9.1. Homogeneous wave equation on the real line. Let $u: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ be a solution of the PDE

$$
\begin{cases}u_{t t}-u_{x x}=0 & \text { for } x \in \mathbb{R}, t>0 \\ u(x, 0)=e^{-x^{2}} & \text { for } x \in \mathbb{R} \\ u_{t}(x, 0)=0 & \text { for } x \in \mathbb{R}\end{cases}
$$

1. Find the PDE satisfied by the Fourier transform of u with respect to the x variable.
2. Solve the ODE satisfied by $t \mapsto \hat{u}(\xi, t)$ when $\xi \in \mathbb{R}$ is fixed.
3. By computing the inverse Fourier transform of \hat{u}, find an explicit formula for u.
9.2. Inhomogeneous wave equation on the real line. Let $u: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ be a solution of the PDE

$$
\begin{cases}u_{t t}-4 u_{x x}=\sin (4 t)+x & \text { for } x \in \mathbb{R}, t>0 \\ u(x, 0)=2 x^{2} & \text { for } x \in \mathbb{R} \\ u_{t}(x, 0)=6 \cos (x) & \text { for } x \in \mathbb{R}\end{cases}
$$

1. Find a particular solution v of the equation (which does not necessarily satisfy the initial conditions) by employing the Ansatz $v(x, t)=v_{1}(x)+v_{2}(t)$.
2. Write down the PDE satisfied by $w:=u-v$.
3. Use d'Alembert's formula to find an explicit formula for w and deduce an explicit formula for u.
