
QUICK REVIEW ON THE LAPLACE EQUATION FOR DISK AND
ANNULUS

1. Separation of Variables and general approach

First of all notice that we are going to solve the Laplace equation by using polar coordinates
(check Problem Set 2 for the calculation) thus we get

(1) ∆u = urr +
1

r
ur +

1

r2
uθθ

where we have u(r, θ). Again we are using the Ansatz of separation of variables

(2) u(r, θ) = R(r)Θ(θ)

Using (2) and plugging this into (1) we get the following equation

∆u = R′′(r)Θ(θ) + r−1R′(r)Θ(θ) + r−2R(r)Θ′′(θ) = 0

Thus we get the following systems of ODEs in R(r) and Θ(θ) that we need to solve{
Θ(θ)′′ = αΘ(θ) (ODE 1)

r2R
′′(r)

R(r)
+ rR′(r)

R(r)
+ α = 0 (ODE 2)

Now observe that we need periodic solutions in θ and (by basic ODE theory) this can only
happen for α < 0 and when α = 0 (but definitely not for α > 0). In the case α < 0 we get

Θ(θ) = A cos(σθ) +B sin(σθ)

where we conveniently wrote α = −σ2; since the period of Θ(θ) is given by 2π
σ

and since this
must be a divisor of 2π we conclude that σ = n ∈ {1, 2, 3, . . . }. Thus we get a family of
solutions for ODE 1 of the form:

Θn(θ) = An cos(nθ) +Bn sin(nθ).

When α = 0 the only periodic solutions of ODE 1 are of the form

Θn(θ) = A0.

Thus, since cos(0) = 1 and sin(0) = 0 we can conveniently group the solutions for α ≤ 0 as

Θn(θ) = An cos(nθ) +Bn sin(nθ), for n = 0, 1, 2, 3, . . . .

For the second ODE using α = −n2 we get the following ODE:

r2
R′′(r)

R(r)
+ r

R′(r)

R(r)
− n2 = 0(3)

ODE theory
=⇒

{
Rn ∈ ⟨rn, r−n⟩R if n > 1

R0 ∈ ⟨1, ln(r)⟩R if n = 0
(4)

Note that we have not spoken about any boundary conditions yet. However we are going
to focus on disks and annuli (see Farlow Lesson 33 and Lesson 34, respectively). In the
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following two subsection we take a look on how to apply this approach in some illustrative
examples.

1.1. The disk. In the following subsection we are going to one problem concerning a disc.

Example 1. Let Ω = D(1) = {(x, y) ∈ R2 | x2+y2 ≤ 1} and consider the following problem:{
∆u = 0 in D(1)

u(1, θ) = 1 + sin θ + 3
2
sin 2θ + 2 cos 4θ on ∂D(1) = S1(1)

Step 1: Choosing the right solutions in the general approach
By considering the domain of a disk D(1) and since we want to obtain a smooth solution
to our problem we need to ‘throw away’ the unbounded solutions of (??). Thus, after using
the approach of separation of variable as discussed above, we get the same solutions for Θn,
however for Rn we only choose the following solutions:{

R0(r) = C0 for C0 ∈ R
Rn(r) = Cnr

n for Cn ∈ R, n ≥ 1

Putting everything together we get

u(r, θ) =
∑
n≥1

Cnr
n · (An cos(nθ) +Bn sin(nθ))

rename constants
=

a0
2

+
∑
n≥1

rn (an cos(nθ) + bn sin(nθ))

Step 2: Using the boundary condition
Now using the boundary condition we get that

u(1, θ) =
a0
2

+
∑
n≥1

1n (an cos(nθ) + bn sin(nθ))

!
=1 + sin θ +

3

2
sin(2θ) + 2 cos 4θ

We see directly that the boundary condition is already in the form of a Fourier Series.
Thus we conclude, just by visual inspection, that a0 = 2, a4 = 2, b1 = 1 and b2 = 3

2
where

all the other coefficients are equal to 0. We conclude that our final solution is

u(r, θ) = 1 + r sin (θ) +
3

2
r2 sin (2θ) + 2r4 cos (4θ)

1.2. The annulus. Here we are going to provide two examples of solving the Laplace Equa-
tion on the annulus.

Example 2. Consider Ω = {(x, y) ∈ R2 | 1 <
√
x2 + y2 < 2} and the following problem

∆u = 0 on Ω

u(1, θ) = 0 on ∂D(1) = S1(1)

u(2, θ) = 4 sin θ on ∂D(2) = S1(2)

Step 1: Choosing the right solutions from general approach
By the general approach we again get the same solutions for Θn and Rn. However since the
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origin is excluded from our domain we can’t throw away the unbounded solutions of
(3) as we did in the case of the subsection above. Thus we get

u(r, θ) =A0C0 +D0 ln(r) +
∑
n≥1

(
Cnr

n +
Dn

rn

)
[An cosnθ +Bn sinnθ]

renaming constants
= c0 + d0 ln r +

∑
n≥1

rn (an cos (nθ) + cn sin (θn)) + r−n (bn cos (nθ) + dn sin (nθ))

renaming constants
= c0 + d0 ln r +

∑
n∈Z\{0}

rn (an cosnθ + bn sinnθ)

Using our first boundary condition we see that

c0 + d0 ln 1 +
∑

n∈Z\{0}

1n (an cos (nθ) + bn sin (θn))
!
= 0

thus we see that c0 = 0, an = −a−n and bn = b−n for all n = 1, 2, 3, . . .; the second boundary
condition gives

c0 + d0 ln 2 +
∑

n∈Z\{0}

2n (an cos (nθ) + bn sin (nθ))
!
= 4. sin (θ)

Hence, we directly conclude that c0 = d0 = 0 and an = a−n = 0 for all n = 1, 2, 3, . . .,
moreover we have bn = b−n = 0 for n ̸= 1 thus the remaining part of the equation is

sin (θ)

(
2b1 −

1

2
b−1

)
b1=b−1
= sin (θ)

(
2b1 −

1

2
b1

)
!
= 4 sin θ

this directly gives that b−1 = b1 =
8
3
and we conclude that the solution is

u(r, θ) =
8

3

(
r − 1

r

)
sin θ

Remark. The important takeaway is in Step 1, where it was important to notice that
in difference to the example of the disc we don’t throw away the unbounded solutions.

Example 3. Consider the following problem for Ω = {(x, y) ∈ R2 | 1 <
√
x2 + y2 < 2}:

∆u = 0 on Ω

u(1, θ) = 2 sin θ ∂D(1) = S1(1)

u(2, θ) = 3 sin θ on ∂D(2) = S1(2)

Step 1: Choosing the right solutions from general approach
Similiar to the previous example we get

u(r, θ) = c0 + d0 ln r +
∑

n∈Z\{0}

rn (an cos (nθ) + bn sin (nθ))

Step 2: Solve using the boundary conditions
The two boundary conditions impose

c0 +
∑

n∈Z\{0}

1n (an cos (nθ) + bn sin (nθ))
!
= 2 sin (θ)
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and
c0 + d0 ln 2 +

∑
n∈Z\{0}

2n (an cos (nθ) + bn sin (nθ))
!
= 3 sin (θ).

Thus, exactly as above, c0 = d0 = 0 and an = 0 for all n ∈ Z \ {0} and bn = 0 for
n ∈ Z \ {1,−1}. The condition to determine b1, b−1 is the 2× 2 system:b−1 sin (−θ) + b1 sin (θ) = sin (θ) (b1 − b−1)

!
= 2 sin (θ)

1
2
b−1 sin (−θ) + 2b1 sin (θ) = sin (θ)

(
b−1

2
+ 2b1

)
!
= 3 sin (θ)

whence we conclude that b−1 = −2
3
and b1 =

4
3
and so our final solution is

u(r, θ) = sin (θ)

(
4

3
r +

2

3r

)
.
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