de-CH
utf-8
math math-format
Division Komplexer Zahlen
komplex-01-05a
multiple
240000
randRangeNonZero(-12, 12) randRange(-12, 12) randRangeNonZero(-5, 5) randRangeNonZero(-5, 5) X * B_REAL - Y * B_IMAG X * B_IMAG + Y * B_REAL B_REAL * B_REAL + B_IMAG * B_IMAG (A_REAL * B_REAL) + (A_IMAG * B_IMAG) (A_IMAG * B_REAL) - (A_REAL * B_IMAG) complexNumber(X, Y) complexNumber(A_REAL, A_IMAG) complexNumber(B_REAL, B_IMAG) -B_IMAG complexNumber(B_REAL, B_BAR_IMAG)

Bestimmen Sie den Realteil von z= \dfrac{A_REP}{B_REP}.

x \color{orange}\operatorname{Re}(z) = \Re(z) = X

Multipliziere Zähler und Nenner mit dem komplex Konjugierten des Nenners = \green{BAR}.

\qquad \dfrac{A_REP}{B_REP} \cdot \green{1} = \dfrac{A_REP}{B_REP} \cdot \dfrac{\green{BAR}}{\green{BAR}}

Vereinfache durch (a + b) \cdot (a - b) = a^2 - b^2:

\qquad = \dfrac{(A_REP) \cdot (BAR)} {(B_REAL)^2 - (coefficient(B_IMAG)i)^2}

\qquad = \dfrac{(A_REP) \cdot (BAR)} {B_REAL * B_REAL + B_IMAG * B_IMAG}

\qquad \dfrac{(\blue{A_REP}) \cdot (\red{BAR})} {B_REAL * B_REAL + B_IMAG * B_IMAG}

Der Nenner ist nun eine reelle Zahl.

Rechne nun den Zähler aus:

\qquad = \dfrac{\blue{negParens(A_REAL)} \cdot \red{negParens(B_REAL)} + \blue{negParens(A_IMAG)} \cdot \red{negParens(B_REAL) i} + \blue{negParens(A_REAL)} \cdot \red{negParens(B_BAR_IMAG) i} + \blue{negParens(A_IMAG)} \cdot \red{negParens(B_BAR_IMAG) i^2}} {N}

\qquad = \dfrac{negParens(A_REAL * B_REAL) + negParens(A_IMAG * B_REAL)i + negParens(A_REAL * B_BAR_IMAG)i + negParens(A_IMAG * B_BAR_IMAG) i^2}{N} = \dfrac{negParens(A_REAL * B_REAL) + negParens(A_IMAG * B_REAL)i + negParens(A_REAL * B_BAR_IMAG)i - A_IMAG * B_BAR_IMAG}{N}

Vereinfache dies zu:

\qquad = \dfrac{REAL_Z + IMAG_Zi} {N} = Z mit \color{orange}\operatorname{Re}(z) = \Re(z) = fractionReduce(REAL_Z,N).