de-CH
utf-8
math math-format graphie interactive
Konjugation in der komplexen Ebene
conj_complex_plane
custom
195
randRangeExclude(-7,7,[0]) randRangeExclude(-7,7,[0,1,-1,X])

Gegeben sei unten die komplexe Zahl \color{red}z .

Bewegen Sie den Punkt aus dem Ursprung zu \overline {\color{red}z}.

style({ stroke: "black", strokeWidth: 2 }); graphInit({ range: [[-11, 11], [-9, 9]], scale: [22, 22], tickStep: 12, labelStep: 10, axisArrows: "->" }); label([9.5,0], "\\operatorname{Re}", "above right"); label([0.1,7.5], "\\operatorname{Im}", "above right"); label( [X, Y], "\\color{red} \\large z", "left" ); circle( [X, Y], 3 / 15, { fill: RED, stroke: "none" }); addMouseLayer(); graph.point = addMovablePoint({ coord: [ 0, 0 ], snapX: 1, snapY: 1 });

[ graph.point.coord ]
return ((guess[0][0] === X) && (guess[0][1] === -Y));
graph.point.setCoord(guess);

In der komplexen Zahlenebene bedeutet Konjugation einer komplexen Zahl z = {\color{orange}x} + { \color{blue}y}i die Spiegelung an der x-Achse.

path([ [0,0], [X, 0]], { stroke: ORANGE, strokeWidth: 4.5, strokeDasharray: "." }); path([ [X, Y], [X, 0]], { stroke: BLUE, strokeWidth: 3.2, strokeDasharray: "." });

Dabei bleibt die x-Koordinate fest, und die y-Koordinate wechselt das Vorzeichen.

graph.re_point = addMovablePoint({ coord: [graph.point.coord[0], 0], visible: false, constraints: { fixed: true } }); graph.im_point = addMovablePoint({ coord: [0, graph.point.coord[1]], visible: false, constraints: { fixed: true } }); graph.re_line = addMovableLineSegment({ normalStyle: { stroke: BLUE }, pointA: graph.point, pointZ: graph.re_point, fixed: true }); graph.im_line = addMovableLineSegment({ normalStyle: { stroke: ORANGE }, pointA: graph.point, pointZ: graph.im_point, fixed: true }); graph.point.onMove = function(x, y) { graph.re_point.setCoord([x, 0]); graph.im_point.setCoord([0, y]); graph.re_point.updateLineEnds(); graph.im_point.updateLineEnds(); return [x, y]; }