This problem set is meant to be an introduction to the use of polar coordinates.

2.1. Polar coordinates Every function $u : \mathbb{R}^2 \to \mathbb{R}$, u = u(x, y) can be expressed in polar coordinates, i.e.

$$\begin{cases} x = x(r, \theta) = r \cos(\theta) \\ y = x(r, \theta) = r \sin(\theta) \end{cases}$$

then we write $u(r, \theta) = u(x(r, \theta), y(r, \theta)).$

(a) Rewrite the following function from Cartesian coordinates to polar coordinates

$$u_1(x,y) = x^2 + y^2,$$
 $u_2(x,y) = \frac{x^2 - y^2}{x^2 + y^2},$ $u_3(x,y) = \frac{x}{y}.$

(b) Rewrite the following function from polar coordinates to Cartesian coordinates

$$v_1(r,\theta) = r^n, \qquad v_2(r,\theta) = \sin\theta\cos\theta, \qquad v_3(r,\theta) = \theta \quad (-\pi/2 < \theta < \pi/2),$$
$$v_4(r,\theta) = \theta \quad (\pi/2 < \theta < 3\pi/2).$$

2.2. The Laplace operator in polar coordinates

Using the same notation to denote polar coordinates introduced in the previous exercise, show the following statements.

(a) Use chain rule to prove

$$\partial_r u(r,\theta) = (\partial_x u) \cos \theta + (\partial_y u) \sin \theta$$
$$\partial_\theta u(r,\theta) = -(\partial_x u)r \sin \theta + (\partial_y u)r \cos \theta.$$

Now we have the following relation for the partial derivatives $\partial_x u$ and $\partial_y u$:

$$\begin{pmatrix} \partial_r u \\ \partial_\theta u \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -r\sin\theta & r\cos\theta \end{pmatrix} \begin{pmatrix} \partial_x u \\ \partial_y u \end{pmatrix}.$$

(b) By inverting some matrix, prove the following expressions for $\partial_x u$ and $\partial_y u$:

$$\partial_x u = \cos \theta (\partial_r u) - \frac{1}{r} \sin \theta (\partial_\theta u),$$

$$\partial_y u = \sin \theta (\partial_r u) + \frac{1}{r} \cos \theta (\partial_\theta u).$$

Use these formulas and chain rule to compute the direct expressions for $\partial_{xx}^2 u$ and $\partial_{yy}^2 u$ in polar coordinates, i.e.

$$\partial_{xx}^2 u = \partial_x (\partial_x u) = \cos \theta (\partial_r (\partial_x u)) - \frac{1}{r} \sin \theta (\partial_\theta (\partial_x u)) = \dots$$

1/2

ETH Zürich	Mathematik III	D-CHEM
HS 2021	Problem set 2	Prof. Dr. A. Carlotto

(c) Combine all the information above and prove the following expression for the Laplacian operator in polar coordinates

$$\Delta u(r,\theta) = \partial_{rr}^2 u + \frac{1}{r} \partial_r u + \frac{1}{r^2} \partial_{\theta\theta}^2 u.$$

2.3. The heat equation on a thin disk Consider a thin (homogeneous) metal disk of radius $r_0 > 0$, whose temperature profile we shall describe in polar coordinates by means of a function $u(r, \theta, t)$. The initial temperature, at time t_0 , is a known function $u_0 = u_0(r, \theta)$ and the body is completely insulated.

(a) Write down the full initial boundary value problem (IBVP) modelling the situation described above.

Tip: what is the exterior unit normal to a disk?

- (b) What is the solution of this problem in the special case when the initial temperature is constant (equal to T_0)?
- (c) Consider the problem in the special case when the initial temperature is a purely radial function, i.e. $u_0(r,\theta) = v_0(r)$. Make the ansatz that also the solution $u(r,\theta,t)$ does not depend on θ , i.e., $u(r,\theta,t) = v(r,t)$. Write down the equations satisfied by v. Prove that the quantity

$$\int_0^{r_0} r \, v(r,t) \, dr$$

does not depend on t. What is the phisical meaning of such quantity? Can you find the asymptotic state of this solution? The asymptotic state is the limit function $v_{\infty}(r) := \lim_{t \to \infty} v(r, t)$ and can be obtained by coupling the equations satisfied by v with the additional requirement $\partial_t v = 0$.