This problem set is meant to be an introduction to the use of polar coordinates.
2.1. Polar coordinates Every function $u: \mathbb{R}^{2} \rightarrow \mathbb{R}, u=u(x, y)$ can be expressed in polar coordinates, i.e.

$$
\left\{\begin{array}{l}
x=x(r, \theta)=r \cos (\theta) \\
y=x(r, \theta)=r \sin (\theta)
\end{array}\right.
$$

then we write $u(r, \theta)=u(x(r, \theta), y(r, \theta))$.
(a) Rewrite the following function from Cartesian coordinates to polar coordinates

$$
u_{1}(x, y)=x^{2}+y^{2}, \quad u_{2}(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}, \quad u_{3}(x, y)=\frac{x}{y}
$$

(b) Rewrite the following function from polar coordinates to Cartesian coordinates

$$
\begin{aligned}
& v_{1}(r, \theta)=r^{n}, \quad v_{2}(r, \theta)=\sin \theta \cos \theta, \quad v_{3}(r, \theta)=\theta \quad(-\pi / 2<\theta<\pi / 2), \\
& v_{4}(r, \theta)=\theta \quad(\pi / 2<\theta<3 \pi / 2)
\end{aligned}
$$

2.2. The Laplace operator in polar coordinates

Using the same notation to denote polar coordinates introduced in the previous exercise, show the following statements.
(a) Use chain rule to prove

$$
\begin{aligned}
& \partial_{r} u(r, \theta)=\left(\partial_{x} u\right) \cos \theta+\left(\partial_{y} u\right) \sin \theta \\
& \partial_{\theta} u(r, \theta)=-\left(\partial_{x} u\right) r \sin \theta+\left(\partial_{y} u\right) r \cos \theta
\end{aligned}
$$

Now we have the following relation for the partial derivatives $\partial_{x} u$ and $\partial_{y} u$:

$$
\binom{\partial_{r} u}{\partial_{\theta} u}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right)\binom{\partial_{x} u}{\partial_{y} u}
$$

(b) By inverting some matrix, prove the following expressions for $\partial_{x} u$ and $\partial_{y} u$:

$$
\begin{aligned}
\partial_{x} u & =\cos \theta\left(\partial_{r} u\right)-\frac{1}{r} \sin \theta\left(\partial_{\theta} u\right) \\
\partial_{y} u & =\sin \theta\left(\partial_{r} u\right)+\frac{1}{r} \cos \theta\left(\partial_{\theta} u\right)
\end{aligned}
$$

Use these formulas and chain rule to compute the direct expressions for $\partial_{x x}^{2} u$ and $\partial_{y y}^{2} u$ in polar coordinates, i.e.

$$
\partial_{x x}^{2} u=\partial_{x}\left(\partial_{x} u\right)=\cos \theta\left(\partial_{r}\left(\partial_{x} u\right)\right)-\frac{1}{r} \sin \theta\left(\partial_{\theta}\left(\partial_{x} u\right)\right)=\ldots
$$

(c) Combine all the information above and prove the following expression for the Laplacian operator in polar coordinates

$$
\Delta u(r, \theta)=\partial_{r r}^{2} u+\frac{1}{r} \partial_{r} u+\frac{1}{r^{2}} \partial_{\theta \theta}^{2} u
$$

2.3. The heat equation on a thin disk Consider a thin (homogeneous) metal disk of radius $r_{0}>0$, whose temperature profile we shall describe in polar coordinates by means of a function $u(r, \theta, t)$. The initial temperature, at time t_{0}, is a known function $u_{0}=u_{0}(r, \theta)$ and the body is completely insulated.
(a) Write down the full initial boundary value problem (IBVP) modelling the situation described above.

Tip: what is the exterior unit normal to a disk?
(b) What is the solution of this problem in the special case when the initial temperature is constant (equal to T_{0})?
(c) Consider the problem in the special case when the initial temperature is a purely radial function, i.e. $u_{0}(r, \theta)=v_{0}(r)$. Make the ansatz that also the solution $u(r, \theta, t)$ does not depend on θ, i.e., $u(r, \theta, t)=v(r, t)$. Write down the equations satisfied by v. Prove that the quantity

$$
\int_{0}^{r_{0}} r v(r, t) d r
$$

does not depend on t. What is the phisical meaning of such quantity? Can you find the asymptotic state of this solution? The asymptotic state is the limit function $v_{\infty}(r):=\lim _{t \rightarrow \infty} v(r, t)$ and can be obtained by coupling the equations satisfied by v with the additional requirement $\partial_{t} v=0$.

