de-CH
utf-8
math math-format graphie graphie-helpers
Komplexe Zahlen in Polarform
complex_number_polar_form_intuition
custom
13552
12 randRange( 1, DENOMINATOR - 1 ) randRange( 1, 9 ) cos( ANGLE * PI * 2 / DENOMINATOR ) * RADIUS sin( ANGLE * PI * 2 / DENOMINATOR ) * RADIUS complexNumber( roundTo( 2, REAL ), roundTo( 2, IMAG ) )

Passen Sie den Betrag und den Winkel der komplexen Zahl \blue{z} an, bis sie mit der Zahl {\color{orange} w =REP} übereinstimmt.

graphInit({ range: [[-10, 10], [-10, 10]], scale: 20, tickStep: 1, axisArrows: "<->" }); drawComplexChart( 10, DENOMINATOR ); label( [REAL, IMAG], "\\color{orange} \\large w", "left" ); circle( [REAL, IMAG], 1 / 4, { fill: ORANGE, stroke: "none" }); graph.currComplexPolar = new ComplexPolarForm( DENOMINATOR, 10 ); graph.currComplexPolar.color = BLUE; redrawComplexPolarForm();
{\color{blue}z} =

1

[ graph.currComplexPolar.getAngleNumerator(), graph.currComplexPolar.getRadius() ]
var angle = guess[0]; var radius = guess[1]; if (angle === 0 && radius === 1) { return ""; } return angle === ANGLE && radius === RADIUS;
redrawComplexPolarForm(guess[0], guess[1]);
redrawComplexPolarForm(guess[0], guess[1]);

Die gegebene Zahl {\color{orange} w =REP} hat den Betrag {\color{orange}RADIUS}.

Bringe {\color{blue}z} auf den Kreis mit Radius {\color{orange}RADIUS}.

Durch Anpassen des Winkels gelangt dann der Punkt an die richtige Stelle .