D-CHEM	Mathematik III	ETH Zürich
Prof. Dr. A. Carlotto	Problem set 12	HS 2021

12.1. Laplace equation For each of the following 5 statement you have to establish whether it is true or false.

Insert your answers in the following grid. Write clearly \mathbf{T} if the statement is true and \mathbf{F} if the statement is false. We will accept also \mathbf{R} if the statement is *richtig* (which is the German word for *true*).

Only the answers in the grid will be taken into consideration for grading.

Question	1	2	3	4	5
Answer					

In this exercise, $\Delta = \partial_{xx} + \partial_{yy}$ is the Laplace operator in \mathbb{R}^2 .

1. If $\Delta u = 0$ and $\Delta v = 0$ for all $(x, y) \in \mathbb{R}^2$, then for any real-valued smooth functions $c_1, c_2 : \mathbb{R}^2 \to \mathbb{R}$, we have

$$\Delta(c_1 u + c_2 v) = 0.$$

- 2. If $\Delta u = 0$ in \mathbb{R}^2 , then $\Delta(\partial_x u) = 0$ in \mathbb{R}^2 .
- 3. Let $D := \{(x, y) : x^2 + y^2 < 4\}$. There exist infinitely many functions $u : D \to \mathbb{R}$ such that

$$\begin{cases} \Delta u = 5 & \text{in } D, \\ u(1,1) = 0. \end{cases}$$

4. Let $D := \{(x, y) : x^2 + y^2 = 1\}$. If $u : D \to \mathbb{R}$ solves

$$\begin{cases} \Delta u = 0 & \text{in } D, \\ u(x, y) = 2 - x^3 & \text{for } (x, y) \in \partial D, \end{cases}$$

then $u(0, \frac{1}{2}) > 1$.

5. Let $D := \{(x, y) : x^2 + y^2 = 1\}$. If $u : D \to \mathbb{R}$ solves

$$\begin{cases} \Delta u = 0 & \text{in } D, \\ u(x, y) = \sin(x) & \text{for } (x, y) \in \partial D, \end{cases}$$

then $u(0,0) = \frac{1}{\pi}$.

1/2

ETH Zürich	Mathematik III	D-CHEM
HS 2021	Problem set 12	Prof. Dr. A. Carlotto

12.2. Laplace equation in a disk Let $D := \{(x, y) : x^2 + y^2 < 1\}$. We want to solve the Dirichlet boundary value problem

$$\begin{cases} \Delta u = 0 & \text{in } D, \\ u(x, y) = 1 + 3x^4 & \text{for } (x, y) \in \partial D. \end{cases}$$

- (a) Prove $1 \le u(x, y) \le 4$ for all $(x, y) \in D$.
- (b) Compute u(0,0) with the Poisson formula.
- (c) Compute u explicitly at all points $(x, y) \in D$ and prove $1 \le u(x, y) \le 4$ using this explicit expression.

12.3. Laplace equation in an annulus Let $D := \{(x, y) : 1 < x^2 + y^2 < 4\}$. Find the solution $u : D \to \mathbb{R}$ of the following problem

$$\begin{cases} \Delta u = 0 \quad \text{in } D, \\ u(1,\theta) = 2\sin(2\theta) \quad \text{for } 0 \le \theta < 2\pi, \\ u(2,\theta) = 3\cos(3\theta) \quad \text{for } 0 \le \theta < 2\pi. \end{cases}$$