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D-CHEM Mathematik 111
Prof. Dr. A, Carlosto Problem set 1

wh
5 2021

1.1 Linear ODE with cons
solutioms of | the following different

nts, Sohae

fa) o —wfy =0,

(b) o+ =iy =0,
(o) o + 0y + 4y =

{2c).

order ODE with variable coeflicients. Solve (ie
slutionz of| the following differential equations for 4

{etermine the set

{a) ' ~Fy =00 R,
(b) o ~ /o=
(e} o +2'y =24 L, ocR
(d) o = o+ w)*

() o~ 5= sinr,

(F) wa’ = (14 plr® = 0

Tips: ODE of Ist order may be sobverl by separmtion of sariahies or
multiply the equation with o7, where § 15 a suitable funet
plicitly be a function of x. It is e
 unel the variable o that does oot or

substitution.
() will
agh to write o relation between the
ain any derivitives of y.

L3, Initial and boundary value problems. Sobve the following Cancy problems

o wreR,
(=) [ win) = 2

yiEl +Ayir) = 0 £ (0L L) (L = i given),
(b} w0 i,

wil) = 2

1.4. Spring pendulum A spring pendulum conslsts
tesl piece [with mass m) kel Lo
direction in which the spring r
and w® 2= Ko, then the eous

il spring s o ness
+ whiich ean it line i the
cnds or retearts, Let K 0 he the spring constant
of motion of the spring pendulum is given by

I +wlrit) =0, 1]

Findd the

wn of the differential equation (1)
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Mathematik 111 D-CHEM
Problem set 1 Prof. Dn. A. Carlotio

(a) with the initial conditions () = 1, #(0) = 2.

(b with the bonndury conditions c{) = 1, 2(

1.5. Classification of PDEs I Suppose a,b, f and g are differentiable functions,
Tell whesher the following differential equations in air, g) are linear and homaogencons,
lmear aud nheomogeeous, o non-lnear and (o sy case) tell their order, For every
linear differential equation of 2nd order, tel] whether the equation i elliptic, byperbolic
ar parabnlic.

{a) trer +1ey = f

(B) e + b =0

{e) weny =0

(d) Quiee + tie + Doy + uigy =0

(o) (0= r e — Zegigy, + (1 =y iy, = gaof @ = {{r.9) c R

A1),

L6, Classification of PDEs I
Suppeose a, band g dilferentiable Tunetions with g = 0.

Tl whether the following differential equations in a(r, y) are lnear and homogeneos,
linear and inhomogeneons, or non-linear and tell thedr order. For every linear differential
equation of 2nd order, tell whether the equation i= elliptic, hyperbalic or parabalic,

{a) wttper + bt +a) =0
(b} afiee + gty = 1

(€} dupr + 1z + iy + iy, = 0

{d) (2% — tier + brginy + (0" — gy = gaof = {{r.g) & BT 0?7 = 161

1.7. Dreaming a Canchy-Lipschitz theorem for the wave equation. | Achteng:
Sor this problem we don’t cxpeet you to weite dosm anything: this & fnstoad about
thinking ahead.) Read {the first three pages of) Lesson 16 in Farlow's textbook, about
the *derivation’ of the {onedimensional) wave couation, s describing a vibrating
string, Compare this equation with Newton's equation, as tecalled in class, What
“lata’ woakd you expeet one has to specily for suel wave equation foe sometling like
the Caneliy- Lipschits theorem (e, Joral existence snd unigueness) to hold toue? We
will diseuss this at kength in the coming lectures.

2fa
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D-CHEM Mathematik 111 ETH Ziirich
Prof. Dr. A. Carlotto Problem set 1 HS 2021

1.1. Linear ODE with constant coefficients. Solve (i.e. determine the set of all
solutions of) the following differential equations for y(x):

(a) y" —w?y =0,

(b) ¥ +w?y =0,

(e) o' + 3y + 4y = cos(2x).

1.2. First-order ODE with variable coeflicients. Solve (i.e. determine the set
of all solutions of) the following differential equations for y(x):
(a) v —a’y =0,z € R,

(b) ¢ —y/e=ux,2>0,

(¢) y +2°y=a+ 1,2 € R,

(@) ¥ = (z+y)

(e) ¥ —y=sinz,

(f) yy' — (1 +y)* =0.

Tips: ODE of 1st order may be solved by separation of variables or by substitution.
For (c), multiply the equation with ¢/(*), where f is a suitable function. For (f), y will
not explicitly be a function of x. It is enough to write a relation between the function
y and the variable = that does not contain any derivatives of y.

1.3. Initial and boundary value problems. Solve the following Cauchy problems:

Y = 2% VreR,
(@) { y(0) = 2.
y'(x)+4y(x) = 0 Vaee (0,L) (L >0 given),
0,
y(L) = 2.

(b)

«:

=
=

=
Il

1.4. Spring pendulum A spring pendulum consists of a coil spring and a mass
test piece (with mass m) attached to it, which can move in a straight line in the
direction in which the spring extends or retracts. Let K > 0 be the spring constant
and w? := K/m, then the equation of motion of the spring pendulum is given by

E(t) + wiz(t) = 0. (1)

Find the solution of the differential equation (1):

1/2
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ETH Ziirich Mathematik 111 D-CHEM
HS 2021 Problem set 1 Prof. Dr. A. Carlotto

(a) with the initial conditions z(0) = 1,2(0) = 2w.

(b) with the boundary conditions x(0) = 1, z(55) = 1.

1.5. Classification of PDEs I. Suppose a,b, f and g are differentiable functions.
Tell whether the following differential equations in u(x, y) are linear and homogeneous,
linear and inhomogeneous, or non-linear and (in any case) tell their order. For every
linear differential equation of 2nd order, tell whether the equation is elliptic, hyperbolic
or parabolic.

(a) Ugze + Uy = [

(b) attz +bu? =0

() wu, =0

(d) 20z + e + gy + 2uy, =0

() (1 — o)y — 2wyuey + (1 — y*)uy, = g auf Q = {(z,y) € B2 : 22 + % > 1},

1.6. Classification of PDEs II.
Suppose a, b and g differentiable functions with g > 0.

Tell whether the following differential equations in u(x, y) are lincar and homogeneous,
linear and inhomogeneous, or non-linear and tell their order. For every linear differential
equation of 2nd order, tell whether the equation is elliptic, hyperbolic or parabolic.

(2) auger +b(u' +u)=0

(b) augy + uguy =1

(€) dugy + ty + gy + By =0

(d) (22 = 2upe + dwyug + (Y% — 2uyy = g auf Q@ = {(x,y) € B : 22 + 3 > 16},

1.7. Dreaming a Cauchy-Lipschitz theorem for the wave equation. (Achtung:
for this problem we don’t expect you to write down anything; this is instead about
thinking ahead.) Read (the first three pages of) Lesson 16 in Farlow's textbook, about
the ‘derivation’ of the (one-dimensional) wave equation, as describing a vibrating
string. Compare this equation with Newton's equation, as recalled in class. What
‘data’ would you expect one has to specify for such wave equation for something like
the Cauchy-Lipschitz theorem (i.e. local existence and uniqueness) to hold true? We
will discuss this at length in the coming lectures.

2/2
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1.1. Linear ODE with constant coefficients. Sclve (i.e. determine the set of all Z A ){)1&
solutions of) the following differential equations for y(x): (’ é—ﬁ T 3
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1.2, First-order ODE with variable coefficients. Solve [i.c. determine the set
of all seluticms of | the following differential equations for g(r):
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Input
8x’+ By2+xy

30 plat Show contour lines

Cantour plat

Geometric figure
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Alernate forms bMore
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