10.1. PDE under change of coordinates For each of the following 3 questions, you have to provide a numeric or symbolic answer. An example of a numeric answer is $-27 \sqrt{2}$; an example of a symbolic answer is a^{3} / b or $u_{t}=u_{x x}$. Insert your answers in the following grid. Write clearly so that there is no ambiguity. You do not have to provide any justification for your answers.

Question	1	2	3
Answer	$25 v_{\eta \eta}=16 v_{\xi \xi}$	$8 v_{\xi \xi}+6 v_{\xi \eta}+v_{\eta \eta}=0$	$4 v_{\xi \xi}+\frac{8 \eta}{\xi} v_{\xi \eta}+\left(\frac{4 \eta^{2}}{\xi^{2}}-\frac{\xi^{2}}{4}\right) v_{\eta \eta}=0$

Let $u(x, t)$ be a function satisfying $u_{x x}=u_{t t}$. For each of the following change of coordinates, write the PDE satisfied by write the PDE satisfied by $v(\xi, \eta)=$ $u(\xi(x, t), \eta(x, t))$.

1. $\xi=4 x, \eta=5 t$.
2. $\xi=x+3 t, \eta=t$.
3. $\xi=2 x, \eta=x t$.
10.2. IVP under change of coordinates For each of the following 3 questions, you have to provide a numeric or symbolic answer. An example of a numeric answer is $-27 \sqrt{2}$; an example of a symbolic answer is a^{3} / b or $u_{t}=u_{x x}$. Insert your answers in the following grid. Write clearly so that there is no ambiguity. You do not have to provide any justification for your answers.

Question	1	2	3
Answer	$\left\{\begin{array}{l}25 v_{\eta \eta}=16 v_{\xi \xi} \\ v(\xi, 0)=f(\xi) \\ 5 v_{\eta}(\xi, 0)=g(\xi)\end{array}\right.$	$\left\{\begin{array}{l}8 v_{\xi \xi}+6 v_{\xi \eta}+v_{\eta \eta}=0 \\ v(\xi, 0)=f(\xi) \\ 3 u_{\xi}(\xi, 0)+v_{\eta}(\xi, 0)=g(\xi)\end{array}\right.$	$\left\{\begin{array}{l}4 v_{\xi \xi}+\frac{8 \eta}{\xi} v_{\xi \eta}+\left(\frac{4 \eta^{2}}{\xi^{2}}-\frac{\xi^{2}}{4}\right) v_{\eta \eta}=0 \\ v(\xi, 0)=f(\xi) \\ \frac{\xi}{2} v_{\eta}(\xi, 0)=g(\xi)\end{array}\right.$

Consider the following IVP:

$$
\begin{cases}u_{t t}=u_{x x} & \text { for } x \in \mathbb{R} \text { and } t>0 \\ u(x, 0)=f(x) & \text { for } x \in \mathbb{R} \\ u_{t}(x, 0)=g(x) & \text { for } x \in \mathbb{R}, t>0\end{cases}
$$

For each of the following change of coordinates, write the corresponding IVP for $v(\xi, \eta)=u(\xi(x, t), \eta(x, t))$.

1. $\xi=4 x, \eta=5 t$.
2. $\xi=x+3 t, \eta=t$.
3. $\xi=2 x, \eta=x t$.

10.3. Vanishing mixed derivative

Let $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a twice differentiable function such that $u_{x y}=0$ vanishes identically. Then show that there exists (twice differentiable) functions $a, b: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
u(x, y)=a(x)+b(y), \text { for all }(x, y) \in \mathbb{R}^{2}
$$

(This is the reason why it is convenient, e.g. in studying the 1 D wave equation, to introduce the canonical coordinates).

Solution:

For notational convenience, let $\left(x_{0}, y_{0}\right)=(0,0)$, the origin. The idea to solve this exercise is essentially as follows: given any (x, y) we take the equation $u_{x y}=0$, first integrate horizontally from x_{0} to x, and then vertically from y_{0} to y. More precisely, for any $t \in \mathbb{R}$ we have that

$$
u_{y}(x, t)-u_{y}\left(x_{0}, t\right)=\int_{x_{0}}^{x} u_{x y}(s, t) d s=0
$$

thus

$$
u_{y}(x, t)=u_{y}\left(x_{0}, t\right)
$$

Hence, integrating both the left-hand side and the right-hand side of this equation for $y_{0} \leq t \leq y$ we then get

$$
u(x, y)-u\left(x, y_{0}\right)=u\left(x_{0}, y\right)-u\left(x_{0}, y_{0}\right)
$$

which we can rewrite as

$$
u(x, y)=u\left(x, y_{0}\right)+u\left(x_{0}, y\right)-u\left(x_{0}, y_{0}\right)
$$

If we simply let $a(x)=u\left(x, y_{0}\right)$ and $b(y)=u\left(x_{0}, y\right)-u\left(x_{0}, y_{0}\right)$ the conclusion follows.

10.4. Pressure Wave

$2 / 6$

Consider the following equation:

$$
\left\{\begin{aligned}
P_{t t}-P_{x x} & =0 \\
P(x, 0) & = \begin{cases}2, & (x, t) \in \mathbb{R} \times \mathbb{R}_{+} \\
0, & |x| \leq 1\end{cases} \\
P_{t}(x, 0) & = \begin{cases}1, & |x| \leq 1 \\
0, & |x|>1\end{cases}
\end{aligned}\right.
$$

(a) For which points in the domain does $P(x, t)$ automatically vanish? (Justify your answer with a drawing, without computing.)
(b) By using the d'Alembert's formula, compute $P(0, t)$ for all $t \geq 0$.
(c) (Asymptotic behaviour for arbitrary x as $t \rightarrow \infty$). Show that there is a constant $P_{\infty} \neq 0$ such that

$$
\lim _{t \rightarrow \infty} P(x, t)=P_{\infty}
$$

for every x in \mathbb{R}. That means that the "pressure" in the whole room is constant and not equal to zero after the sound has subsided.

Solution:

(a)

$P(x, t)=0$ when $x+t<-1$ or $x-t>1$.
(b) By d'Alembert's formula, we have

$$
P(x, t)=\frac{1}{2}\left(f(x+t)-f(x-t)+\int_{x-t}^{x+t} g(s) d s\right)
$$

where

$$
f(s)=\left\{\begin{array}{ll}
2, & |s| \leq 1 \\
0, & |s|>1
\end{array} \quad \text { and } g(s)=\left\{\begin{array}{ll}
1, & |s| \leq 1 \\
0, & |s|>1
\end{array} .\right.\right.
$$

By the graph in (a), we consider five cases:
Case 1. $x+t<-1$ or $x-t>1$.
We have $f(x+t)=0, f(x-t)=0, g(s)=0$ for all $s \in(x-t, x+t)$. Therefore

$$
P(x, t)=0
$$

Case 2. $x+t>1$ and $x-t<-1$.
Similarly we have $f(x+t)=0, f(x-t)=0$. We compute $\int_{x-t}^{x+t} g(s) d s$:

$$
\int_{x-t}^{x+t} g(s) d s=\int_{-1}^{1} g(s) d s=\left.s\right|_{-1} ^{1}=2
$$

Hence

$$
P(x, t)=\frac{1}{2} \int_{x-t}^{x+t} g(s) d s=1
$$

Case 3. $|x+t| \leq 1$ and $|x-t| \leq-1$.
We have $f(x+t)=2$ and $f(x-t)=2$. Compute $\int_{x-t}^{x+t} g(s) d s$ and we have

$$
\int_{x-t}^{x+t} g(s) d s=\left.s\right|_{x-t} ^{x+t}=2 t
$$

Hence

$$
P(x, t)=2+t
$$

Case 4. $|x+t| \leq 1$ and $x-t<-1$.
We have $f(x+t)=2$ and $f(x-t)=0$. We compute

$$
\int_{x-t}^{x+t} g(s) d s=\int_{-1}^{x+t} g(s) d s=\left.s\right|_{-1} ^{x+t}=x+t+1
$$

Hence

$$
P(x, t)=1+\frac{1}{2}(1+x+t)
$$

Case 5. $|x-t| \leq 1$ and $x+t>1$.

We have $f(x+t)=0$ and $f(x-t)=2$. We compute

$$
\int_{x-t}^{x+t} g(s) d s=\int_{x-t}^{1} g(s) d s=\left.s\right|_{x-t} ^{1}=1-x+t
$$

Hence

$$
P(x, t)=1+\frac{1}{2}(1-x+t)
$$

Now we conclude:

$$
P(x, t)= \begin{cases}0, & x+t<-1 \text { or } x-t>1 \\ 1, & x+t>1 \text { and } x-t<-1 \\ 2+t, & |x+t| \leq 1 \text { and }|x-t| \leq-1 \\ 1+\frac{1}{2}(1+x+t), & |x+t| \leq 1 \text { and } x-t<-1 \\ 1+\frac{1}{2}(1-x+t), & |x-t| \leq 1 \text { and } x+t>1\end{cases}
$$

(c) We fix $x \in \mathbb{R}$. For large t we have $x+t>1$ and $x-t<-1$, so we are in Case 3. from (b). This gives $P_{\infty}=1$ and we get

$$
\lim _{t \rightarrow \infty} P(x, t)=P_{\infty}=1
$$

10.5. Initial value problem on the real line Consider the following PDE:

$$
\begin{cases}u_{t t}-2 u_{t x}=24 u_{x x} & \text { for } x \in \mathbb{R}, t>0 \\ u(x, 0)=0 & \text { for } x \in \mathbb{R}, \\ u_{t}(x, 0)=\sin (x) & \text { for } x \in \mathbb{R} .\end{cases}
$$

(a) Let $v: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ be the function such that $v(x, t)=u(x-t, t)$ (or equivalently, consider the change of variables $\left.\left(x^{\prime}, t^{\prime}\right)=(x-t, t)\right)$. Compute the PDE satisfied by v.
(b) Using d'Alembert's formula, obtain a formula for v and deduce a formula for u.

Solution: Standard computations yield

$$
\begin{aligned}
\partial_{x} u & =\partial_{x} v, \\
\partial_{t} u & =\partial_{t} v+\partial_{x} v, \\
\partial_{x} u & =\partial_{x x} v, \\
\partial_{x t} u & =\partial_{x t} v+\partial_{x x} v, \\
\partial_{t t} u & =\partial_{t t} v+2 \partial_{x t} v+\partial_{x x} v .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
0 & =u_{t t}-2 u_{t x}-24 u_{x x}=\partial_{t t} v+2 \partial_{x t} v+\partial_{x x} v-2 \partial_{x t} v-2 \partial_{x x} v-24 v_{x x}=\partial_{t t} v-25 v_{x x} \\
\sin (x) & =\partial_{t} u(x, 0)=\partial_{t} v(x, 0)+\partial_{x} v(x, 0)=\partial_{t} v(x, 0)
\end{aligned}
$$

Thus the function v satisfies the wave equation (with propagation speed $c=5$)

$$
\begin{cases}v_{t t}-25 v_{x x}=0 & \text { for } x \in \mathbb{R}, t>0 \\ v(x, 0)=0 & \text { for } x \in \mathbb{R} \\ v_{t}(x, 0)=\sin (x) & \text { for } x \in \mathbb{R}\end{cases}
$$

Applying d'Alembert formula we obtain

$$
v(x, t)=\frac{1}{10} \int_{x-5 t}^{x+5 t} \sin (\xi) d \xi=\frac{\cos (x-5 t)-\cos (x+5 t)}{10}
$$

Finally, since $u(x, t)=v(x+t, t)$, we get

$$
u(x, t)=v(x+t, t)=\frac{\cos (x-4 t)-\cos (x+6 t)}{10}
$$

