Lecture 12
$9-12-2019$
12.1

The method of separation of variables for elliptic equations on rectangular domains and on circular domains. (Sect.7.7.1-7.7.2)
In last lecture we studied some consequences of maximum principles for elliptic equations, the maximum principle for the heat equation, and we solved the Laplace equation on rectangles using separation of variables. Today we will see examples of solutions of the daplace equation on rectangles with Dirichlet and Neumann bound dry conditions.
Finally we will consider the daplace equation on circular domains where we will make use of polar coordinates.

Example (laplace eq. in the square with Dirichlet boundary conditions) We wont to solve the following Dirichlet problem on a square $[0, \pi] \times[0, \pi] \subseteq \mathbb{R}^{2}$:

$$
\left\{\begin{array}{l}
\Delta u=0 \quad \text { in } \quad R=[0, \pi] \times[0, \pi] \\
u(x, 0)=1 \\
u(x, \pi)=u(0, y)=u(\pi, y)=0
\end{array}\right.
$$

Since we only have one nonzero boundary condition, there is no need to split the problem. (*) We look for a solution of the form
$u(x, y)=\sum_{n} x_{n}(x) y_{n}(y)$ where each term $X_{n}(x) Y_{n}(y)$ is harmonic. Hence,

$$
\begin{aligned}
0= & \Delta\left(X_{n}(x) Y_{n}(y)\right)=X_{n}^{\prime \prime}(x) Y_{n}(y)+X_{n}(x) Y_{n}^{\prime \prime}(y) \Leftrightarrow \\
& \frac{X_{n}^{\prime \prime}(x)}{X_{n}(x)}=-\frac{Y_{n}^{\prime \prime}(y)}{Y_{n}(y)}=-\lambda_{n} \in \mathbb{R} .
\end{aligned}
$$

(*) see Lecture 11, page 11.9.

Therefore we get two oDes:

$$
\left\{\begin{array}{l}
X_{n}^{\prime \prime}(x)=-\lambda_{n} X_{n}(x), \quad X_{n}(0)=X_{n}(\pi)=0 \\
y_{n}^{\prime \prime}(y)=\lambda_{n} Y_{n}(y)
\end{array}\right.
$$

From this we have the solution for x_{n} :

$$
X_{n}(x)=A_{n} \operatorname{sen}\left(\sqrt{\lambda_{n}} x\right)+B_{n} \cos \left(\sqrt{\lambda_{n}} x\right)
$$

From $X_{n}(0)=0$ we have $B_{n}=0 \forall n \in \mathbb{N}$.
$x_{n}(x)=A_{n} \operatorname{sen}\left(\sqrt{\lambda_{n}} x\right)$ and from $x_{n}(\pi)=0$ we have

$$
\begin{aligned}
& \operatorname{sen}\left(\sqrt{\lambda_{n}} \pi\right)=0 \Rightarrow \lambda_{n}=\left(\frac{n \bar{X}}{X X}\right)^{2} \Rightarrow \lambda_{n}=n^{2} \quad \forall n \in \mathbb{N}, \\
& n \geqslant 1
\end{aligned}
$$

Finally, $\quad x_{n}(x)=A_{n} \sin (n x), \quad \lambda_{n}=n^{2}$. (Note that the coefficients A_{n} will be then "included" in the coefficients of the Fourser series).
The function Y_{n} is given by:

$$
Y_{n}(y)=C_{n} \sinh (n y)+D_{n} \sinh (n(y-\pi)) .
$$

Recap on how the solution for Y_{n} is obtained: $y_{n}^{\prime \prime}(y)=n^{2} y_{n}(y)$. Solutions to this problems are:
$Y_{n}(y)=\alpha_{n} \sinh (n y)+\beta_{n} \cosh (n y), b u t$ in the case of rectangular domains with Dirichlet boundary conditions it is more convenient to express the solution in terms of $\sinh (n(y-0))=\sinh (n y)$ and $\sinh (n(y-\pi))$. To see in detail haw to pass from the previous basis to the new one you can look at the solution of the Exercise 11.3 (a) Of the Exercise sheet 11.

So now we have:
$X_{n}=A_{n} \sin (n x)$ and $Y_{n}=C_{n} \sinh (n y)+D_{n} \sinh (n(y-\pi))$.
Therefore the genera solution is:

$$
u(x, y)=\sum_{n} \sin (n x)\left[C_{n} \sinh (n y)+D_{n} \sinh (n(y-\pi))\right] \text {. (1) }
$$

Remark: note that the general form of the solution is given by:

$$
u(x, y)=\sum_{n} x_{n}(x) y_{n}(y)=\sum_{n} A_{n} \sin (n x)\left[C_{n} \sin h(n y+\right.
$$

$+D_{n} \sinh (n(y-\pi)]$. Up to absorbing the constants
An inside C_{n} and D_{n} we obtain formula (1).
From the condition $u(x, \pi)=0$, we obtain $C_{n}=0$ for all $n \in \mathbb{N}^{+}$. Then, from $u(x, 0)=1$ we have: $1=u(x, 0)=\sum_{n} \sin (n x)\left[D_{n} \sin h(-n \pi)\right]$. To determine the coefficients D_{n} we introduce the coefficients $\alpha_{n}=D_{n} \sinh (-n \pi)$ so that the condition above becomes:

$$
1=\sum_{n} \alpha_{n} \sin (n x)
$$

As usual we multiply both sides by $\sin (m x)$ and we integrate over [oil]:

$$
\begin{aligned}
\int_{0}^{\pi} \sin (m x) d x=\sum_{n} \alpha_{n} \int_{0}^{\pi} \sin (m x) \sin (n x) d x=\alpha_{m} \int_{0}^{\pi} \sin ^{2}(m x) d x \\
=\alpha_{m} \frac{\pi}{2} \\
\left(\int_{0}^{\pi} \sin (m x) \sin (n x) d x=\left\{\begin{array}{lll}
0 & \text { if } m \neq n \\
\frac{\pi}{2} & \text { if } m=n
\end{array}\right)\right.
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \text { hus, } \quad \alpha_{m}=\frac{2}{\pi} \int_{0}^{\pi} \sin (m x) d x=\frac{2}{\pi}\left(-\left.\frac{\cos (m x)}{m}\right|_{0} ^{\pi}\right) \\
& =\frac{2}{\pi}\left[\frac{1-\cos (m \pi)}{m}\right]=\left\{\begin{array}{l}
\frac{4}{\pi m}, m=2 j+1 \\
0, m=2 j
\end{array}\right.
\end{aligned}
$$

Therefore, since $\alpha_{m}=D_{m} \sin h(-m \pi)$ we have:

$$
D_{m}=\left\{\begin{array}{cl}
\frac{4}{\pi m \sinh (-m \pi)}, & m=2 j+1 \\
0 & m=2 j
\end{array}\right.
$$

In conclusion, since $\sinh (-m \pi)=-\sinh (m \pi)$:

$$
u(x, y)=\sum_{j=0}^{+\infty} \sin ((2 j+1) x) \cdot\left[\frac{-4 \sinh ((2 j+1)(y-\pi))}{\pi(2 j+1) \sinh ((2 j+1) \pi)}\right]
$$

Example Consider now the Laplace eq. on R as above with Neumann boundary conditions:

$$
\left\{\begin{array}{l}
\Delta u_{0}=0 \text { in } R=[0, \pi] \times[0, \pi] \\
u_{y}(x, \pi)=x-\frac{\pi}{2} \\
u_{x}(0, y)=u_{x}(\pi, y)=u_{y}(x, 0)=0
\end{array}\right.
$$

Recall the necessary condition to solve elliptic Neman problems:

$$
\int_{\partial D} \partial_{\nu} u=\int_{\partial D}^{g}=\int_{D} 0=0 \quad\left(\left\{\begin{array}{ll}
\Delta u=0 & \text { on } D \\
\partial_{\nu} u=g & \text { on }
\end{array} \partial D\right.\right.
$$

Therefore we need to check whether this condition is verified:

$$
\int_{\partial D} \partial_{\nu} u=\int_{0}^{\pi}\left(x-\frac{\pi}{2}\right) d x=0
$$

Since the necessary condition is verified we con proceed in looking for a solution using the method of separation of variables:
$u(x, y)=\sum_{n} x_{n}(x) y_{n}(y), \Delta u=0$ leads to

$$
\left\{\begin{array}{l}
x_{n}^{\prime \prime}(x)=-\lambda_{n} x_{n}(x), \quad x_{n}^{\prime}(x)=x_{n}^{\prime}(\pi)=0 \\
y_{n}^{\prime \prime}(y)=\lambda_{n} Y_{n}(y)
\end{array}\right.
$$

Since we have Neumann boundary conditions we obtain

$$
\begin{aligned}
& x_{n}(x)=\cos (n x) \text { with } \quad \lambda_{n}=n^{2}, n \geqslant 0 . \\
& Y_{n}(y)=A_{n} \cosh (n y)+B_{n} \cosh (n(y-\pi))
\end{aligned}
$$

Remark: you can also have Dirichlet conditions on some parts of the boundary and Neumann conditions on other parts of the boundary and in this case you need to choose the right bases in terms of $\{\sin , \cos \}$ and $\{\sinh , \cosh \}$. For instance if you have:

The $n u(x, y)=\sum_{n} x_{n}(x) y_{n}(y)$
$u(x, y)=\sum \sin \left(\sqrt{\lambda_{n}} y\right)\left[A_{n} \cosh \left(\sqrt{\lambda_{n}} x\right)+B_{n} \cosh \left(\sqrt{\lambda_{n}}(x-a)\right)\right]$ $\lambda_{n}=\left(\frac{n \pi}{b}\right)^{2}, n \in \mathbb{N}$.
The general solution is:

$$
\left.u(x, y)=\sum_{n=0}^{+\infty} \cos (n x)\left[A_{n} \cosh (n y)+B_{n} \cosh (n(y-\pi))\right)\right] .
$$

Using the boundary conditions to find A_{n} and B_{n} we
have:

$$
O=u_{y}(x, 0)=\sum_{n=0}^{+\infty} \cos (n x) B_{n} n \sinh (-n \pi) \Rightarrow B_{n}=0
$$

and

$$
x-\frac{\pi}{2}=u_{y}(x, \pi)=\sum_{n=0}^{\infty} A_{n} n \sinh (n \pi) \cos (n x)=\sum_{n=0}^{+\infty} \beta_{n} \cos (n x)
$$

where $\beta_{n}=A_{n} n \sin h(n \pi)$. By a similar computation as the one in the previous example we get. (check it as an exercise)

$$
\beta_{m}=\left\{\begin{array}{cl}
-\frac{4}{\pi m^{2}}, & m=2 j+1 \\
0, & m=2 j
\end{array} \Longrightarrow A_{m}=\left\{\begin{array}{cc}
\frac{-4}{\pi m^{3} \sinh (m \pi)}, & m=2 j+1 \\
0 & m=2 j
\end{array}\right.\right.
$$

$m \geqslant 1$. Remark: $\beta_{0}=0$ independently of the value of Ao. This yields the solution:

$$
U(x, y)=\sum_{j=0} \frac{-4 \cos ((2 j+1) x) \cosh ((2 j+1) y)}{\pi(2 j+1)^{3} \sinh ((2 j+1) \pi)}+A_{0}
$$

Note that this is a solution for every value of A_{0}.

Splitting of the problem in case of Neumann boundary conditions. Consider now the Laplace eq. in a rectangular domain with Neumann boundary conditions :

Fig 1

Remark: suppose that the problem in fig. 1
satisfies the necessary condition for the existence of a solution to the Neumann problem, namely

$$
\int_{c}^{d} g-\int_{c}^{d} f+\int_{a}^{b} k-\int_{a}^{b} h=0
$$

To solve the problem we need to split it in the sum of tiro problems as we did in Lecture 11 for the Dirichlet problem.

Warning: by splitting the domain the existence condition for the Neumam problem might not be satisfied any more.
To overcome this problem, we use the trick of adding a harmonic polynomial: consider for instance $\alpha\left(x^{2}-y^{2}\right)$ with $\alpha \in \mathbb{R}$, and add it to u. This yields the new harmonic function $v=u+\alpha\left(x^{2}-y^{2}\right)$. If we now split $v=v_{1}+v_{2}$ (as we were doing above for u) then the problems for v_{1} and v_{2} are:

Note that the compatibility condition for v_{1} is given by:

$$
\int_{c}^{d}[g+2 \alpha b]-\int_{c}^{d}[f+2 \alpha \partial]=0 \Leftrightarrow \alpha=\frac{1}{2(b-a)(d-c)}\left[\int_{c}^{d}(f-g)\right]
$$

Hence, with this choice of α we can solve the problem for σ_{1}. Recall now that, by assumption, the Newman problem for u was solvable, that is

$$
\int_{c}^{d} g-\int_{c}^{d} f+\int_{a}^{b} k-\int_{a}^{b} h=0
$$

Thus d is also equal to $\frac{1}{2(b-a)(d-c)}\left[\int_{a}^{b}(k-h)\right]$.

This implies that

$$
\int_{a}^{b}[k-2 \alpha d]-\int_{a}^{b}[b-2 \alpha c]=0
$$

therefore also v_{2} satisfies the compatibility condition and we can solve the problem using the method of separation of variables.

The daplace equation in circular domains. We conclude this lecture considering the laplace eq. on circular domains $D=B_{a}=\{0 \leqslant r<a, v \in[0,2 \pi]\}$. For this problem we use the equation in polar coordinates

$$
0=\Delta u=w_{r r}+\frac{1}{r} w_{r}+\frac{1}{r^{2}} w_{\theta \theta}
$$

 look for separated solutions of the form

$$
W(r, \theta)=R(r) \Theta(\theta)
$$

and obtain:

$$
\begin{gathered}
O=R^{\prime \prime}(r) \Theta(\vartheta)+\frac{1}{r} R^{\prime}(r) \Theta(\vartheta)+\frac{1}{r^{2}} \Theta^{\prime \prime}(\vartheta) R(r) \Rightarrow \\
\frac{r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)}{R(r)}=-\frac{\Theta \Theta^{\prime \prime}(\vartheta)}{\Theta(\vartheta)}=+\lambda,
\end{gathered}
$$

for which the ODEs system is:

$$
\left\{\begin{array}{l}
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)=\lambda R(r) \\
\Theta^{\prime \prime}(\vartheta)=-\lambda \Theta(\vartheta), \Theta(0)=\Theta(2 \pi), \Theta^{\prime}(0)=\Theta^{\prime}(2 \pi) .
\end{array}\right.
$$

Note that the conditions $\Theta(0)=\Theta(2 \pi), \Theta^{\prime}(0)=\Theta^{\prime}(2 \pi)$ come from the fact that we want u to be a classical solution inside D, so it should be at least C^{2}. Hence we impose that Θ and $\Theta 1$ should be periodic in $[0,2 \pi]$. Observe that, since $\oplus{ }^{\prime \prime}=-\lambda \Theta$ au tomatrically also $\Theta^{\prime \prime}$ is periodic. The solution for the second ODE is:
$\oplus_{n}(\vartheta)=A_{n} \cos (n v)+B_{n} \sin (n v)$, for $\lambda_{n}=n^{2}$. For the first equation one can check that

$$
R_{n}(r)= \begin{cases}C_{0}+D_{0} \log (r), & n=0 \\ C_{n} r^{n}+D_{n} r^{-n}, & n \neq 0\end{cases}
$$

gives the two parameter family of solutions (recall that linear second order ODEs have always a two parameter family of solutions). However the functions r^{-n} and $\log (r)$ are singular at o inside the domain D, so we discard them. Thus the general solution is given by:

$$
w(r, v)=c_{0}+\sum_{n=1}^{+\infty} r^{n}\left[A_{n} \cos (n v)+B_{n} \sin (n v)\right]
$$

