D-CHEM	Mathematik III	ETH Zürich
Prof. Dr. A. Carlotto	Problem set 3	HS 2021

3.1. Heat equation. Solve the following IBVP:

 $\begin{array}{rcl} u_t - u_{xx} & = & 0 & x \in (0, \pi) \,, \, t > 0 \,, \\ u(0,t) & = & 0 & t > 0 \,, \\ u(\pi,t) & = & 0 & t > 0 \,, \\ u(x,0) & = & \begin{cases} 1 & & \text{if } \frac{\pi}{3} \le x \le \frac{2\pi}{3} \,, \\ 0 & & \text{if } x < \frac{\pi}{3} \text{ or } \frac{2\pi}{3} < x \,. \end{cases} \end{array}$

3.2. Extreme points of piecewise C^1 . Given T > 0, let $f : (-T,T) \to \mathbb{R}$ be a function such that there exists a partition $\{t_0 = -T < t_1 < \ldots < t_k = T\}$ and a constant C > 0 such that $f_{|(t_i,t_{i+1})}$ is a C^1 function and $|f(t)| + |f'(t)| \leq C$ for all $t_i < t < t_{i+1}$, for $i = 0, 1, \ldots, k - 1$.

Prove that, for any i = 0, 1, ..., k - 1, there exists $f^+(t_i) := \lim_{t \to t_i^+} f(t)$ as well as $f^-(t_i) := \lim_{t \to t_i^-} f(t)$.

3.3. Fourier series for symmetric functions. Let f be a 2π -periodic function. Prove the following statements:

(a) If f is even, i.e. $f(-t) = f(t) \forall t$, then the real Fourier series of f has the following form

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(kt\right).$$

(b) If f is odd, i.e. $f(-t) = -f(t) \forall t$, then the real Fourier series of f has the following form

$$\sum_{k=1}^{\infty} b_k \sin\left(kt\right).$$

3.4. Fourier series I. Compute the real Fourier series (sine/cosine form) of the 2-periodic function

$$f(x) = 1 - x^2$$
, $-1 < x < 1$.

3.5. Convergent series. Compute the value of the following series

$$\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{(2m-1)^3} \, \cdot \,$$

Hint: Compute the Fourier series of 2π -periodic function $f(x) = x^3 - \pi^2 x$ for $x \in (-\pi, \pi)$.