1.1. Linear ODE with constant coefficients. Solve the following differential equations for $y(x)$:
(a) $y^{\prime \prime}-\omega^{2} y=0$,
(b) $y^{\prime \prime}+\omega^{2} y=0$,
(c) $y^{\prime \prime}+3 y^{\prime}+4 y=\cos (2 x)$.

Solution:
(a) If we insert $y(x)=e^{\lambda x}$ into the differential equation, we obtain the characteristic polynomial $\chi(\lambda)=\lambda^{2}-\omega^{2}$, which has two zeros $\lambda_{1}=\omega$ and $\lambda_{2}=-\omega$.

Thus the general solution of this differential equation is

$$
y(x)=A e^{\omega x}+B e^{-\omega x}
$$

with constants $A, B \in \mathbb{R}$. The solution can also be written as

$$
y(x)=C \sinh (\omega x)+D \cosh (\omega x), \quad C, D \in \mathbb{R}
$$

(b) If we insert $y(x)=e^{\lambda x}$ into the differential equation, we obtain the characteristic polynomial $\chi(\lambda)=\lambda^{2}+\omega^{2}$, with the two zeros $\lambda_{1}=i \omega$ and $\lambda_{2}=-i \omega$. Thus the general real solution of this differential equation is given by

$$
y(x)=A \sin (\omega x)+B \cos (\omega x), \quad A, B \in \mathbb{R}
$$

(c) The characteristic polynomial of the homogeneous problem is $\chi(\lambda)=\lambda^{2}+3 \lambda+$ 4 and has the zeros $\lambda_{1,2}=\frac{1}{2}(-3 \pm i \sqrt{7})$. Thus the general solution of the homogeneous problem is

$$
y_{h}(x)=A e^{-\frac{3}{2} x} \sin \left(\frac{\sqrt{7}}{2} x\right)+B e^{-\frac{3}{2} x} \cos \left(\frac{\sqrt{7}}{2} x\right)
$$

We compute the special solution using the Ansatz

$$
y_{p}(x)=A \cos (2 x)+B \sin (2 x)
$$

Then we have

$$
-6 A \sin (2 x)+6 B \cos (2 x)=\cos (2 x)
$$

Thus, the special solution is $y_{p}(x)=\frac{1}{6} \sin (2 x)$ and thus the general solution is

$$
y(x)=A e^{-\frac{3}{2} x} \sin \left(\frac{\sqrt{7}}{2} x\right)+B e^{-\frac{3}{2} x} \cos \left(\frac{\sqrt{7}}{2} x\right)+\frac{1}{6} \sin (2 x) .
$$

1.2. First-order ODE with variable coefficients. Solve the following differential equations for $y(x)$:
(a) $y^{\prime}-x^{2} y=0, x \in \mathbb{R}$,
(b) $y^{\prime}-y / x=x, x>0$,
(c) $y^{\prime}+x^{5} y=x^{6}+1, x \in \mathbb{R}$,
(d) $y^{\prime}=(x+y)^{2}$,
(e) $y^{\prime}-y=\sin x$,
(f) $y y^{\prime}-(1+y) x^{2}=0$.

Tips: ODE of 1st order may be solved by separation of variables or by substitution. For (c), multiply the equation with $\mathrm{e}^{f(x)}$, where f is a suitable function. For (f), y is not an explicit function of x. It is enough to write a relation between the function y and the variable x that does not contain any derivatives of y.

Solution:

(a) Assuming that the value of the solution at a point is $y \neq 0$, we have

$$
\frac{y^{\prime}}{y}=x^{2} \Longrightarrow \frac{\mathrm{~d} \log (|y|)}{\mathrm{d} x}=x^{2} \Longrightarrow \log (|y|)=C+\frac{x^{3}}{3} \Longrightarrow|y(x)|=e^{\frac{1}{3} x^{3}+C}=K e^{\frac{1}{3} x^{3}} .
$$

We notice that the constant solution $y(x)=0$ is also valid. Therefore the general solution is given by

$$
y(x)=K e^{\frac{1}{3} x^{3}}, \quad K \in \mathbb{R}
$$

(b) First we search for a solution of the homogeneous problem $y^{\prime}-y / x=0$. Exactly with the same reasoning used in (a), we get

$$
\log (|y|)=C+\int \frac{\mathrm{d} x}{x} \Longrightarrow|y(x)|=e^{C} x=K x
$$

hence, the solution of the homogeneous equation is $y=(\pm) x=K x$ with $K \in \mathbb{R}$.
The solution of the inhomogeneous equation can be found with the ansatz $y(x)=K(x) x$. By inserting this into the equation we obtain $K^{\prime}(x) x=x$. Thus $K(x)=x$ provides a special solution of the inhomogeneous problem and therefore the general solution of the inhomogeneous equation is

$$
y(x)=x^{2}+K x
$$

(c) Multiplying the equation with the strictly positive function $e^{\frac{x^{6}}{6}}$ gives

$$
e^{\frac{x^{6}}{6}} y^{\prime}(x)+x^{5} e^{\frac{x^{6}}{6}} y(x)=e^{\frac{x^{6}}{6}}\left(x^{6}+1\right)
$$

Notice that the left side can be written as $\left(e^{\frac{x^{6}}{6}} y\right)^{\prime}$. For the term on the right side, note that

$$
e^{\frac{x^{6}}{6}}\left(x^{6}+1\right)=x \cdot\left(x^{5} e^{\frac{x^{6}}{6}}\right)+1 \cdot e^{\frac{x^{6}}{6}}=\left(x e^{\frac{x^{6}}{6}}\right)^{\prime},
$$

Hence it follows that $e^{\frac{x^{6}}{6}} y(x)-x e^{\frac{x^{6}}{6}}$ is a constant function. The general solution of the differential equation is

$$
y(x)=C e^{-\frac{x^{6}}{6}}+x
$$

for any $C \in \mathbb{R}$.
(d) We use the substitution $z=x+y$, i.e. $z^{\prime}=1+y^{\prime}$. The ODE then becomes $z^{\prime}=z^{2}+1$, i.e. separable. By separating the variables we get:

$$
\frac{\mathrm{d} z}{\mathrm{~d} x}=z^{2}+1 \Rightarrow \int \frac{\mathrm{~d} z}{z^{2}+1}=\int \mathrm{d} x \Rightarrow \arctan z=x+c, \quad C \in \mathbb{R}
$$

Thus we obtain the solution: $z(x)=\tan (x+C), C \in \mathbb{R}$, so $y(x)=\tan (x+C)-x$, $C \in \mathbb{R}$.
(e) We multiply both sides by $\rho(x)=\mathrm{e}^{-x}$ to get

$$
\begin{aligned}
\mathrm{e}^{-x} y^{\prime}(x)-\mathrm{e}^{-x} y & =\mathrm{e}^{-x} \sin x \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}\left(y(x) \mathrm{e}^{-x}\right)=\mathrm{e}^{-x} \sin x \\
\Rightarrow y(x) & =\mathrm{e}^{x} \int \mathrm{e}^{-x} \sin x \mathrm{~d} x+C \mathrm{e}^{x} \quad C \in \mathbb{R}
\end{aligned}
$$

The indefinite integral is calculated by partial integration:

$$
\int \mathrm{e}^{-x} \sin x \mathrm{~d} x=-\frac{1}{2} \mathrm{e}^{-x}(\sin x+\cos x)
$$

thus we get the solution: $y(x)=-\frac{1}{2}(\sin x+\cos x)+C \mathrm{e}^{x}, C \in \mathbb{R}$.
(f) We see that the constant function $y \equiv-1$ solves the ODE. Now we look for the non-constant solutions. By separating the variables we get:

$$
y \frac{\mathrm{~d} y}{\mathrm{~d} x}=(1+y) x^{2} \Rightarrow \int \frac{y}{1+y} \mathrm{~d} y=\int x^{2} \mathrm{~d} x \Rightarrow \int\left(1-\frac{1}{1+y}\right) \mathrm{d} y=\int x^{2} \mathrm{~d} x
$$

thus we get the implicit relation for the non-constant solutions of the ODE:

$$
y-\log |1+y|=\frac{x^{3}}{3}+C, \quad C \in \mathbb{R}
$$

1.3. Initial and boundary value problems. Solve the following problems:
(a) $\left\{\begin{aligned} y^{\prime} & =2 \mathrm{e}^{2 x} \quad \forall x \in \mathbb{R}, \\ y(0) & =2 .\end{aligned}\right.$
(b) $\left\{\begin{array}{rl}y^{\prime \prime}(x)+4 y(x) & =0 \\ y(0) & =0, \\ y(L) & =2 .\end{array} \quad \forall x \in(0, L)(L>0\right.$ given $)$,

Solution:

(a) We can get the general solution of ODE by direct integration:

$$
y^{\prime}=2 \mathrm{e}^{2 x} \Rightarrow y(x)=\int 2 \mathrm{e}^{2 x} \mathrm{~d} x+C \Rightarrow y(x)=\mathrm{e}^{2 x}+C, \quad C \in \mathbb{R}
$$

The initial condition requires $2=y(0)=1+C$, so $C=1$ and the solution of the initial value problem is

$$
y(x)=\mathrm{e}^{2 x}+1
$$

(b) The general solution of the differential equation $y^{\prime \prime}+4 y=0$ has the following form:

$$
y(x)=A \sin (2 x)+B \cos (2 x)
$$

The boundary conditions are

$$
\begin{aligned}
& 0=y(0)=B \\
& 2=y(L)=A \sin (2 L)+B \cos (2 L)
\end{aligned}
$$

Since $B=0$, the second equation is $A \sin (2 L)=2$. This equation has exactly then a solution for A, when $\sin (2 L) \neq 0$. So we have, for $L=\frac{\pi}{2} n$ with $n \in \mathbb{Z}$ the problem has no solution. For all other $L \in \mathbb{R}$ the unique solution of the boundary value problem is given by

$$
y(x)=\frac{2}{\sin (2 L)} \sin (2 x)
$$

1.4. Spring pendulum A spring pendulum consists of a coil spring and a mass test piece (with mass m) attached to it, which can move in a straight line in the direction in which the spring extends or retracts. Let $K>0$ be the spring constant and $\omega^{2}:=K / m$, then the equation of motion of the spring pendulum is given by

$$
\begin{equation*}
\ddot{x}(t)+\omega^{2} x(t)=0 \tag{1}
\end{equation*}
$$

Find the solution of the differential equation (1):
(a) with the initial conditions $x(0)=1, \dot{x}(0)=2 \omega$.
(b) with the boundary conditions $x(0)=1, x\left(\frac{\pi}{2 \omega}\right)=1$.

Solution: The zeros of the characteristic polynomial are

$$
p(\lambda)=\lambda^{2}+\omega^{2}=0 \Rightarrow \lambda_{1,2}= \pm i \omega .
$$

Thus the general solution is given by

$$
x_{\text {all }}(t)=C_{1} \cos (\omega t)+C_{2} \sin (\omega t), \quad C_{1}, C_{2} \in \mathbb{R}
$$

(a) With the initial conditions $x(0)=1$ and $\dot{x}(0)=2 \omega$ we have

$$
\begin{aligned}
x(0)=1 & \Rightarrow C_{1} \cos (0)+C_{2} \sin (0)=C_{1}=1, \\
\dot{x}(0)=2 \omega & \Rightarrow-C_{1} \omega \sin (0)+C_{2} \omega \cos (0)=C_{2} \omega=2 \omega .
\end{aligned}
$$

Thus $C_{1}=1$ and $C_{2}=2$. Then the solution is

$$
x(t)=\cos (\omega t)+2 \sin (\omega t) .
$$

(b) With the boundary conditions $x(0)=1$ and $x\left(\frac{\pi}{2 \omega}\right)=1$ we have

$$
\begin{aligned}
x(0)=1 & \Rightarrow C_{1} \cos (0)+C_{2} \sin (0)=C_{1}=1, \\
x\left(\frac{\pi}{2 \omega}\right)=1 & \Rightarrow C_{1} \cos \left(\frac{\pi}{2}\right)+C_{2} \sin \left(\frac{\pi}{2}\right)=C_{2}=1 .
\end{aligned}
$$

Thus $C_{1}=C_{2}=1$. Then the solution is

$$
x(t)=\cos (\omega t)+\sin (\omega t) .
$$

1.5. Classification of PDEs I. Suppose a, b, f and g are differentiable functions. Tell whether the following differential equations in $u(x, y)$ are linear and homogeneous, linear and inhomogeneous, or non-linear and tell their order. For every linear differential equation of 2nd order, tell whether the equation is elliptic, hyperbolic or parabolic.
(a) $u_{x x x}+u_{y}=f$
(b) $a u_{x x}+b u^{2}=0$
(c) $u_{x} u_{y}=0$
(d) $2 u_{x x}+u_{x}+2 u_{x y}+2 u_{y y}=0$
(e) $\left(1-x^{2}\right) u_{x x}-2 x y u_{x y}+\left(1-y^{2}\right) u_{y y}=g$ in $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}>1\right\}$.

Solution:
(a) linear and inhomogeneous, 3rd order
(b) non-linear, 2nd order
(c) non-linear, 1st order
(d) linear and homogeneous, 2 nd order. The discriminant of the equation is (in this case $a=2, b=2, c=2) b^{2}-4 a c=-12<0$, so the PDE is elliptic.
(e) linear and inhomogeneous, 2 nd order. The discriminant of the equation is (in this case $a=1-x^{2}, b=2 x y, c=1-y^{2}$)

$$
b^{2}-4 a c=4\left(x^{2} y^{2}-\left(1-x^{2}\right)\left(1-y^{2}\right)\right)=4\left(x^{2}+y^{2}-1\right)>0 \quad \text { in } \Omega
$$

so the PDE is hyperbolic.

1.6. Classification of PDEs II.

Suppose a, b and g differentiable functions with $g>0$.
Tell whether the following differential equations in $u(x, y)$ are linear and homogeneous, linear and inhomogeneous, or non-linear and tell their order. For every linear differential equation of 2 nd order, tell whether the equation is elliptic, hyperbolic or parabolic.
(a) $a u_{x x x}+b\left(u^{4}+u\right)=0$
(b) $a^{2} u_{x x}+u_{x} u_{y}=1$
(c) $4 u_{x x}+u_{x}+u_{x y}+6 u_{y y}=0$
(d) $\left(x^{2}-2\right) u_{x x}+4 x y u_{x y}+\left(y^{2}-2\right) u_{y y}=g$ in $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}>16\right\}$.

Solution:

(a) non-linear, 3rd order
(b) non-linear, 2nd order
(c) linear, homogeneous, 2 nd order. The discriminant of the equation is (in this case $a=4, b=1, c=6) b^{2}-4 a c=-95<0$, so the PDE is elliptic.
(d) linear, inhomogeneous, 2 nd order. The discriminant of the equation is (in this case $a=x^{2}-2, b=4 x y, c=y^{2}-2$)

$$
\begin{aligned}
b^{2}-4 a c & =4\left(4 x^{2} y^{2}-\left(x^{2}-2\right)\left(y^{2}-2\right)\right)=4\left(2\left(x^{2}+y^{2}\right)-4+3 x^{2} y^{2}\right) \\
& >4\left(2 \cdot 16-4+3 x^{2} y^{2}\right)=112+12 x^{2} y^{2}>0 \quad \text { in } \Omega
\end{aligned}
$$

so the PDE is hyperbolic.

