ANALYSIS III: PDE - LAST EXERCISE CLASS

Problem 1. Let $D:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<9\right\}$. Consider the problem

$$
\begin{cases}\Delta u=0 & \text { in } D \\ u(x, y)=7+5 x y+2 y^{2} & \text { on } \partial D .\end{cases}
$$

(1) Determine $u(0,0)$;
(2) Write down the solution both in polar coordinates (r, θ) and in Cartesian coordinates (x, y).

Solution. Step 1: Calculate $u(0,0)$
In order to calculate $u(0,0)$ we are going to use the Mean Value Property of harmonic functions. Remembering the following trigonometric identities:

$$
\begin{aligned}
& \cos \theta \sin \theta=\frac{1}{2} \sin \theta \\
& (\sin \theta)^{2}=\frac{1}{2}(1-\cos 2 \theta)
\end{aligned}
$$

one has that the boundary datum $g(x, y)=7+5 x y+2 y^{2}$ can be written in polar coordinates (for $r=3$) as

$$
\begin{aligned}
f(\theta) & =7+\frac{45}{2} \sin 2 \theta+9(1-\cos 2 \theta) \\
& =16+\frac{45}{2} \sin 2 \theta-9 \cos 2 \theta
\end{aligned}
$$

As a result, we get

$$
u(0,0)=16+\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{45}{2} \sin 2 \theta d \theta+\frac{1}{2 \pi} \int_{0}^{2 \pi}(-9) \cos 2 \theta d \theta=0
$$

since (by periodicity) clearly

$$
\int_{0}^{2 \pi} \frac{45}{2} \sin 2 \theta d \theta=0, \text { and }+\int_{0}^{2 \pi}(-9) \cos 2 \theta d \theta=0
$$

Thus we conclude that

$$
\begin{equation*}
u(0,0)=16 \tag{1}
\end{equation*}
$$

This finishes part (1).
Step 2: Solving for u in both cartesian and polar coordinates
Recall from the lecture that the general solution to $\Delta u=0$ on B is given in polar coordinates i.e. for

$$
\left\{\begin{array}{cc}
x= & r \cos \theta \\
y= & r \sin \theta \\
1
\end{array}\right.
$$

we get

$$
u(r, \theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} r^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

As a next step we want to solve by using the boundary conditions

$$
\begin{aligned}
u(3, \theta) & =7+5 x y+2 y^{2} \\
& =7+5(3 \cos \theta)(3 \sin \theta)+2(3 \sin \theta)^{2}=: f(\theta)
\end{aligned}
$$

We want to choose a_{n}, b_{n} such that the following equality holds:

$$
u(3, \theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} 3^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) \stackrel{!}{=} 16+\frac{45}{2} \sin 2 \theta-9 \cos 2 \theta
$$

By uniqueness of Fourier series we get $a_{0}=32, a_{2}=-1, b_{2}=\frac{5}{2}$, while all other a_{n} and b_{n} are zero. Thus our final solution is

$$
u(r, \theta)=16+r^{2}\left(-\cos 2 \theta+\frac{5}{2} \sin 2 \theta\right)
$$

As a last step we need to transform this back into Cartesian coordinates. Again remember the following trigonometric identities:

$$
\begin{aligned}
& \cos 2 x=\cos ^{2} x-\sin ^{2} x \\
& \sin 2 x=2 \sin x \cos x
\end{aligned}
$$

Using both identities we conclude

$$
\begin{array}{rlr}
u(x, y) & =16+r^{2}\left(-\cos 2 \theta+\frac{5}{2} \sin 2 \theta\right) \\
& =16+r^{2}\left(-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+5 \sin \theta \cos \theta\right) \quad \text { (Using both identities) } \\
& =16+r^{2}\left(\sin ^{2} \theta-\cos ^{2} \theta+5 \sin \theta \cos \theta\right) \\
& =16+y^{2}-x^{2}+5 x y \quad \text { (Using Polar Coordinates) }
\end{array}
$$

This finishes the problem.

Problem 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x e^{-4(x-1)^{2}}$.
(1) Compute the Fourier transform of f.
(2) Using the previous part of this exercise, compute the value of $\int_{-\infty}^{+\infty}(1+x) f(x) d x$.

Solution. Recall from Lecture 6 that for $g(x)=e^{-\frac{x^{2}}{2}}$ we have $\mathcal{F}[g](\xi)=\sqrt{2 \pi} e^{-\frac{\xi^{2}}{2}}$.
Step 1: Calculating the Fourier Transform

$$
\begin{array}{rlr}
\mathcal{F}[f](\xi) & =\int_{\mathbb{R}} x e^{-4(x-1)^{2}} e^{-i x \xi} d x \\
& =\int_{\mathbb{R}}(x+1) e^{-4 x^{2}} \underbrace{e^{-i(x+1) \xi}}_{e^{-i \xi} e^{-i x \xi}} d x & \quad \text { (Using } x=u+1 \text { and } d x=d u) \\
& =e^{-i \xi}(\underbrace{\int_{\mathbb{R}} x e^{-4 x^{2}} e^{-i x \xi} d x}_{I_{1}}+\underbrace{\int_{\mathbb{R}} e^{-4 x^{2}} e^{-i x \xi} d x}_{I_{2}})
\end{array}
$$

For the first integral we are going to make use of Property B and Property C from Lecture 6. First of all, for $h(x)=e^{-4 x^{2}}$ we get

$$
I_{1}=\int_{\mathbb{R}} x e^{-4 x^{2}} e^{-i x \xi} d x=\int_{\mathbb{R}} x h(x) e^{-i x \xi} d x=\mathcal{F}[x h](\xi) \stackrel{B}{=} i \frac{d}{d \xi} \mathcal{F}[h](\xi)
$$

Using the fact that $h(x)=g(\sqrt{8} x)$ we further know that

$$
\mathcal{F}[h](\xi) \stackrel{C}{=} \frac{1}{\sqrt{8}} \mathcal{F}[g]\left(\frac{\xi}{\sqrt{8}}\right)=\frac{1}{\sqrt{8}} \sqrt{2 \pi} e^{-\frac{\xi^{2}}{2 \sqrt{8}}}=\frac{\sqrt{\pi} \sqrt{2}}{2 \sqrt{2}} e^{-\frac{\xi^{2}}{16}}=\frac{\sqrt{\pi}}{2} e^{-\frac{\xi^{2}}{16}}
$$

Using this we finish the computation of I_{1} :

$$
\begin{aligned}
I_{1}= & i \frac{d}{d \xi} \mathcal{F}[h](\xi)=i \frac{d}{d \xi}\left(\frac{\sqrt{\pi}}{2} e^{-\frac{\xi^{2}}{16}}\right) \\
& =-i \frac{\sqrt{\pi}}{2} \frac{2 \xi}{16} e^{-\frac{\xi^{2}}{16}}=\frac{-i \xi \sqrt{\pi}}{16} e^{-\frac{\xi^{2}}{16}}
\end{aligned}
$$

For I_{2} we just reuse the same trick again, thus

$$
I_{2}=\mathcal{F}[h](\xi)=\mathcal{F}[g]\left(\frac{\xi}{\sqrt{8}}\right)=\frac{\sqrt{\pi}}{2} e^{-\frac{\xi^{2}}{16}}
$$

Now combining I_{1} and I_{2} yields

$$
I_{1}+I_{2}=\sqrt{\pi}\left(\frac{8-i \xi}{16}\right) e^{-\frac{\xi^{2}}{16}}
$$

And so we finally get

$$
\mathcal{F}[f](\xi)=e^{-i \xi}\left(\sqrt{\pi}\left(\frac{8-i \xi}{16}\right) e^{-\frac{\xi^{2}}{16}}\right)
$$

Step 2: Use this in order to calculate $\int_{\mathbb{R}}(x+1) f(x) d x$
Again we make use of the properties of the Fourier transformed presented in lecture 6.

$$
\int_{\mathbb{R}}(x+1) f(x) e^{-i x 0} d x=\mathcal{F}[(x+1) f(x)](0) \stackrel{\operatorname{lin}}{=} \underbrace{\mathcal{F}[x f(x)](0)}_{I_{1}}+\underbrace{\mathcal{F}[f(x)](0)}_{I_{2}}
$$

For I_{1} we again use Property B

$$
\mathcal{F}[x f(x)](\xi) \stackrel{B}{=}\left(i \frac{d}{d \xi} \mathcal{F}[f](\xi)\right) \stackrel{\text { Calc }}{=} \frac{\sqrt{\pi}}{16}\left(9-2 i \xi-\frac{\xi^{2}}{8}\right) e^{-\xi^{2} / 16-i \xi}
$$

For I_{2} we directly get by (1) that $I_{2}=\left(\sqrt{\pi}\left(\frac{8}{16}\right)\right)=\frac{1}{2} \sqrt{\pi}$. Thus finally we get

$$
\int_{\mathbb{R}}(x+1) f(x) d x=I_{1}+I_{2}=\sqrt{\pi} \frac{17}{16}
$$

This finishes the problem.

