1.1. Linear ODE with constant coefficients. Solve (i.e. determine the set of all solutions of) the following differential equations for $y(x)$:
(a) $y^{\prime \prime}-\omega^{2} y=0$,
(b) $y^{\prime \prime}+\omega^{2} y=0$,
(c) $y^{\prime \prime}+3 y^{\prime}+4 y=\cos (2 x)$.
1.2. First-order ODE with variable coefficients. Solve (i.e. determine the set of all solutions of) the following differential equations for $y(x)$:
(a) $y^{\prime}-x^{2} y=0, x \in \mathbb{R}$,
(b) $y^{\prime}-y / x=x, x>0$,
(c) $y^{\prime}+x^{5} y=x^{6}+1, x \in \mathbb{R}$,
(d) $y^{\prime}=(x+y)^{2}$,
(e) $y^{\prime}-y=\sin x$,
(f) $y y^{\prime}-(1+y) x^{2}=0$.

Tips: ODE of 1st order may be solved by separation of variables or by substitution. For (c), multiply the equation with $\mathrm{e}^{f(x)}$, where f is a suitable function. For (f), y will not explicitly be a function of x. It is enough to write a relation between the function y and the variable x that does not contain any derivatives of y.
1.3. Initial and boundary value problems. Solve the following Cauchy problems:
(a) $\left\{\begin{aligned} y^{\prime} & =2 \mathrm{e}^{2 x} \quad \forall x \in \mathbb{R}, \\ y(0) & =2 .\end{aligned}\right.$
(b) $\left\{\begin{array}{rl}y^{\prime \prime}(x)+4 y(x) & =0 \\ y(0) & =0, \\ y(L) & =2 .\end{array} \quad \forall x \in(0, L)(L>0\right.$ given $)$,
1.4. Spring pendulum A spring pendulum consists of a coil spring and a mass test piece (with mass m) attached to it, which can move in a straight line in the direction in which the spring extends or retracts. Let $K>0$ be the spring constant and $\omega^{2}:=K / m$, then the equation of motion of the spring pendulum is given by

$$
\begin{equation*}
\ddot{x}(t)+\omega^{2} x(t)=0 \tag{1}
\end{equation*}
$$

Find the solution of the differential equation (1):
(a) with the initial conditions $x(0)=1, \dot{x}(0)=2 \omega$.
(b) with the boundary conditions $x(0)=1, x\left(\frac{\pi}{2 \omega}\right)=1$.
1.5. Classification of PDEs I. Suppose a, b, f and g are differentiable functions. Tell whether the following differential equations in $u(x, y)$ are linear and homogeneous, linear and inhomogeneous, or non-linear and (in any case) tell their order. For every linear differential equation of 2 nd order, tell whether the equation is elliptic, hyperbolic or parabolic.
(a) $u_{x x x}+u_{y}=f$
(b) $a u_{x x}+b u^{2}=0$
(c) $u_{x} u_{y}=0$
(d) $2 u_{x x}+u_{x}+2 u_{x y}+2 u_{y y}=0$
(e) $\left(1-x^{2}\right) u_{x x}-2 x y u_{x y}+\left(1-y^{2}\right) u_{y y}=g$ in $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}>1\right\}$.

1.6. Classification of PDEs II.

Suppose a, b and g differentiable functions with $g>0$.
Tell whether the following differential equations in $u(x, y)$ are linear and homogeneous, linear and inhomogeneous, or non-linear and tell their order. For every linear differential equation of 2 nd order, tell whether the equation is elliptic, hyperbolic or parabolic.
(a) $a u_{x x x}+b\left(u^{4}+u\right)=0$
(b) $a^{2} u_{x x}+u_{x} u_{y}=1$
(c) $4 u_{x x}+u_{x}+u_{x y}+6 u_{y y}=0$
(d) $\left(x^{2}-2\right) u_{x x}+4 x y u_{x y}+\left(y^{2}-2\right) u_{y y}=g$ in $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}>16\right\}$.
1.7. Dreaming a Cauchy-Lipschitz theorem for the wave equation. (Achtung: for this problem we don't expect you to write down anything; this is instead about thinking ahead.) Read (the first three pages of) Lesson 16 in Farlow's textbook, about the 'derivation' of the (one-dimensional) wave equation, as describing a vibrating string. Compare this equation with Newton's equation, as recalled in class. What 'data' would you expect one has to specify for such wave equation for something like the Cauchy-Lipschitz theorem (i.e. local existence and uniqueness) to hold true? We will discuss this at length in the coming lectures.

