3.1. Heat equation. Solve the following IBVP:

$$
\begin{array}{rlll}
u_{t}-u_{x x} & =0 & & x \in(0, \pi), t>0 \\
u(0, t) & =0 & & t>0 \\
u(\pi, t) & =0 & & t>0 \\
u(x, 0) & =\left\{\begin{array}{lll}
1 & \text { if } \frac{\pi}{3} \leq x \leq \frac{2 \pi}{3}, & \\
0 & \text { if } x<\frac{\pi}{3} \text { or } \frac{2 \pi}{3}<x .
\end{array}\right.
\end{array}
$$

3.2. Extreme points of piecewise C^{1}. Given $T>0$, let $f:(-T, T) \rightarrow \mathbb{R}$ be a function such that there exists a partition $\left\{t_{0}=-T<t_{1}<\ldots<t_{k}=T\right\}$ and a constant $C>0$ such that $f_{\mid\left(t_{i}, t_{i+1}\right)}$ is a C^{1} function and $|f(t)|+\left|f^{\prime}(t)\right| \leq C$ for all $t_{i}<t<t_{i+1}$, for $i=0,1, \ldots, k-1$.

Prove that, for any $i=0,1, \ldots, k-1$, there exists $f^{+}\left(t_{i}\right):=\lim _{t \rightarrow t_{i}^{+}} f(t)$ as well as $f^{-}\left(t_{i}\right):=\lim _{t \rightarrow t_{i}^{-}} f(t)$.
3.3. Fourier series for symmetric functions. Let f be a 2π-periodic function. Prove the following statements:
(a) If f is even, i.e. $f(-t)=f(t) \forall t$, then the real Fourier series of f has the following form

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos (k t)
$$

(b) If f is odd, i.e. $f(-t)=-f(t) \forall t$, then the real Fourier series of f has the following form

$$
\sum_{k=1}^{\infty} b_{k} \sin (k t)
$$

3.4. Fourier series I. Compute the real Fourier series (sine/cosine form) of the 2-periodic function

$$
f(x)=1-x^{2}, \quad-1<x<1
$$

3.5. Convergent series. Compute the value of the following series

$$
\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{(2 m-1)^{3}}
$$

Hint: Compute the Fourier series of 2π-periodic function $f(x)=x^{3}-\pi^{2} x$ for $x \in(-\pi, \pi)$.

