7.1. Fourier transform of the indicator function of an interval As in Lecture 7 , let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the indicator function of $(-1,1)$, namely

$$
f(x):= \begin{cases}1 & \text { if }-1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the convolution product $f * f$.
(b) Without performing any explicit computation (you may use only part (a) and the basic properties of the Fourier transform) determine the Fourier transform of the function

$$
g(x):= \begin{cases}T+C-x & \text { if } C \leq x \leq C+T \\ T-C+x & \text { if } C-T \leq x \leq C \\ 0 & \text { otherwise }\end{cases}
$$

in terms of the positive parameters $T, C>0$.
7.2. Fourier transform. Compute the Fourier transform of the following functions
(a) $f(x):=x^{2} e^{-2|x|}$
(b) $g(x):=\sin (2 x+1) e^{-4(x+1)^{2}}$

Hint: For (a), compute the Fourier transform of $h(x)=e^{-2|x|}$ and find the connection with the Fourier transform of f. For (b) use the basic properties of the Fourier transform to reduce the problem to the computation of the Fourier transform of $e^{-x^{2}}$ (which was performed in class).
7.3. Fourier transform. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous integrable function and let $a \in \mathbb{R}$ be a real number. Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ as $f(x):=g(x+a)-g(x)$. Show that there are infinitely many values $\xi \in \mathbb{R}$ such that $\hat{f}(\xi)=0$.
7.4. Solving an ODE with the Fourier transform. Find a solution $u: \mathbb{R} \rightarrow \mathbb{R}$ to the ODE

$$
-u^{\prime \prime}(x)+u(x)=e^{-|x|}
$$

Hint: Take the Fourier transform of the whole ODE and recall that, for any integrable $f, \mathcal{F}(f * f)=\mathcal{F}(f)^{2}$.

