11.1. Eigenvalues of the rectangle For each of the following 5 statement you have to establish whether it is true or false.

Insert your answers in the following grid. Write clearly T if the statement is true and F if the statement is false. We will accept also R if the statement is *richtig* (which is the German word for true).

Only the answers in the grid will be taken into consideration for grading.

Question	1	2	3	4	5
Answer					

Let $R:=(0,a)\times(0,b)$ for a,b>0. Let $\lambda_1\leq\lambda_2\leq\cdots$ be the eigenvalues (with multiplicity) of $-\Delta$ with Dirichlet boundary conditions on R, namely the values of $\lambda\in\mathbb{R}$ such that the following problem has a nontrivial solution

- 1. There exists a negative eigenvalue.
- 2. If $a = 2\pi$ and $b = 5\pi$, then $\lambda_1 = \frac{29}{100}$.
- 3. If $a = b = \pi$, the multiplicity of 65 as eigenvalue is 2.
- 4. If $a = 5\pi, b = 2021$, there is not an integer eigenvalue.
- 5. If a = b = 1, then $\lambda_{2021} \le 100$.

 $A = \lambda \sigma$ $det (\lambda I - A) = 0$