11.1. Eigenvalues of the rectangle For each of the following 5 statement you have to establish whether it is true or false.

Insert your answers in the following grid. Write clearly \mathbf{T} if the statement is true and \mathbf{F} if the statement is false. We will accept also \mathbf{R} if the statement is richtig (which is the German word for true).

Only the answers in the grid will be taken into consideration for grading.

Question	1	2	3	4	5
Answer					

Let $R:=(0, a) \times(0, b)$ for $a, b>0$. Let $\lambda_{1} \leq \lambda_{2} \leq \cdots$ be the eigenvalues (with multiplicity) of $-\Delta$ with Dirichlet boundary conditions on R, namely the values of $\lambda \in \mathbb{R}$ such that the following problem has a nontrivial solution

$$
\begin{cases}-\Delta u=\lambda u & \text { in } R \\ u=0 & \text { on } \partial R\end{cases}
$$

1. There exists a negative eigenvalue.
2. If $a=2 \pi$ and $b=5 \pi$, then $\lambda_{1}=\frac{29}{100}$.
3. If $a=b=\pi$, the multiplicity of 65 as eigenvalue is 2 .
4. If $a=5 \pi, b=2021$, there is not an integer eigenvalue.
5. If $a=b=1$, then $\lambda_{2021} \leq 100$.
11.2. Laplace equation in the square Let $R:=(0,1) \times(0,1) \subset \mathbb{R}^{2}$. Compute the solution $u: R \rightarrow \mathbb{R}$ of the following Dirichlet problem

$$
\left\{\begin{aligned}
\Delta u(x, y) & =0 & & \text { in } R \\
u(x, y) & =f(x, y) & & \text { on } \partial R,
\end{aligned}\right.
$$

where
(a)

$$
f(x, y)=\left\{\begin{array}{lll}
0 & \text { for } & y=0 \\
0 & \text { for } & y=1, \\
0 & \text { for } & x=0 \\
-\sin (2 \pi y) \cos (2 \pi y) & \text { for } & x=1
\end{array}\right.
$$

(b)

$$
f(x, y)= \begin{cases}x(x-1) & \text { for } \quad y=0 \\ 0 & \text { for } \quad y=1 \\ 0 & \text { for } \quad x=0 \\ 0 & \text { for } \quad x=1\end{cases}
$$

Hint: Write u as a sum of functions of the form $X_{n}(x) Y_{n}(y)$.
11.3. Laplace equation with mixed boundary conditions Compute the solution $u: R \rightarrow \mathbb{R}$ of the following boundary value problem

$$
\begin{cases}\Delta u(x, y)=0 & \text { for }(x, y) \in(0,1)^{2} \\ u(x, y)=0 & \text { for }(x, y) \in\{0,1\} \times(0,1) \cup(0,1) \times\{0\} \\ u+u_{y}=\sin (\pi x) & \text { for }(x, y) \in(0,1) \times\{1\}\end{cases}
$$

