de-CH
utf-8
math math-format graphie interactive
Koordinaten in der komplexen Ebene
coord_complex_plane
custom
195
randRangeExclude(-7,7,[0]) randRangeExclude(-7,7,[0,1,-1,X])

Bewegen Sie den Punkt aus dem Ursprung zu der komplexen Zahl z = X + Yi in der komplexen Zahlenebene.

style({ stroke: "black", strokeWidth: 2 }); graphInit({ range: [[-11, 11], [-9, 9]], scale: [22, 22], tickStep: 2, labelStep: 1, axisArrows: "->" }); label([-2,0], "\\llap{-}2", "below"); label([0,-2], "\\llap{-}2", "left"); label([9.5,0], "\\operatorname{Re}", "above right"); label([0.1,7.5], "\\operatorname{Im}", "above right"); addMouseLayer(); graph.point = addMovablePoint({ coord: [ 0, 0 ], snapX: 1, snapY: 1 });

[ graph.point.coord ]
return ((guess[0][0] === X) && (guess[0][1] === Y));
graph.point.setCoord(guess);

In der komplexen Zahlenebene finden wir eine Zahl z = {\color{orange}x} + {\color{blue}y}i als Punkt mit den Koordinaten ({\color{orange}x},{\color{blue}y}).

graph.re_point = addMovablePoint({ coord: [graph.point.coord[0], 0], visible: false, constraints: { fixed: true } }); graph.im_point = addMovablePoint({ coord: [0, graph.point.coord[1]], visible: false, constraints: { fixed: true } }); graph.re_line = addMovableLineSegment({ normalStyle: { stroke: BLUE }, pointA: graph.point, pointZ: graph.re_point, fixed: true }); graph.im_line = addMovableLineSegment({ normalStyle: { stroke: ORANGE}, pointA: graph.point, pointZ: graph.im_point, fixed: true }); graph.point.onMove = function(x, y) { graph.re_point.setCoord([x, 0]); graph.im_point.setCoord([0, y]); graph.re_point.updateLineEnds(); graph.im_point.updateLineEnds(); return [x, y]; }

Hier ist z = {\color{orange}X} { \color{blue} + Y}i.

Wir bewegen den Punkt an die Stelle ({\color{orange}X}, {\color{blue}Y}).