa, br, that is strictly increasing
and satisfies ϕpaq “ c and ϕpbq “ d.
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Note that the image σprc, dsq Ă Rn of an oriented reparameterization σ of γ is the
same as the image γpra, bsq. Also, γ is conversely an oriented reparameterization of σ,
since γ “ σ ˝ ϕ´1.

Proposition 4.1.5. Let γ be a parameterized curve in Rn and σ an oriented repa-
rameterization of γ. Let X be a set containing the image of γ, or equivalently the image
of σ, and f : X Ñ Rn a continuous function. Then we have

ż

γ

fpsq ¨ d~s “

ż

σ

fpsq ¨ d~s.

Proof. This is a consequence of the change of variable formula for Riemann integrals
(see [1, Satz 5.4.6]): since σ “ γ ˝ ϕ, we have σ1puq “ ϕ1puqγ1pϕpuqq for c ď u ď d, and
hence using the definition of line integrals, we get

ż

σ

fpsq ¨ d~s “

ż d

c

fpσpuqq ¨ σ1puqdu

“

ż d

c

fpγpϕpuqqq ¨ ϕ1puqγ1pϕpuqqdu

“

ż d

c

´

fpγpϕpuqqq ¨ γ1pϕpuqq
¯

ϕ1puqdu

“

ż b

a

´

fpγptqq ¨ γ1ptq
¯

dt “

ż

γ

fpsqd~s,

by applying the change of variable formula t “ ϕpuq, dt “ ϕ1puqdu, since c “ ϕpaq and
d “ ϕpbq. �

Because of this proposition, one speaks, for instance, of the line integral of a vector
field f along a circle, instead of fixing a parameterization of the circle. But one should
keep in mind that this means “going over the circle only once, without repetition”.

Example 4.1.6. (1) Let n ě 1 and define

γnptq “ pcosp2πtnq, sinp2πtnqq

for 0 ď t ď 1. Then γn “ γ1 ˝ ϕn, where ϕnptq “ tn. Hence all γn are common
reparameterizations of γ1. The curve described by γn is the circle of radius 1 centered at
p0, 0q. Note that

γ1nptq “ p´2πntn´1 sinp2πtnq, 2πntn´1 cosp2πtnqq,

and in particular, if n ě 2, we have γ1np0q “ 0, which means that the trajectory de-
scribed by γn starts from p1, 0q with very small speed, and then accelerates as t increases.
Nevertheless, if fpx, yq “ p´y, xq, we have always (for instance)

ż

γn

fpsq ¨ d~s “

ż

γ1

fpsq ¨ d~s “ 2π.

(2) It is important that the reparameterizations that are used preserve the orienta-
tion, in other words that the endpoints are not “switched”. For instance, suppose that
γ : r0, 1s Ñ X is a parameterized curve. Let σpuq “ γp1 ´ uq; then σ is a parameterized
curve, with the same image as γ, but it goes from σp0q “ γp1q, the endpoint of γ, to
σp1q “ γp0q, the starting point of γ.
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Let f be a continuous vector field on X. Then we compute
ż

σ

fpsq ¨ d~s “

ż 1

0

fpγp1´ uqq ¨ p´γ1p1´ uqqdu

and by substituting t “ 1´ u, this is
ż 0

1

fpγptqq ¨ γ1ptqdt “ ´

ż

γ

fpsq ¨ d~s.

In other words: going along a parameterized curve “backwards” leads to the opposite
value of the line integral.

The following example is extremely important, as it gives a very fast way to compute
certain line integrals.

Example 4.1.7. Let X be an open set in Rn and g : X Ñ R a function of class C1.
Define f “ ∇g, which is a vector field X Ñ Rn. Let γ : ra, bs Ñ X be a parameterized
curve with image in X. We write γptq “ pγ1ptq, . . . , γnptqq.

We then have by definition
ż

γ

fpsq ¨ d~s “

ż b

a

n
ÿ

i“1

Bg

Bxi
pγptqqγ1iptqdt.

But, by the Chain Rule, the function
n
ÿ

i“1

Bg

Bxi
pγptqqγ1iptq

is the derivative of the C1 function

hptq “ gpγptqq.

Hence, by the fundamental theorem of calculus from Analysis I ([1, §5.4]), we have
ż

γ

∇gpsq ¨ d~s “ gpγpbqq ´ gpγpaqq,

the difference between the value of g at the “end point” γpbq of the curve, and the value
at the “start point” γpaq.

What is striking in this example is that the answer only depends on the extremities of
the parameterized curve! It is irrelevant how complicated the path joining γpaq to γpbq
may be.

Definition 4.1.8. Let X Ă Rn and f : X Ñ Rn a continuous vector field. If, for any
x1, x2 in X, the line integral

ż

γ

fpsq ¨ d~s

is independent of the choice of a parameterized curve γ in X from x1 to x2, then we say
that the vector field is conservative.

Remark 4.1.9. (1) Equivalently, f is conservative if and only if
ż

γ

fpsq ¨ d~s “ 0

for any closed parameterized curve in X (where a curve is said to be closed if γpaq “ γpbq).
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Indeed, if f is conservative, then the integral on a closed curve from x1 to x1 must
be equal to the integral along the constant curve γptq “ x1, which is zero (the speed of γ
being 0).

Conversely, suppose that this condition holds. Let γ1, γ2 be two paths in X from x1

to x2. Then the parameterized curve

γptq “

#

γ1p2tq if 0 ď t ď 1{2

γ2p2p1´ tqq if 1{2 ď t ď 1

is a closed parameterized curve from x1 to x1, so that the integral of f along γ is zero by
our assumption; but a simple computation shows that

0 “

ż

γ

fpsq ¨ d~s “

ż

γ1

fpsq ¨ d~s´

ż

γ2

fpsq ¨ d~s.

Hence the vector field is conservative.
(2) In physics, to say that a force is represented by a conservative vector field means

that the work done by the force on a particle from one point to another is the same,
whatever the trajectory between the two points.

(3) The equation ∇g “ f is linear. It follows, for instance, that if f1 and f2 are both
conservative, with respective potentials g1 and g2, then for any pa, bq P R2, the vector
field af1 ` bf2 is conservative, with potential ag1 ` bg2.

The previous example shows if X is open then any gradient vector field f on X is
conservative, i.e., any vector field of the form f “ ∇g, where g is of class C1 on X, is
conservative. The converse is true:

Theorem 4.1.10. Let X be an open set and f a conservative vector field. Then there
exists a C1 function g on X such that f “ ∇g.

If any two points of X can be joined by a parameterized curve, then g is unique up to
addition of a constant: if ∇g1 “ f , then g ´ g1 is constant on X.

Remark 4.1.11. (1) To say that any two points of X can be joined by a parameterized
curve means that, for all x and y in X, there exists a parameterized curve γ : ra, bs Ñ X
such that γpaq “ x and γpbq “ y. When this is true, we say that X is path-connected.

This is the case for instance when X is a disc in the plane, or a product of intervals.
More generally, it is true whenever X is convex, which means that for any x and y in X,
the line segment joining x to y is contained in X (this is because such a line segment is
the image of a parameterized curve, as we saw in Example 4.1.2 (1)).

On the other hand, let X be the union of two discs that are disjoint, for instance, the
discs of radius 1 around p0, 0q and p3, 0q. Then X is not path-connected, since (by the
intermediate value theorem) any curve γptq “ pγ1ptq, γ2ptqq joining p0, 0q to p3, 0q must
be such that there exists t0 with γ1pt0q “ 3{2, which is impossible since the points of X
have first coordinate in r´1, 1s Y r2, 4s.

(2) If f is a conservative vector field on X, then a function g such that ∇g “ f is
called a potential for f . Note that it is not unique, since at least it is possible to add a
constant to g without changing the gradient.

Idea of the proof. Write fpxq “ pf1pxq, . . . , fnpxqq for x P X. Assume that X
is path-connected for simplicity. Then fix a point x0 P X. For any x P X, select a
parameterized curve γx from x0 to x, and define

gpxq “

ż

γx

fpsq ¨ d~s.
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Figure 4.2. Vector field along two curves

This is a function of x, and gpxq doesn’t depend on the choice of γx, since the vector field
f is conservative. In particular, to compute the partial derivative Bx1g of g at x, we can
compute gpx ` te1q for t small enough by selecting the curve γx`te1 to be the curve γx
followed by the straight line segment `x,t from x to x` te1 (which is contained in X, for
t small enough, because X is open). Then we get easily

gpx` te1q ´ gpxq “

ż

`x,t

fpsq ¨ d~s “ t

ż 1

0

f1pp1´ uqx` upx` te1qqdu

(since `1x,tpuq “ te1 for all u; see again Example 4.1.2 (1))). By continuity of f , for t small
enough, the function f1 is almost constant on the segment `x,t, equal to f1pxq. So

gpx` te1q ´ gpxq « tf1pxq

which means that the partial derivative of g with respect to x1 exists and is equal to
f1pxq.

Doing the same for all partial derivatives, we conclude that ∇g “ f . �

Example 4.1.12. (1) Let n “ 3 and fpx, y, zq “ py2, xz, 1q. We will show that f is
not conservative by computing the line integrals along two curves joining the same points,
and showing that they are different.

We let p1 “ p0, 0, 0q and p2 “ p1, 1, 1q. The parameterized curves

γ1ptq “ pt, t, tq, γ2ptq “ pt, t
2, t3q

for 0 ď t ď 1 both join p1 to p2. We have
ż

γ1

fpsq ¨ d~s “

ż 1

0

pt2, t2, 1q ¨ p1, 1, 1qdt “

ż 1

0

p2t2 ` 1qdt “
”2t3

3
` t

ı1

0
“

5

3
.
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On the other hand, we get
ż

γ2

fpsq ¨ d~s “

ż 1

0

pt4, t4, 1q ¨ p1, 2t, 3t2qdt “

ż 1

0

p2t5 ` t4 ` 3t2qdt “

”t6

3
`
t5

5
` t3

ı1

0
“

1

3
`

1

5
` 1 “

23

15
.

Note that the second integral is smaller. In a physics interpretation, this would mean
that less work (and energy) is needed to move the particle subject to the force f from p1

to p2 using the second path than the first path.
(2) Suppose that we know that a concrete vector field f is conservative. How does

one find a potential g such that ∇g “ f?
One way to do that find g such that

Bg

Bx1

“ f1pxq,

by integrating f1 with respect to x1, when other variables are fixed. This gives an answer
up to a function g1 that depends only on px2, . . . , xnq. We then solve for

Bg

Bx2

“ f2pxq,

starting with the “partial” formula for g involving g1, obtaining a new unknown function
depending only on px3, . . . , xnq, and we repeat.

For instance, consider the vector field

fpx, y, zq “

¨

˝

6x2 cospyzq ` z sinpyq
´3x3z sinpyzq ` xz cospyq ` 2y
´3x3y sinpyzq ` x sinpyq ` 2z

˛

‚.

In order to have
Bg

Bx
“ 6x2 cospyzq ` z sinpyq,

by the fundamental theorem of calculus, applied for each value of py, zq separately, we
must have

gpx, y, zq “ 3x3 cospyzq ` xz sinpyq ` hpy, zq,

for some function h : R2 Ñ R. Then, for g of this type to satisfy

Bg

By
“ ´3x3z sinpyzq ` xz cospyq ` 2y,

we must have

´3x3z sinpyzq ` xz cospyq `
Bh

By
“ ´3x3z sinpyzq ` xz cospyq ` 2y,

which means that Byh “ 2y, or in other words that

hpy, zq “ y2
` kpzq, gpx, y, zq “ 3x3 cospyzq ` xz sinpyq ` y2

` kpzq,

for some function k. Finally, to have

Bg

Bz
“ ´3x3y sinpyzq ` x sinpyq ` 2z,

we need to have

´3x3y sinpyzq ` x sinpyq ` k1pzq “ ´3x3y sinpyzq ` x sinpyq ` 2z,
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which means that kpzq “ z2 ` c for some real number c. We can pick c “ 0, which gives

gpx, y, zq “ 3x3 cospyzq ` xz sinpyq ` y2
` z2.

The next general question is: how can one determine easily in practice if a concrete
vector field f is conservative? The characterization in terms of line integrals is not really
convenient, since many integrals are very hard to compute. There is however a very
simple necessary condition.

Proposition 4.1.13. Let X Ă Rn be an open set and f : X Ñ Rn a vector field of
class C1. Write

fpxq “ pf1pxq, . . . , fnpxqq.

If f is conservative, then we have
Bfi
Bxj

“
Bfj
Bxi

for any integers with 1 ď i ­“ j ď n.

Proof. Indeed, let g be a potential for f , which is then of class C2. Then fi “ Bxig
and hence

Bfi
Bxj

“
B2g

BxjBxi
“

B2g

BxiBxj
“
Bfj
Bxi

by Proposition 3.5.4. �

Example 4.1.14. (1) Consider again the example fpx, y, zq “ py2, xz, 1q. Since

Bypy
2
q “ 2x ­“ z “ Bxpxzq,

we can see that f is not conservative without having to search for two curves where the
line integrals are different.

(2) If n “ 2, with f “ pf1, f2q, then the condition is simply that

Bf2

Bx
“
Bf1

By
.

It is natural to ask if this necessary criterion is also sufficient. This is not always true,
and the answer depends on the set X where the vector field is defined.

Definition 4.1.15. A subset X Ă Rn is star shaped if there exists x0 P X such that,
for all x P X, the line segment joining x0 to x is contained in X. We then also say that
X is star-shaped around x0.

Example 4.1.16. (1) A ball

X “ tx P Rn : }x´ x0} ă ru,

or a “rectangle”

X “ ra1, b1s ˆ ¨ ¨ ¨ ˆ ran, bns,

is a star-shaped subset. In fact, these are even convex sets, which means that for any x
and y in X, the line segment between x and y is contained in X, or in other words, they
are star-shaped around any point in X.

On the other hand, let X1 and X2 be two different discs in R2 that intersect in at
least one point x0. Then X “ X1 YX2 is star-shaped (since, for any x P X, the segment
joining x0 to x is either contained in X1 or X2, and hence is contained in X) but in
general not convex.
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(2) The complement X “ tx P Rn : x ­“ 0u of the origin in Rn is not star-shaped:
whatever value of x0 ­“ 0 we select in Rn, the segment between x0 and ´x0 is not
contained in X, since it contains the origin 0 R X.

(3) Let 0 ă a ă b be real numbers. The annulus

X “ tppx, yq P R2 : a ď x2
` y2

ď bu Ă R2

is not star-shaped, for the same reason as in (2): it does not contain p0, 0q, and the
segment between px, yq and p´x,´yq, which both belong to X if px, yq does, passes
through p0, 0q.

(4) If X is star-shaped, say around x0, then it is path-connected: indeed, for any x
and y in X, there is a parameterized curve from x to y obtained by following first the
segment from x to x0, and then the segment from x0 to y, both of which are contained
in X.

Theorem 4.1.17. Let X be a star-shaped open subset of Rn. Let f be a C1 vector
field such that

(4.2)
Bfi
Bxj

“
Bfj
Bxi

on X for all i ­“ j between 1 and n. Then the vector field f is conservative.

Remark 4.1.18. The requirement that X is star-shaped is not necessary. Intuitively,
the correct hypothesis on X should be that there is no “hole” in the middle around which
a circle can go without it being possible to contract it within X.

Example 4.1.19. (1) Let X “ R2 ´ t0u. Define

fpx, yq “

ˆ

´
y

x2`y2
x

x2`y2

˙

on X. This is a C1 vector field. We have

By

´ y

x2 ` y2

¯

“
1

x2 ` y2
´

2y2

px2 ` y2q2
“

x2 ´ y2

px2 ` y2q2

and

Bx

´ x

x2 ` y2

¯

“
1

x2 ` y2
´

2x2

px2 ` y2q2
“

y2 ´ x2

px2 ` y2q2
,

so that the condition (4.2) holds.
However, consider the closed parameterized curve γptq “ pcosptq, sinptqq for 0 ď t ď

2π, which describes a circle of radius 1 around 0. Then we have
ż

γ

fpsq ¨ d~s “

ż 2π

0

psin2
ptq ` cos2

ptqqdt “ 2π ­“ 0,

which implies that the vector field f is not conservative.
For this particular choice of X, one can in fact prove that a C1 vector field satisfy-

ing (4.2) is conservative if and only if
ż

γ

fpsq ¨ d~s “ 0,

for this particular curve γ.
(2) If we consider the same vector field as in (1), but defined on the open set Y “

tpx, yq P R2 : x ą 0u (a half-plane), then since this half-plane is convex, and therefore
star-shaped, it follows that there exists a potential g : Y Ñ R such that ∇g “ f . In
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fact, one can check that gpx, yq “ arctanpy{xq has this property. Indeed, g is defined for
x ą 0, and since arctan1pxq “ 1{p1` x2q, we get

Bxg “ ´
y

x2

1

1` py{xq2
“ ´

y

x2 ` y2
, Byg “

1

x

1

1` py{xq2
“

x

x2 ` y2

on Y , which is the desired result.
(3) Let pa, b, cq be real parameters. For which values of pa, b, cq b is the vector field

fpx, yq “

ˆ

ax3y ` bxy3

bx4 ` cx2y2

˙

conservative? Since f is defined on R2, we need to check if Byf1 “ Bxf2, which becomes
the equation

ax3
` 3bxy2

“ 4bx3
` 2cxy2.

Since x and y take arbitrary values, this is true if and only if
#

a “ 4b

3b “ 2c.

This means that we can use b as an arbitrary parameter and put

a “ 4b, c “
3b

2
.

For instance, this is the case when pa, b, cq “ p4, 1, 3{2q.

If n “ 3, then there are three conditions (4.2). It is customary to view them as stating
that an auxiliary vector field attached to f , its curl, is zero.

Definition 4.1.20. Let X Ă R3 be an open set and f : X Ñ R3 a C1 vector field.
Then the curl of f , denoted curlpfq, is the continuous vector field on X defined by

curlpfq “

¨

˝

Byf3 ´ Bzf2

Bzf1 ´ Bxf3

Bxf2 ´ Byf1

˛

‚,

where fpx, y, zq “ pf1px, y, zq, f2px, y, zq, f3px, y, zqq.

We see immediately that curlpfq “ 0 means precisely that the conditions (4.2) hold,
for a 3-dimensional vector field.

Remark 4.1.21. To remember the definition, one can remember the (formal!) deter-
minant

curlpfq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

e1 e2 e3

Bx By Bz
f1 f2 f3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

where pe1, e2, e3q is the canonical basis of R3, expanding it “as usual”, with the rule that
Bx ¨ fi “ fi ¨ Bx “ Bxfi, etc.

4.2. The Riemann integral in Rn

We will now describe the Riemann integral in Rn. The goal, for a closed bounded
subset X Ă Rn and a continuous function f : X Ñ R, is to define its integral

ż

X

fpx1, . . . , xnqdx
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so that it has analogue properties to the Riemann integral for n “ 1. The important
difficulty, in comparison with the case n “ 1, is that there possibilities for X have many
more different shapes in higher dimension. Also, if X is a product of intervals

X “ ra1, b1s ˆ ¨ ¨ ¨ ˆ ran, bns Ă Rn,

(an n-dimensional “rectangle”) then it is fairly natural to attempt to partition into smaller
rectangles, by considering partitions of each interval rai, bis. However, if X is even as
simple as a disc

X “ tpx, yq P R2 : x2
` y2

ď 1u Ă R2,

then it cannot be decomposed in a finite union of rectangles, or even of smaller discs.
Because of this, the construction of the Riemann integral is much more involved.

Since we will not be able to give the details of the proofs that this construction succeeds
anyway, we will present its properties first, and we will only discuss in a remark what is
a precise limiting process that can be used as a definition (see Remark 4.2.7).

For any bounded closed subset X Ă Rn and any continuous function f : X Ñ R, one
can define the integral of f over X, denoted

ż

X

fpxqdx,

which is a real number, depending of course on X and on f .

The integral satisfies the following properties:

(1) (Compatibility) If n “ 1 and X “ ra, bs is an interval (with a ď b), then the
integral of f over X is the Riemann integral of f :

ż

ra,bs

fpxqdx “

ż b

a

fpxqdx.

(2) (Linearity) If f and g are continuous on X and a, b are real numbers, then
ż

X

paf1pxq ` bf2pxqqdx “ a

ż

X

f1pxqdx` b

ż

X

f2pxqdx.

(3) (Positivity) If f ď g, then
ż

X

fpxqdx ď

ż

X

gpxqdx

and especially, if f ě 0, then
ż

X

fpxqdx ě 0.

Moreover, if Y Ă X is compact and f ě 0, then
ż

Y

fpxqdx ď

ż

X

fpxqdx.

(4) (Upper bound and triangle inequality) In particular, since ´|f | ď f ď |f |,
we have

ˇ

ˇ

ˇ

ż

X

fpxqdx
ˇ

ˇ

ˇ
ď

ż

X

|fpxq|dx,

and since |f ` g| ď |f | ` |g|, we have
ˇ

ˇ

ˇ

ż

X

pfpxq ` gpxqqdx
ˇ

ˇ

ˇ
ď

ż

X

|fpxq|dx`

ż

X

|gpxq|dx.
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(5) (Volume) If f “ 1, then the integral of f is the “volume” in Rn of the set X,
and if f ě 0 in general, the integral of f is the volume of the set

tpx, yq P X ˆR : 0 ď y ď fpxqu Ă Rn`1.

In particular, if X is a bounded “rectangle”, say

X “ ra1, b1s ˆ ¨ ¨ ¨ ˆ ran, bns Ă Rn

and f “ 1, then

(4.3)

ż

X

dx “ pbn ´ anq ¨ ¨ ¨ pb1 ´ a1q.

We write VolpXq or VolnpXq for the volume of X.
(6) (Multiple integral, or Fubini’s Theorem) If n1 and n2 are integers ě 1 such

that n “ n1 ` n2, then for x1 P Rn1 , let

(4.4) Yx1 “ tx2 P Rn2 : px1, x2q P Xu Ă Rn2 .

Let X1 be the set of x1 P Rn such that Yx1 is not empty. Then X1 is compact in
Rn1 and Yx1 is compact in Rn2 for all x1 P X1. If the function

gpx1q “

ż

Yx1

fpx1, x2qdx2

on X1 is continuous, then
ż

X

fpx1, x2qdx “

ż

X1

gpx1qdx1 “

ż

X1

´

ż

Yx1

fpx1, x2qdx2

¯

dx1.

Similarly, exchanging the role of x1 and x2, we have
ż

X

fpx1, x2qdx “

ż

X2

´

ż

Zx2

fpx1, x2qdx1

¯

dx2,

where Zx2 “ tx1 : px1, x2q P Xu, if the integral over x1 is a continuous function.

Remark 4.2.1. (1) The conditions we have stated are not independent, and are not
the only properties of the integral that we will state. However, they are enough to get
some intuition, and are sufficient to compute many concrete integrals. Moreover, they
characterize the integral: there is at most one way to define an “integral” for all X and
all f in order that all properties above are satisfied.

(2) Property (5) is somewhat ambiguous, and could be replaced by the special case (4.3)
(which is itself a special case of the formula (4.5) below); the fact that

ş

X
dx is the volume

of X would then be the definition of the volume VolpXq.
(3) If the variables are x1, . . . , xn, we also write

ż

X

fpx1, . . . , xnqdx1 ¨ ¨ ¨ dxn.

(4) There are at least two intuitive explanations of Fubini’s Theorem. First, if we
think of integrals as generalizations of sums, then a two-variable integral is like a sum of
real numbers ai,j with two indices; then Fubini’s formula amounts to

ÿ

i,j

ai,j “
ÿ

i

´

ÿ

j

ai,j

¯

“
ÿ

j

´

ÿ

i

ai,j

¯

which are just different ways of combining the sum of these numbers, and are equal
because of the commutativity and associativity of addition.

71



Next, we think of volumes only, and take n “ 2 for simplicity. Consider a compact
subset X Ă R2 of the form

X “ tpx, yq : a ď x ď b, f1pxq ď y ď f2pxqu,

where f1 ď f2 are two continuous functions defined on ra, bs. Then Fubini’s formula for
the volume of X becomes

VolpXq “

ż b

a

gpxqdx,

where

gpxq “

ż f2pxq

f1pxq

dy “ f2pxq ´ f1pxq.

The function gpxq is the length of the vertical interval in X over the coordinate x (which
can be thought of as a vertical slice of X), and so we say that the area of X is the integral
of the length of vertical slices, which is intuitively reasonable.

Note that for more complicated sets, the slices might not be just a single interval,
but the same intuitive explanation applies. And similarly, the area is the integral of the
length of horizontal slices of X.

Example 4.2.2. (1) The simplest case of Fubini’s Theorem is whenX is a “generalized
rectangle”, namely

X “ X1 ˆX2,

where X1 Ă Rn1 and X2 Ă Rn2 . Then X1 is the same set that was denoted X1 in
Property (6). Moreover, for any x1 P X1, we have

Yx1 “ tx2 P Rn2 : px1, x2q P X1 ˆX2u “ X2 Ă Rn2 ,

which is therefore independent of x1. If f is continuous on X, one can then prove that
the function

gpx1q “

ż

Yx1

fpx1, x2qdx2 “

ż

X2

fpx1, x2qdx2

is always continuous in that case. Hence Fubini’s Theorem takes the simple form
ż

X1ˆX2

fpx1, x2qdx1dx2 “

ż

X1

´

ż

X2

fpx1, x2qdx2

¯

dx1 “

ż

X2

´

ż

X1

fpx1, x2qdx1

¯

dx2

for any continuous function f on X.
(2) Suppose now that

X “ ra1, b1s ˆ ¨ ¨ ¨ ˆ ran, bns Ă Rn

and that f is a function with separated variables given by

fpx1, . . . , xnq “ f1px1q ¨ ¨ ¨ fnpxnq,

where each function fi is continuous (so f is also continuous). Then we claim that the
integral takes the easy form

(4.5)

ż

X

fpx1, . . . , xnqdx1 ¨ ¨ ¨ dxn “
´

ż b1

a1

f1pxqdx
¯

¨ ¨ ¨

´

ż bn

an

fnpxqdx
¯

.

Indeed, consider the case n “ 2 (the general case follows by induction): we have by
Fubini’s Theorem

ż

X

fpx, yqdxdx “

ż b1

a1

gpxqdx
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provided the function g, defined by

gpxq “

ż b2

a2

f1pxqf2pyqdy “
´

ż b2

a2

f2pyqdy
¯

f1pxq

is continuous – which is the case since f1 and f2 are continuous. Since g is a multiple of
f1, we get

ż

X

fpx, yqdxdx “
´

ż b2

a2

f2pyqdy
¯

ż b1

a1

f1pxqdx,

which gives (4.5).
(3) We want to compute the volume V of the ball of radius one in R3, namely

X “ tpx, y, zq P R3 : x2
` y2

` z2
ď 1u.

First approach. We use slices according to the z variable: since the z variable runs
over r´1, 1s, according to Fubini’s Theorem, we have

V “

ż 1

´1

gpzqdz,

where gpzq is the area of the subset Xz “ tpx, y, zq P Xu where the last coordinate is z.
This is a disc (in the horizontal plane where this value of z is fixed) of radius

?
1´ z2.

So

V “

ż 1

´1

πp1´ z2
qdz “ π

´

2´
2

3

¯

“
4π

3
.

Second approach. According to geometric intuition, the volume V is twice the
volume of the subset X` where z ě 0, which is then

X` “ tpx, y, zq P R3 : 0 ď x2
` y2

ď 1, 0 ď z ď
a

1´ x2 ´ y2u.

By Property (5), this means that

V “ 2

ż

D

a

1´ x2 ´ y2dxdy

where
D “ tpx, yq P R2 : x2

` y2
ď 1u

is the disc of radius 1 in R2. We use Fubini’s Theorem to compute this two-dimensional
integral. Here the set X1 corresponding to the disc D is r´1, 1s (the set of possible first
coordinates of a point in D). For a given x P r´1, 1s, the possible set Yx of values of y is

Yx “ r´
?

1´ x2,
?

1´ x2s.

So, according to Property (6) and Property (1), we have
ż

D

a

1´ x2 ´ y2dxdy “

ż 1

´1

gpxqdx

where

gpxq “

ż

?
1´x2

´
?

1´x2

a

1´ x2 ´ y2dy,

if g is continuous. But this function gpxq is half of the area of a disc of radius 1 ´ x2,
so we know that gpxq “ 1

2
πp1 ´ x2q. In particular, it is indeed continuous, and as a

consequence, we get
ż

D

a

1´ x2 ´ y2dxdy “
π

2

ż 1

´1

p1´ x2
qdx “

π

2

´

2´
2

3

¯

“
2π

3
,
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and finally V “ 4π{3.
(4) In applying Fubini’s Theorem, it can indeed happen that the function gpxq is not

continuous, although this creates no difficulty in practice, because of the possibility of
decomposing the domain of integration, as we will discuss next.

For instance, let

X “ tpx, yq P R2 : 0 ď x ď 2 and 0 ď y ď 1` txuu

(in other words, we have 0 ď y ď 1 if 0 ď x ă 1 and 0 ď y ď 2 if 1 ď x ď 2). If we take
f “ 1 and therefore use the two-dimensional integral to compute the area of X using
Fubini’s Theorem, we get X1 “ r0, 2s and

Yx “

#

r0, 1s if 0 ď x ă 1

r0, 2s if 1 ď x ď 2

for which

gpxq “

ż

Yx

dy “

#

1 if 0 ď x ă 1

2 if 1 ď x ď 2.

This function is not continuous at x “ 1.

A useful tool to compute integrals in dimension ě 2 is to partition the domain of
integration X. For this, we have the property that integrals “add up” over disjoint
pieces, and more generally:

(7) (Domain addivitity) If X1 and X2 are compact subsets of Rn, and f is con-
tinuous on X1 YX2, then

(4.6)

ż

X1YX2

fpxqdx`

ż

X1XX2

fpxqdx “

ż

X1

fpxqdx`

ż

X2

fpxqdx.

Note that X1 XX2 is also compact, so all integrals exist.

In particular, if X1 XX2 is empty, then
ż

X1YX2

fpxqdx “

ż

X1

fpxqdx`

ż

X2

fpxqdx,

which is often very convenient. This simple formula holds also if the intersection X1XX2

is “negligible”. For instance, in R2, the intersection might be a parameterized curve, and
for such a set, the integral is 0 (intuitively, because it is a one-dimensional object and
the integral in R2 measures area).

We make the following definitions to deal with more general situations:

Definition 4.2.3. (1) Let 1 ď m ď n be an integer. A parameterized m-set in Rn is
a continuous map

f : ra1, b1s ˆ ¨ ¨ ¨ ˆ ram, bms Ñ Rn

which is C1 on
sa1, b1rˆ ¨ ¨ ¨ ˆsam, bmr.

(2) A subset B Ă Rn is negligible if there exist an integer k ě 0 and parameterized
mi-sets fi : Xi Ñ Rn, with 1 ď i ď k and mi ă n, such that

X Ă f1pX1q Y ¨ ¨ ¨ Y fkpXkq.

For instance, note that a parameterized 1-set in Rn is just a parameterized curve.
Intuitively, we think of a parameterizedm-set in Rn as a way to describe anm-dimensional
subset of Rn, but one should be aware that the image of a parameterized m-set f might
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be of dimension smaller than m (for instance, it is possible that f is constant, in which
case the image is a single point, which is an object of dimension 0).

Example 4.2.4. (1) Any subset of the real axis Rˆ t0u Ă R2 is negligible in R2.
(2) More generally, if H Ă Rn is an affine subspace of dimension m ă n, then any

subset of Rn that is contained in H is negligible.
(3) The image of a parameterized curve γ : ra, bs Ñ Rn is negligible, since γ is a 1-set

in Rn,

Proposition 4.2.5. Let X Ă Rn be a compact set. Assume that X is negligible.
Then for any continuous function on X, we have

ż

X

fpxqdx “ 0.

We do not prove this, but illustrate this (fairly natural) property with examples.

Example 4.2.6. (1) Consider the graph X “ tpt, γptqq : a ď t ď bu of a continuous
function g : ra, bs Ñ R. This is the image of the parameterized curve t ÞÑ pt, γptqq, so it
is negligible. Indeed, we can check the proposition in that case using Fubini’s Theorem:
for any function f continuous on X, we have

ż

X

gpx, yqdxdy “

ż b

a

´

ż fpxq

fpxq

gpx, yqdy
¯

dx “ 0,

since an integral over a one-point interval is zero, and the integral of the zero function is
zero by linearity.

(2) The formula (4.6) also explains why the volume of the unit ball X Ă R3 in
Example 4.2.2 is twice the volume of the hemisphere X` with z ě 0. Indeed, let X1 “ X`
and X2 “ X´, the lower hemisphere. Since X “ X` YX´, by Property (7), we have

V “

ż

X

dxdydz “

ż

X`

dxdydz `

ż

X´

dxdydz ´

ż

X`XX´

dxdydz.

The intersection X` X X´ is D ˆ t0u, where D Ă R2 is the disc of radius 1. So it is
negligible by Example 4.2.4, (2) (one can also see that this is the image in R3 of the
parameterized 2-set given by

pr, θq ÞÑ pr cospθq, r sinpθqq

on r0, 1s ˆ r0, 2πs). It follows by the proposition that
ż

D

dxdydz “ 0,

and hence

V “

ż

X

dxdydz “

ż

X`

dxdydz `

ż

X´

dxdydz.

To show that the volume of X´ is the same as that of X`, one can use the same method
as in Example 4.2.2 (later, we will see the change of variable formula that allows us to
do this more directly).

Remark 4.2.7. We will explain here one possible definition of the Riemann integral
in Rn. It goes in the following steps:
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(1) Definition of integrable functions on a closed bounded rectangle

X “ ra1, b1s ˆ ¨ ¨ ¨ ˆ ran, bns.

Namely, consider finite partitions of each interval

ai “ ti,0 ă ti,1 ă ¨ ¨ ¨ ă ti,k “ bi

which induce a partition of X into smaller rectangles

Xj1,...,jn “ rt1,j1 , t1,j1`1s ˆ ¨ ¨ ¨ ˆ rtn,jn , tn,jn`1s.

Each such rectangle has n-dimensional volume

mpj1, . . . , jnq “ pt1,j1`1 ´ t1,j1q ¨ ¨ ¨ ptn,jn`1 ´ tn,jnq.

Each such partition defines an upper Riemann sum and a lower Riemann sum:

S` “
k´1
ÿ

j1“0

¨ ¨ ¨

k´1
ÿ

jn“0

´

sup
xPXj1,...,jn

fpxq
¯

mpj1, . . . , jnq

S´ “
k´1
ÿ

j1“0

¨ ¨ ¨

k´1
ÿ

jn“0

´

inf
xPXj1,...,jn

fpxq
¯

mpj1, . . . , jnq

We say that f is Riemann-integrable over X if

supS´ “ inf S`,

where we consider supremum and infimum over all upper and lower Riemann
sums computed for every possible partition. We then define

ż

X

fpxqdx “ supS´ “ inf S`.

Such functions are not necessarily continuous, but all continuous functions
on X are Riemann-integrable.

(2) Definition of Jordan-measurable subsets X Ă Rn, which are necessarily bounded
in Rn: we say that a bounded set X, contained in a closed rectangle B “

r´R,Rsn of “radius” R ą 0 around 0 is Jordan-measurable if the function defined
on B by

ϕpxq “

#

1 if x P X

0 if x R X

is integrable in the sense of (1). One then checks that this definition is indepen-
dent of the choice of the radius R.

(3) For a Jordan-measurable subset X Ă Rn, and a function f : X Ñ Rn, consider a
closed bounded rectangle X 1 such that X Ă X 1. Then we say that f is integrable
over X if the function

rfpx1, . . . , xnq “

#

fpx1, . . . , xnq if px1, . . . , xnq P X

0 otherwise,

is integrable over the rectangle X 1, in the sense of the definition in Step (1), and
we define

ż

X

fpx1, . . . , xnqdx “

ż

X 1

rfpx1, . . . , xnqdx.
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Note that rf is, in general, not continuous, even if f is. One can show that if
X is Jordan-measurable, then every continuous function f on X is integrable in
this sense.

To be precise, this definition leads to some restrictions on the compact sets X that
are allowed, but all “usual” compact sets (such as rectangles, balls, etc) are Jordan-
measurable, so this is not an issue in applications. The more general definition that
leads to the integral over arbitrary compact subsets that we have discussed is that of the
Lebesgue integral.

With this restriction concerning X, the Riemann integral whose definition is sketched
above satisfies, for continuous functions, all Properties described above.

4.3. Improper integrals

As in the one-dimensional case, one is often interested in extending the integral to
unbounded domains, or to open bounded regions with functions that are not bounded.
This is done by taking appropriate limits of integrals over compact subsets of the region
of interest. We indicate just some basic definitions in R2.

Let I Ă R be a bounded interval and let J “ ra,`8r for some a P R. Let f be a
continuous function on X “ J ˆ I. We say that it is Riemann-integrable on X if the
limit

lim
xÑ`8

ż

ra,xsˆI

fpx, yqdxdy “ lim
xÑ`8

ż x

a

´

ż

I

fpx, yqdy
¯

dx “ lim
xÑ`8

ż

I

´

ż x

a

fpx, yqdx
¯

dy

exists (the equality being cases of Fubini’s Theorem). We then denote this limit by
ż

JˆI

fpx, yqdxdy.

If f ě 0, or more generally if |f | is Riemann integrable on X, one can prove the Fubini
formula

ż

JˆI

fpx, yqdxdy “

ż 8

a

´

ż

I

fpx, yqdy
¯

dx “

ż

I

´

ż `8

a

fpx, yqdx
¯

dy,

where each improper integral is a one-variable integral (this formula is however not always
true without some assumption).

Similarly, let f be continuous on R2. Assume that f ě 0. We say that f is Riemann-
integrable on R2, if the limit

lim
RÑ`8

ż

r´R,Rs2
fpx, yqdxdy

exists, which is then called the integral of f over R2 and denoted
ż

R2

fpx, yqdxdy.

One can then show that this integral is also the limit of
ż

DR

fpx, yqdxdy

where DR is the disc of radius R centered at 0 (or any increasing sequence of compact
subsets of R2 whose union is R2). There is also the Fubini formula

ż

R2

fpx, yqdxdy “

ż 8

´8

´

ż `8

´8

fpx, yqdy
¯

dx “

ż `8

´8

´

ż `8

´8

fpx, yqdx
¯

dy,
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again with “ordinary” improper integrals in the last two formulas.

Remark 4.3.1. In all these cases, we also often say that “the integral converges” to
indicate that a function is Riemann-integrable on an unbounded set.

The following comparison principle is the easiest way to prove that a certain improper
integral exists: if |f | ď g (resp. 0 ď f ď g), and we know that

ż

JˆI

gpx, yqdxdy or

ż

R2

gpx, yqdxdy

exists, then so does
ż

JˆI

fpx, yqdxdy or

ż

R2

fpx, yqdxdy,

respectively.

Example 4.3.2. (1) Consider the improper Riemann integral
ż

r0,`8rˆr1,2s

xe´xydxdy.

We have for any R ą 0
ż R

0

´

ż 2

1

xe´xydy
¯

dx “

ż R

0

x
”

´
1

x
e´xy

ı2

1
dx “

ż R

0

´

e´x ´ e´2x
¯

dx.

This can be evaluated and is equal to

p1´ e´Rq ´
1

2
p1´ e´2R

q “
1

2
´ e´R ` e´2R

Ñ
1

2
.

Hence the integral converges and is equal to 1{2.
(2) In Example 4.4.3 (3) below, we will see that the improper integral

ż

R2

e´px
2`y2qdxdy

exists and is equal to π.

4.4. The change of variable formula

We now consider the analogue for the integral in Rn of the change of variable formula
ż

fpgpxqqg1pxqdx “

ż

fpyqdy

of one-variable calculus.
Let X̄ Ă Rn and Ȳ Ă Rn be compact subsets. Let ϕ : X̄ Ñ Ȳ be a continuous map.

We assume that we can write

X̄ “ X YB, Ȳ “ Y Y C

where

(1) the sets X and Y are open;
(2) the sets B and C are negligible, in the sense of Definition 4.2.3;
(3) the restriction of ϕ to the open set X is a C1 bijective map from X to Y .

In this situation, the Jacobian matrix Jϕpxq is invertible at all x P X; we assume that
we can find a continuous function on X̄ that restricts to detpJϕpxqq on X (this is usually
obvious because we have a formula for the Jacobian, which makes sense and is clearly
continuous on X). We abuse notation and still write detpJϕpxqq for this function, even if
x P B.
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Remark 4.4.1. (1) Note that there is no assumption concerning the image of B.
(2) It is very frequent that ϕ is the restriction of a C1 map Rn Ñ Rn, in which case

the determinant of the Jacobian matrix is continuous everywhere, so that the last issue
doesn’t require any argument.

Theorem 4.4.2 (Change of variable formula). In the situation described above, for
any continuous function f on Ȳ , we have

ż

X̄

fpϕpxqq| detpJϕpxqq|dx “

ż

Ȳ

fpyqdy.

If one wants to remember this formula, the mnemonic is that when y “ ϕpxq, we have
dy “ | detpJϕpxqq|dx.

Example 4.4.3. (1) The simplest (but very important) case of the formula is when
ϕpxq “ x ` x0 is a translation. Intuitively, this shouldn’t change the volume, or the
integral. Indeed, since ϕ is affine-linear, we have Jϕpxq “ 1n, the identity matrix, for all
x. The change of variable formula becomes

ż

X̄

fpx` x0qdx “

ż

x0`X̄

fpxqdx

for any compact subset X̄ and any continuous function f on x0` X̄. With f “ 1, we see
that the volume of X̄ and that of x0 ` X̄ are the same.

(2) The next most important special case is when ϕ is the restriction of a bijective
linear map, namely ϕpxq “ Ax, where A is an invertible matrix of size n. Then Jϕpxq “ A
for all x P Rn, with constant determinant detpAq.

Let X̄ “ XYB be a compact set as above and Ȳ “ ϕpX̄q. Then ϕpX̄q “ ϕpXqYϕpBq.
The change of variable formula becomes

ż

X̄

fpϕpxqqdx “
1

| detpAq|

ż

Ȳ

fpyqdy

for any continuous function f on Ȳ .
Take especially f to be the function equal to 1 on Ȳ , so that the integral of f over Ȳ

is the n-dimensional volume of Y . Note that fpϕpxqq is the characteristic function of the
set tx P Rn : Ax P Y u, in other words of A´1Y . We get

VolpY q “ | detpAq|VolpA´1Y q,

which shows how the volume is transformed (dilated or contracted) under a linear map.
If we replace A´1Y by X, which means that Y “ AX, then we get equivalently

VolpAXq “ | detpAq|VolpXq

for any compact subset X Ă Rn.
For instance, let X “ r0, 1sn be the unit cube in Rn. Its volume is 1, and therefore

VolpAr0, 1snq “ | detpAq|,

which provides the geometric interpretation of the determinant of real matrices.
It is actually possible to prove directly this last formula. For instance, observe that

if A is diagonal, with diagonal entries a1, . . . , an, then

Ar0, 1sn “ r0, a1s ˆ ¨ ¨ ¨ ˆ r0, ans,
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which has volume |a1| ¨ ¨ ¨ |an| “ | detpAq|. One can also argue directly when A is an
“elementary” matrix, for instance

A “

¨

˝

1 0 1
0 1 0
0 0 1

˛

‚

for n “ 3. Since Apx, y, zq “ px` z, y, zq, one can check that Ar0, 1s3 is the set

Y “ tpx, y, zq : 0 ď y ď 1, 0 ď z ď 1, z ď x ď 1` zu.

One can compute the volume of Y by applying Fubini’s Theorem (using the variable x
in the inner integral). This gives

VolpY q “

ż

r0,1s2

´

ż 1`z

z

dx
¯

dydz “

ż

r0,1s2
dydz “ 1 “ detpAq.

One can also intuitively observe that

Y “ Y1 Y Y2,

where

Y1 “ tpx, y, zq : 0 ď y ď 1, 0 ď z ď 1, z ď x ď 1u,

Y2 “ tpx, y, zq : 0 ď y ď 1, 0 ď z ď 1, 1 ď x ď 1` zu,

and if translate Y2 by the vector p´1, 0, 0q, we obtain

Y3 “ Y2 ´ p1, 0, 0q2 “ tpx, y, zq : 0 ď y ď 1, 0 ď z ď 1, 0 ď x ď zu,

and then Y3YY1 “ r0, 1s
3. Since Y3XY1 is negligible, and the volume of Y2 is equal to that

of Y3 (by (1), since Y3 is a translate of Y2), we get 1 “ Volpr0, 1s3q “ VolpY1q `VolpY2q “

VolpY q, again.
(3) We consider the function

fpx, yq “ e´px
2`y2q

and we want to compute its integral over the compact disc

ȲR “ tpx, yq P R2 : x2
` y2

ď R2
u

where R ą 0 is a parameter. Note that ȲR “ YR Y CR with

YR “ tpx, yq P R2 : 0 ă x2
` y2

ă R2, y ­“ 0 if x ă 0u,

which is open, and CR is the union of the segment r´R, 0sˆt0u and of the circle of radius
R, each of which is a parameterized curve, so that CR is negligible.

Consider the polar coordinate change of variable

ϕ : X̄R Ñ ȲR,

where
X̄R “ r0, Rs ˆ r´π, πs

and
ϕpr, θq “ pr cospθq, r sinpθqq

(see Example 3.6.2). Note that ϕ is continuous on X̄R, and that the restriction of ϕ to a
map from XR to YR, where

XR “s0, Rrˆs ´ π, πr,

is bijective and of class C1 (see Figure 4.3).
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Figure 4.3. Polar coordinates and boundaries

The Jacobian matrix is

Jϕpr, θq “

ˆ

cospθq ´r sinpθq
sinpθq r cospθq

˙

,

with determinant equal to

detpJϕpr, θqq “ r.

We have X̄R “ XR YBR where

BR “ tpr, θq P XR : r “ 0 or r “ R or |θ| “ πu

is negligible (it is the union of four line segments). Note that the Jacobian matrix is a
function that makes sense and is continuous on the whole of X̄R.

The change of variable formula is applicable, and it means that
ż

X̄R

e´r
2

rdrdθ “

ż

ȲR

e´px
2`y2qdxdy.

We can compute the integral in the left-hand side easily using Fubini’s Theorem:
ż

X̄R

e´r
2

rdrdθ “

ż R

0

re´r
2
´

ż π

´pi

dθ
¯

dr “ 2π

ż R

0

e´r
2

rdr “ 2π
”

´
1

2
e´r

2
ıR

0
“ πp1´ e´R

2

q.

If we letRÑ `8, we conclude that the improper Riemann integral of f over R2 converges
and satisfies

ż

R2

e´px
2`y2qdxdy “ π.

We can go further and derive an interesting consequence of this computation. Consider
instead the integral of f over a square, namely

ż

SR

e´px
2`y2qdxdy

where SR “ r´R,Rs
2. Since f is a function with separated variables, we can reduce this

integral to a one-variable integral by Fubini’s Theorem (see (4.5)): we have
ż

SR

e´px
2`y2qdxdy “

´

ż R

´R

e´x
2

dx
¯2

.

But now observe that f ě 0 and that

YR Ă SR Ă Y2R,
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Figure 4.4. A sector

so that by positivity (Property (3) of the integral), we know that
ż

YR

e´px
2`y2qdxdy ď

´

ż R

´R

e´x
2

dx
¯2

ď

ż

Y2R

e´px
2`y2qdxdy,

which means that

πp1´ e´R
2

q ď

´

ż R

´R

e´x
2

dx
¯2

ď πp1´ e´4R2

q.

If we let RÑ `8, both the first and the third quantities converge to π. We conclude
that the improper Riemann integral of e´x

2
over R exists and satisfies

ż

R

e´x
2

dx “
?
π.

There are standard examples of change of variable (in the sense also of Section 3.6)
that are often used to perform integrals over specific domains that have particularly nice
parameterizations in the new variables.

(1) Polar coordinates pr, θq are useful for integrating over a disc in R2 centered
at 0, or more generally over a disc sector ∆ “ ∆pa, b, Rq defined by

0 ď r ď R, ´π ă a ď θ ď b ă π

for some parameters pa, b, Rq.
We computed the jacobian determinant in the previous example, and one

gets the general formula

(4.7)

ż

∆

fpx, yqdxdy “

ż R

0

ż b

a

fpr cos θ, r sin θqrdrdθ.

Taking r to vary between 0 ă r0 ď r ď R, we obtain an annulus.
(2) Spherical coordinates pr, θ, ϕq in R3 (Example 3.10.3 (2)) are useful for in-

tegrating over balls centered at 0, or parts of them. We computed the jacobian
and its determinant ´r2 sinpϕq in (3.5) and (3.6). So, for integrating a function
f over a ball B of radius R in R3, we have the formula

ż

B

fpx, y, zqdxdydz “

ż R

0

ż 2π

0

ż π

0

fpr cos θ sinϕ, r sin θ sinϕ, r cosϕqr2 sinpϕqdrdθdϕ

(since it is easy to see that the boundary parts are neligible). Note that sinpϕq ě
0 for 0 ď ϕ ď π, so that the absolute value of the jacobian determinant is indeed
r2 sinpϕq.
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Example 4.4.4. (1) We compute the integral I of x2y over the sector given by

∆ “ t0 ď r ď 2, π{6 ď θ ď π{2u.

In polar coordinates, this becomes

I “

ż 2

0

ż π{2

π{6

r3 cos2 θ sin θdrdθ “
”r4

4

ı2

0

ż π{2

π{6

cos2
pθq sinpθqdθ.

If we replace the trigonometric functions by their exponential versions, the function
cos2pθq sinpθq becomes

cos2
pθq sinpθq “

1

8i
peiθ ` e´iθq2peiθ ´ e´iθq

“
1

8i
pe2iθ

` 2` e´2iθ
qpeiθ ´ e´iθq

“
1

8i
pe3iθ

´ e´3iθ
` eiθ ´ e´iθq “

1

4
psinp3θq ` sinpθqq.(4.8)

Therefore

I “ 4ˆ
1

4

ż π{2

π{6

psinp3θq ` sinpθqqdθ “
”

´
1

3
cosp3θq ´ cospθq

ıπ{2

π{6
“ cospπ{6q “

?
3

2
.

(2) We compute the integral I of z2 over the spherical shell in R3 given by 1 ď r ď 2
in spherical coordinates. Since

z “ r cospϕq,

we get

I “

ż 2

1

ż 2π

0

ż π

0

r4 cos2
pϕq sinpϕqdrdθdϕ

We use the formula (4.8) to write this finally as

“ 2π ˆ
”r5

5

ı2

1
ˆ

1

4

ż π

0

psinp3ϕq ` sinpϕqqdϕ “ 2π ˆ
´32

5
´

1

5

¯

ˆ
2

3
“

124π

15
.

4.5. Geometric applications of integrals

Besides the fact that the integral can be used to define and compute volumes of subsets
of Rn, there are quite a few other natural geometric quantities that can be expressed in
terms of integrals. We present some of them in this section.

(1) [Center of mass] Let X be a compact subset of Rn, such that the volume of
X is positive. The center of mass (or barycenter) of X is the point x̄ P Rn such
that x̄ “ px̄1, . . . , x̄nq with

x̄i “
1

VolpXq

ż

X

xidx.

Intuitively, x̄i is the average over X of the i-th coordinate, and x̄ is the point
where X is “perfectly balanced”.

Note that x̄ is not necessarily in X (for instance, for an annulus

X “ tpx, yq P R2 : 1 ď x2
` y2

ď 2u

in R2, the center of mass is p0, 0q), but this is the case if X is convex.

83



(2) [Surface area] Consider a continuous function

f : ra, bs ˆ rc, ds Ñ R

which is C1 on sa, brˆsc, dr. Let

Γ “ tpx, y, zq P R3 : px, yq P ra, bs ˆ rc, ds, z “ fpx, yqu Ă R3

be the graph of f . Intuitively, this is a surface, and it should have an area. This
is in fact given by

ż b

a

ż d

c

b

1` pBxfpx, yqq2 ` pByfpx, yqq2dxdy.

Such a result also holds for the graphs of functions defined on other sets, such
as discs, provided they are C1 in the “interior” of the domain.

There is an analogue formula for the length of the graph of a function
f : ra, bs Ñ R, namely it is equal to

ż b

a

a

1` f 1pxq2dx.

Example 4.5.1. (1) What is the center of mass of a cone

X “ tpx, y, zq P R3 : 0 ď z ď 1, x2
` y2

ď p1´ zq2u

in R3? (This is a cone because for a given z, the “slice” of X where z is fixed is a disc
centered at 0 with radius 1´ z). For symmetry reasons, we have x̄ “ ȳ “ 0 (you should
check that), so the question is to compute z̄. First we compute the volume, using Fubini’s
Theorem

VolpXq “

ż

X

dxdydz “

ż 1

0

´

πp1´ zq2
¯

dz “
π

3
.

Next we compute
ż

X

zdxdydz “

ż 1

0

z
´

πp1´ zq2
¯

dz “
π

12
,

so that the center of mass is p0, 0, 1{4q.
(2) What is the surface S of the sphere

X “ tpx, y, zq : x2
` y2

` z2
“ 1u

of radius 1 in R3? Geometrically, this is twice the area of the graph of the function

fpx, yq “
a

1´ x2 ´ y2

defined for px, yq such that x2` y2 ď 1. Although this is not defined over a rectangle, an
analogue of the formula above holds, and we have

S “ 2

ż

D

b

1` pBxfq2 ` pByfq2dxdy

where D is the disc of radius 1 centered at p0, 0q in R2. We have

Bxf “ ´
x

a

1´ x2 ´ y2
, Byf “ ´

y
a

1´ x2 ´ y2
,

hence the surface is

S “ 2

ż

D

´

1`
x2

1´ x2 ´ y2
`

y2

1´ x2 ´ y2

¯1{2

dxdy “ 2

ż

D

1
a

1´ x2 ´ y2
dxdy.
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Using polar coordinates (4.7), this becomes

S “ 4π

ż 1

0

r
?

1´ r2
dr “ 4π

”

´
?

1´ r2
ı1

0
“ 4π.

4.6. The Green formula

In the last sections, we will discuss two important formulas which are of the form
ż

BX

f “

ż

X

Df,

where

(1) f is a C1 vector field defined on Rn;
(2) X Ă Rn is a compact m-dimensional subset, with 1 ď m ă n;
(3) BX is the “boundary” of X, which has dimension m´ 1, and the integral on BX

is a generalization of a line integral;
(4) Df is some expression computed using the partial derivatives of first order of f .

In fact, there exist versions of these results in all dimensions, but we focus here on
the cases n “ m “ 2 (Green’s formula) and, in the next section, on the case n “ m “ 3
(Gauss–Ostrogradski formula).1

In all cases, the prototype is the Fundamental Theorem of Calculus, in the form

(4.9)

ż b

a

f 1pxqdx “ fpbq ´ fpaq,

where X “ ra, bs and the boundary is simply the set ta, bu with two elements.

The Green formula concerns the case of relating an integral over a subset X of R2

with a line integral over its boundary. The typical example is an integral over a compact
disc of radius r ą 0 centered at x0, which is related to a line integral over the circle of
radius r centered at x0.

The difficulty in a rigorous formulation of this formula is mostly in precisely under-
standing which subsets X are allowed, and what “boundary” means. Moreover there is
an issue of orientation of the boundary (reflected in (4.9) in the fact that the sign of fpbq
and fpaq is not the same on the right-hand side).

Definition 4.6.1. A simple closed parameterized curve γ : ra, bs Ñ R2 is a closed
parameterized curve such that γptq ­“ γpsq unless t “ s or ts, tu “ ta, bu, and such that
γ1ptq ­“ 0 for a ă t ă b. (If γ is only piecewise C1 inside sa, br, this condition only applies
where γ1ptq exists).

Example 4.6.2. (1) A circle parameterized by

γptq “ px0 ` r cosptq, y0 ` r sinptqq

for 0 ď t ď 2π is a simple closed parameterized curve. But if we consider the circle twice
over (i.e., for 0 ď t ď 4π), then it is not.

(2) The lemniscate λ (Figure 4.1) defined by (4.1) is not a simple closed curve, since
λpπ{2q “ λp3π{2q “ 0.

1 The most general statement is known as the Stokes formula.
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Figure 4.5. The set is on the left

Figure 4.6. The set is on the left

Theorem 4.6.3 (Green’s formula). Let X Ă R2 be a compact set with a boundary BX
that is the union of finitely many simple closed parameterized curves γ1, . . . , γk. Assume
that

γi : rai, bis Ñ R2

has the property that X lies always “to the left” of the tangent vector γ1iptq based at γiptq.
Let f “ pf1, f2q be a vector field of class C1 defined on some open set containing X. Then
we have

ż

X

´

Bf2

Bx
´
Bf1

By

¯

dxdy “
k
ÿ

i“1

ż

γi

f ¨ d~s.

The condition that X be on the left of the boundary is illustrated in Figure 4.5. We
then say that the boundary is positively oriented by the corresponding parameterized
curves γi.

Note that if this condition is not met, it simply means that one must “reverse” the
corresponding curve, e.g., replace γ : r0, 1s Ñ R2 by rγptq “ γp1´ tq for 0 ď t ď 1, which
reverses the orientation of the tangent vector.

Another case, where there are two boundary curves, shows again the way the boundary
must be oriented possibly in different directions depending on which part of the boundary
is involved (see Figure 4.6).

Example 4.6.4. (1) Suppose that the set X has only one boundary curve γ, and
that f is a conservative vector field. Then we see that the Green formula holds, since
both sides are then zero (the right-hand side by Remark 4.1.9, and the left-hand side by
Example 4.1.14 (2)).

86



(2) If X is a closed disc of radius r ą 0 around px0, y0q P R2, then the boundary is
the circle which is the image of the parameterized curve

γptq “ px0 ` r cosptq, x0 ` r sinptqq

for 0 ď t ď 2π. Note that this is a simple closed curve; the tangent vector is

γ1ptq “ p´r sinptq, r cosptqq

and one sees on a picture that the disc is to the left of γ1ptq (e.g., γ1p0q “ p0, rq is a
vertical vector based at γp0q “ pr, 0q, so the disc is located to the left).

Hence the Green formula becomes
ż

X

´

Bf2

Bx
´
Bf1

By

¯

dxdy “

ż

γ

f ¨ d~s.

Let us specialize the vector field to fpx, yq “ p0, xq. Then the formula becomes
ż

X

dxdy “

ż

γ

f ¨ d~s.

Indeed, the left-hand side is the area πr2 of the disc, and we can check that the right-hand
side is

ż 2π

0

px0 ` r cosptqqpr cosptqqdt “

ż 2π

0

r2 cos2
ptqdt “ r2

ż 2π

0

1

2

´

1` cosp2tq
¯

dt “ πr2.

In this case, it is most likely the computation of the area of the disc that is the main
interest. Many other vector fields have the property that

Bf2

Bx
´
Bf1

By
“ 1

(e.g. fpx, yq “ pgpxq, xq where g is an arbitrary function) but it is of course best to choose
a simple one to facilitate the computation of the line integral.

(3) More generally, we can always use the Green formula to compute an integral over
X. Indeed, for any function g, we can find many vector fields f “ pf1, f2q such that

g “ Bxf2 ´ Byf1.

For instance, we can put f1 “ 0 and find f2 by solving Bxf2 “ g (computing a primitive
with respect to the x variable).

As an example, let gpx, yq “ x2y2 and let X be the interior of an ellipse centered at
0 with axes lengths a ą 0 in the x-direction and b ą 0 in the y-direction. We want to
compute

ż

X

gpx, yqdxdy.

We put fpx, yq “ p0, 1
3
x3y2q to have Bxf2 “ g, and we parameterize the boundary by

γptq “ pa cosptq, b sinptqq, 0 ď t ď 2π,

which is a simple closed parameterized curve. So
ż

X

gpx, yqdxdy “

ż

γ

f ¨ d~s

“
1

3
a3b2

ż 2π

0

cos3
ptq sin2

ptq ˆ b cosptqdt.
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Using trigonometric computations as in Example 4.4.4, we find that
ż 2π

0

cos4
ptq sin2

ptqdt “
π

8
,

so the integral is πa3b3{24.
(4) Consider the square X “ r0, 1s2 Ă R2 and the vector field fpx, yq “ pxy, x2 ´ y2q.

We want to compute the line integral over the boundary
ż

BX

f ¨ d~s,

where the boundary is taken counterclockwise (so that it satisfies the “set is on the left”
condition). We do not even need to write a parameterization of the boundary square. By
Green’s Formula and Fubini’s Formula, we get

ż

BX

f ¨ d~s “

ż 1

0

ż 1

0

´

2x´ x
¯

dxdy “
1

2
.

(5) Green’s formula is equivalent with a variant where we integrate the divergence of
a vector field f “ pf1, f2q, which we recall is defined by

divpfq “ TrpJf q “ Bxf1 ` Byf2

(see Definition 3.3.11). Indeed, note that

divpfq “ Bx rf2 ´ By
rf1,

where rfpx, yq “ p´f2, f1q. So we have, under the assumptions that Green’s Formula is
valid for X and its boundary, the relation

ż

X

divpfqdxdy “
k
ÿ

i“1

ż

γi

rf ¨ d~s.

It is customary to note that the line integral for the boundary component γi is the integral
of

rf1pγiptqqγ
1
i,1ptq `

rf2pγiptqqγ
1
i,2ptq “ ´f2pγiptqqγ

1
i,1ptq ` f1pγiptqqγ

1
2,iptq “ fpγiptqq ¨ ~nptq

where
~nptq “ pγ1i,2ptq,´γ

1
i,1ptqq.

For this reason, this variant of the Green formula is often written
ż

X

divpfqdxdy “
k
ÿ

i“1

ż

γi

f ¨ d~n.

For each parameterized curve, note that ~nptq ¨ γ1ptq “ 0 for all t: in other words, ~nptq is
a vector perpendicular (or normal) to the tangent vector to the curve, and that it points
“outwards” of X (i.e., it goes “to the right” since γ1 has the property that X is “to the
left”). In fact, this vector is characterized by the conditions that (1) the length of ~nptq
is the same as the length of γ1ptq; (2) it is perpendicular to γ1ptq; (3) ~nptq is directed
“outwards”. One says that ~n is the “exterior normal vector”.

As a further special case of the divergence form of the Green formula, when we apply
it to the gradient field ∇g of a function g, then we obtain

ż

X

∆pgqdxdy “
k
ÿ

i“1

ż

γi

∇pgq ¨ d~n
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since divp∇gq “ ∆g is the Laplacian of g (Example 3.5.8). For instance, it follows that
if ∇g is parallel to the boundary (i.e., orthogonal to ~n), then the integral of ∆g over X
is zero, which is not at all obvious from the definition!

We state separately the general example of using the Green formula for a suitable
vector field to compute the area of a region:

Corollary 4.6.5. Let X Ă R2 be a compact set with a boundary BX that is the
union of finitely many simple closed parameterized curves γ1, . . . , γk. Assume that

γi “ pγi,1, γi,2q : rai, bis Ñ R2

has the property that X lies always “to the left” of the tangent vector γ1iptq based at γiptq.
Then we have

VolpXq “
k
ÿ

i“1

ż

γi

x ¨ d~s “
k
ÿ

i“1

ż bi

ai

γi,1ptqγ
1
i,2ptqdt.

4.7. The Gauss–Ostrogradski formula

The Gauss–Ostrogradski formula is an analogue of the Green formula in R3. Thus it
concerns a 3-dimensional compact set X Ă R2, with boundary S “ BX which is a surface
(2-dimensional).

Definition 4.7.1. A parameterized surface Σ: ra, bs ˆ rc, ds Ñ R3 is a 2-set in R3

such that the rank of the Jacobian matrix is 2 at all ps, tq Psa, brˆsc, dr.

Note that since there are two variables, two is the maximal possible rank for the
jacobian matrix.

Example 4.7.2. (1) Consider a function g : ra, bsˆrc, ds Ñ R that is C1 in sa, brˆsc, dr.
Then the function

Σps, tq “ ps, t, gps, tqq

defines a parameterized surface in R3, whose image is the graph of g. Indeed, the Jacobian
matrix is

JΣps, tq “

¨

˝

1 0
0 1
Bsg Btg

˛

‚

which has rank 2 for all ps, tq, since the first two rows are linearly independent.
(2) The sphere of radius r ą 0 centered at px0, y0, z0q is the image of the parameterized

surface

Σps, tq “

¨

˝

x0 ` r cospsq sinptq
y0 ` r sinpsq sinptq
z0 ` r cosptq

˛

‚

for ps, tq P r0, 2πs ˆ r0, πs. The Jacobian matrix is
¨

˝

´r sinpsq sinptq r cospsq cosptq
r cospsq sinptq r sinpsq cosptq

0 ´r sinptq

˛

‚.

It has rank 2 if ps, tq Ps0, 2πrˆs0, πr (in that case, the second and third rows define an
invertible 2 ˆ 2 matrix unless cospsq “ 0; but when that is the case, namely s “ π{2 or
3π{2, the first and the third rows define an invertible 2ˆ 2 matrix).
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(3) Another parameterization of the same sphere is given by

Σps, tq “
1

p1` s2 ` t2q

¨

˝

x0 ` 2rs
y0 ` 2rt

z0 ` rp1´ s
2 ´ t2q

˛

‚

for ps, tq P R2 (although this is not a compact set in R2).
Indeed, first note that

}Σps, tq ´ px0, y0, z0q}
2
“

1

p1` s2 ` t2q2

´

4r2s2
` 4r2t2 ` r2

p1´ s2
´ t2q2

¯

“ r2

for all ps, tq P R2, so that the image of Σ is contained in the sphere. It covers the whole
sphere, except p0, 0,´1q. Indeed, we may assume by translating that px0, y0, z0q “ 0.
Then consider ps, tq with s2 ` t2 “ u2 fixed (in other words, a circle of radius u). The
image of this subset of R2 is the circle centered at p0, 0, p1´u2q{p1`u2qq that is contained
in the unit sphere. The function u ÞÑ p1 ´ u2q{p1 ` u2q “ ´1 ` 2{p1 ` u2q is strictly
decreasing for u ě 0, going from 1 to the limit ´1 as uÑ `8.

The Jacobian matrix is

1

1` s2 ` t2

¨

˝

2r ´ 4rs2{p1` s2 ` t2q ´4rst{p1` r2 ` s2q

´4rst{p1` s2 ` t2q 2r ´ 4rt2{p1` s2 ` t2q
´4rs{p1` s2 ` t2q ´4rt{p1` s2 ` t2q

˛

‚.

It is of rank 2 for all ps, tq (check that the second and third rows are independent unless
s “ 0, in which case the first and second rows are independent).

We next recall a definition from linear algebra.

Definition 4.7.3. Let x and y be two linearly independent vectors in R3. The vector
product, or cross product z “ xˆy is the unique vector in R3 such that px, y, zq is a basis
of R3 with detpx, y, zq ą 0, and

}z} “ }x} }y} sinpθq,

where θ is the angle between x and y.

If x and y are not linearly independent, we just define xˆy “ 0, the zero vector. The
formula for the length of the cross-product is still valid.

We recall that there is in fact an elementary formula: if x “ px1, x2, x3q and y “
py1, y2, y3q, then

xˆ y “

¨

˝

x2y3 ´ x3y2

x3y1 ´ x1y3

x1y2 ´ x2y1

˛

‚“ det

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

e1 e2 e3

x1 x2 x3

y1 y2 y3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

(with the same formal style of computation as in Remark 4.1.21, where pe1, e2, e3q is the
canonical basis of R3).

Remark 4.7.4. In particular, note the useful formulas

e1 ˆ e2 “ e3, e2 ˆ e3 “ e1, e3 ˆ e1 “ e2,

and y ˆ x “ ´xˆ y.
If pf1, f2, f2q is a basis basis in R3, there are two possibilities: either detpf1, f2, f3q ą 0

or detpf1, f2, f3q ă 0. The first type are called positively oriented. An example is the
canonical basis pe1, e2, e3q, which has determinant 1.

If the basis pf1, f2, f3q is orthogonal, it is possible to check that all positively oriented
orthonormal bases, for instance pf1{}f1}, f2{}f2}, f3{}f3}q, are of the form pAe1, Ae2, Ae3q
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where A is a rotation matrix (an element of SO3pRq). Intuitively, that means they can
be obtained from the canonical basis by rotation.

Let Σ: ra, bs ˆ rc, ds Ñ R3 be a parameterized surface such that Σ is injective on
sa, brˆsc, dr. For all ps, tq, the vector ~n “ BsΣps, tq ˆ BtΣps, tq is orthogonal to the two
vectors BsΣps, tq and BtΣps, tq, which are linearly independent since the Jacobian matrix
of Σ has rank 2. Intuitively, the two vectors span the tangent plane to the surface, hence
this vector ~n is perpendicular to the surface.

Consider now a 3-dimensional compact subset X of R3 with boundary BX given by
the image of the parameterized surface Σ: ra, bs ˆ rc, ds Ñ BX. (For instance, S could
be a ball in R3 of some radius r ą 0, and the boundary BS would be the corresponding
sphere sphere.)

For the boundary surface Σ, the orientation condition that is the correct analogue of
that concerning the boundary curves in Theorem 4.6.3 is now that the normal vector ~n
based at any point of the boundary should point away from X: it should be an “exterior
normal vector”.

Example 4.7.5. Consider the parameterized sphere of Example 4.7.2. Then

BsΣ “

¨

˝

´r sinpsq sinptq
r cospsq sinptq

0

˛

‚, BtΣ “

¨

˝

r cospsq cosptq
r sinpsq cosptq
´r sinptq

˛

‚.

We compute the cross product

BsΣˆ BtΣ “ ´r
2 sinptq

¨

˝

cospsq sinptq
sinpsq sinptq

cosptq

˛

‚.

One can check that this is an interior normal vector. For instance, let s “ π and t “ π{2,
so that Σps, tq “ px0 ´ r, y0, z0q; then BsΣ “ ´re2 and BtΣ “ ´re3, so that the cross
product is

BsΣˆ BtΣ “ r2e2 ˆ e3 “ r2e1,

which points inside the ball from the point px0 ´ r, y0, z0q.

Here is the formula:

Theorem 4.7.6 (Gauss–Ostrogradski formula). Let X Ă R3 be a compact set with
a boundary BX that is a parameterized surface Σ: ra, bs ˆ rc, ds Ñ R3. Assume that Σ
is injective in sa, brˆsc, dr, and that Σ has the property that the normal vector ~n points
away from Σ at all points. Let ~u “ ~n{}~n} be the unit exterior normal vector.

Let f “ pf1, f2, f3q be a vector field of class C1 defined on some open set containing
X. Then we have

ż

X

divpfqdxdydz “

ż

Σ

pf ¨ ~uqdσ.

In this case, both the left and right-hand sides require come explanation:

(1) For a vector field f “ pf1, f2, f3q on X Ă R3, we denote divpfq “ Bxf`Byf`Bzf ,
which is called the divergence of the vector field f (similarly to the case n “ 2).
Hence the left-hand side of the formula is

ż

X

divpfqdxdzdz “

ż

X

´

Bf

Bx
`
Bf

By
`
Bf

Bz

¯

dxdydz.
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(2) For a parameterized surface Σ: ra, bs ˆ rc, ds Ñ R3 in R3 with exterior normal
vector field ~n “ pn1, n2, n3q “ BsΣˆ BtΣ, and a function g defined on the image
of Σ, we define the surface integral

ż

Σ

g dσ “

ż b

a

ż d

c

gpΣps, tqqσps, tqdsdt

where
σps, tq “ }BsΣˆ BtΣ} “ }~nps, tq}.

Like the line integral for a parameterized curve, the key property of the sur-
face integral (and especially the explanation for the complicated-looking factor
}BsΣˆBtΣ}) is that it is independent of the chosen parameterization of the surface
(see Proposition 4.1.5). This can be proved by applying the change of variable
formula, as in the case of line-integrals.

Next, for a C1 vector field f “ pf1, f2, f3q on R3, we define
ż

Σ

pf ¨ ~nqdσ “

ż

Σ

g dσ,

where

gpΣps, tqq “ fpΣps, tqq ¨ ~ups, tq “
3
ÿ

i“1

uips, tqfipΣps, tqq.

This particular surface integral is called the flux of the vector field f through
the surface Σ.

Note that in the flux, the expression ~ups, tqσps, tq simplifies always to ~nps, tq
since

~ups, tqσps, tq “
~nps, tq

}~nps, tq}
σps, tq “ ~nps, tq.

Example 4.7.7. (1) We illustrate first the surface integral. Suppose Σ is a parame-
terized surface given by Σps, tq “ ps, t, fps, tqq for some function f : ra, bsˆ rc, ds Ñ R (so
the image is the graph of f). We take gpx, y, zq “ 1, and we claim that

ż

Σ

dσ “ the surface area of the graph of f,

which is a natural result. Indeed, we have

BsΣ “

¨

˝

1
0
Bsf

˛

‚, BtΣ “

¨

˝

0
1
Btf

˛

‚,

hence

BsΣˆ BtΣ “

¨

˝

´Bsf
´Btf

1

˛

‚

so that

}BsΣˆ BtΣ} “
´

pBsfq
2
` pBtfq

2
` 1

¯1{2

,

hence
ż

Σ

dσ “

ż b

a

ż d

c

´

pBsfq
2
` pBtfq

2
` 1

¯1{2

dsdt

is the surface area of the graph according to Section 4.5.
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(2) We can use the Gauss–Ostrogradski formula to compute volumes, similarly to the
computation of areas using the Green formula. Consider the vector field fpx, y, zq “
px, 0, 0q, so that divpfq “ 1. Then if X Ă R3 has boundary Σ: ra, bs ˆ rc, ds Ñ R3 (an
injective parameterized surface) with positive orientation, we have

VolpXq “

ż

Σ

pf ¨ ~nqdσ “

ż b

a

ż d

c

n1ps, tqxpx, tqσps, tqdsdt,

where Σps, tq “ pxps, tq, yps, tq, zps, tqq.
Consider the example of the volume of a ball B centered at 0 with radius r in R3

again, where the boundary is parameterized as in Example 4.7.2. We computed BsΣˆBtΣ
in Example 4.7.5. Since this normal vector is interior, and

σps, tq “ }BsΣˆ BtΣ} “ r2 sinptq
´

cos2
psq sin2

ptq ` sin2
psq sin2

ptq ` cos2
ptq

¯1{2

“ r2 sinptq

we get

VolpBq “

ż 2π

0

ż π

0

r cospsq sinptq ˆ r2 cospsq sin2
ptqdsdt

“ r3
´

ż 2π

0

cos2
psqds

¯´

ż π

0

sin3
ptqdt

¯

“
4πr3

3
,

using the formulas

cos2
psq “

1

2
p1` cosp2sqq

sin3
ptq “ ´

1

8i
pe3it

´ 3eit ` 3e´it ´ e´3it
q “

1

4
p3 sinptq ´ sinp3tqq,

which imply that
ż 2π

0

cos2
psqds “ π

and
ż π

0

sin3
ptqdt “

1

4

´

3r´ cosptqsπ0 ´
1

3
rcosp3tqsπ0

¯

“
1

4

´

3 ¨ 2´
1

3
¨ 2
¯

“
4

3
.
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