6.1. Integral given the Fourier transform Let f be an integrable function such that

$$
\hat{f}(\xi)=\frac{1}{3+4 \xi^{2}}
$$

Compute

$$
\int_{\mathbb{R}} f(x) d x
$$

6.2. Moments of function given the Fourier transform Let f be an integrable function such that

$$
\hat{f}(\xi)=\frac{3}{5+i \xi}
$$

Compute the following integrals:

$$
\int_{\mathbb{R}} f(x) \mathrm{d} x, \quad \int_{\mathbb{R}} x f(x) \mathrm{d} x, \quad \int_{\mathbb{R}} x^{2} f(x) \mathrm{d} x .
$$

6.3. Tricky integral via Fourier transform With the help of the Fourier transform of $f(x)=\mathrm{e}^{-x^{2}}$, that has been computed in class (cf. Lecture 6), prove that

$$
\int_{\mathbb{R}} x^{2} \mathrm{e}^{-x^{2}} \mathrm{~d} x=\frac{\sqrt{\pi}}{2}
$$

6.4. Computing Fourier transform on \mathbb{R}. Fix $a \neq 0$. Compute the Fourier transform of

$$
g(x)=\mathrm{e}^{-a|x|} \quad \text { and } \quad h(x)=\operatorname{sign}(x) \mathrm{e}^{-a|x|}
$$

where $\operatorname{sign}(x)$ is the sign function, that we here agree to be defined by

$$
\operatorname{sign}(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -1 & \text { if } x<0\end{cases}
$$

