3.1. Heat equation. Solve the following IBVP:

$$\begin{array}{rcl} u_t - u_{xx} & = & 0 & & x \in (0, \pi) \,, \, t > 0 \,, \\ u(0,t) & = & 0 & & t > 0 \,, \\ u(\pi,t) & = & 0 & & t > 0 \,, \\ u(x,0) & = & \begin{cases} 1 & & \text{if } \frac{\pi}{3} \le x \le \frac{2\pi}{3} \,, \\ 0 & & \text{if } x < \frac{\pi}{3} \text{ or } \frac{2\pi}{3} < x \,. \end{cases} \end{array}$$

Solution: Since we have null Dirichlet boundary conditions, following the discussion given in class (Lecture 3) we use the following Ansatz

$$u(x,t) = \sum_{n=1}^{\infty} A_n e^{-n^2 t} \sin(nx) \,.$$

Since we only have sin functions as a basis, we compute the Fourier series of the odd extension of u(x,0) with period 2π

$$A_n = \frac{2}{\pi} \int_0^\pi u(x,0)\sin(nx)\,dx = \frac{2}{\pi} \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}}\sin(nx)\,dx = \frac{2}{n\pi} \Big[\cos\left(\frac{n\pi}{3}\right) - \cos\left(\frac{2n\pi}{3}\right)\Big]\,.$$

Notice that the sequence $a_n := \cos\left(\frac{n\pi}{3}\right) - \cos\left(\frac{2n\pi}{3}\right)$ is periodic with period 6 and its values are $a_1 = 1, a_2 = 0, a_3 = -2, a_4 = 0, a_5 = 1, a_6 = 0, \dots$

Thus, the solution of the original problem is given by

$$u(x,t) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{a_n}{n} e^{-n^2 t} \sin(nx) \,.$$

3.2. Extreme points of piecewise C^1 . Given T > 0, let $f : (-T,T) \to \mathbb{R}$ be a function such that there exists a partition $\{t_0 = -T < t_1 < \ldots < t_k = T\}$ and a constant C > 0 such that $f_{|(t_i,t_{i+1})}$ is a C^1 function and $|f(t)| + |f'(t)| \leq C$ for all $t_i < t < t_{i+1}$, for $i = 0, 1, \ldots, k - 1$.

Prove that, for any $i = 0, 1, \ldots, k-1$, there exists $f^+(t_i) := \lim_{t \to t_i^+} f(t)$ as well as $f^-(t_i) := \lim_{t \to t_i^-} f(t)$.

Solution: We prove the esistence of $f^+(t_i)$; the proof is analogous for $f^-(t_i)$. For notational convenience, without loss of generality, we assume that $t_i = 0$.

Consider the sequence $f(1), f(\frac{1}{2}), f(\frac{1}{3}), f(\frac{1}{4}), \ldots$ It is a bounded sequence of real numbers (boundedness follows from the assumption $|f| \leq C$) and therefore, by

ETH Zürich	Mathematik III	D-CHEM
HS 2021	Solutions of problem set 3	Prof. Dr. A. Carlotto

compactness, there is a subsequence $f(\frac{1}{n_1}), f(\frac{1}{n_2}), f(\frac{1}{n_3}), \ldots$ which converges to a number x. We will prove that $f^+(0) = x$.

Take any $\varepsilon > 0$ and choose $k \in \mathbb{N}$ such that $\frac{1}{n_k} < \varepsilon$ and $|f(\frac{1}{n_k}) - x| < \varepsilon$ (we can always find it since $n_k \to \infty$). By the triangle inequality and the fundamental theorem of calculus we have

$$|f(\varepsilon) - x| \le \left| f(\varepsilon) - f\left(\frac{1}{n_k}\right) \right| + \left| f\left(\frac{1}{n_k}\right) - x \right| \le \int_{\frac{1}{n_k}}^{\varepsilon} |f'(t)| \, dt + \varepsilon \le C \left| \varepsilon - \frac{1}{n_k} \right| + \varepsilon \le (1 + C)\varepsilon.$$

From the latter inequality, using the definition of limit, one deduce

$$\lim_{\varepsilon \to 0^+} f(\varepsilon) = x \,,$$

which is what we wanted to prove.

3.3. Fourier series for symmetric functions. Let f be a 2π -periodic function. Prove the following statements:

(a) If f is even, i.e. $f(-t) = f(t) \ \forall t$, then the Fourier series of f has the following form

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(kt\right).$$

(b) If f is odd, i.e. $f(-t) = -f(t) \forall t$, then the Fourier series of f has the following form

$$\sum_{k=1}^{\infty} b_k \sin\left(kt\right).$$

Solution:

(a) The coefficients b_k have the following form

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \sin(ks) ds, \ k \ge 1.$$

Since

$$\int_{-\pi}^{\pi} f(s) \sin(ks) ds = \int_{-\pi}^{0} f(s) \sin(ks) ds + \int_{0}^{\pi} f(s) \sin(ks) ds$$

(substitution $s = -t$) = $\int_{0}^{\pi} f(-t) \sin(-kt) dt + \int_{0}^{\pi} f(s) \sin(ks) ds$
(f is even) = $\int_{0}^{\pi} -f(t) \sin(kt) dt + \int_{0}^{\pi} f(s) \sin(ks) ds = 0$,

then $b_k = 0$ for any $k \ge 1$.

(b) The coefficients a_k have the following form

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \cos(ks) ds, \ k \ge 0.$$

Since

$$\int_{-\pi}^{\pi} f(s) \cos(ks) ds = \int_{-\pi}^{0} f(s) \cos(ks) ds + \int_{0}^{\pi} f(s) \cos(ks) ds$$

(substitution $s = -t$) = $\int_{0}^{\pi} f(-t) \cos(-kt) dt + \int_{0}^{\pi} f(s) \cos(ks) ds$
(f is odd) = $\int_{0}^{\pi} -f(t) \cos(kt) dt + \int_{0}^{\pi} f(s) \cos(ks) ds = 0$,

then $a_k = 0$ for any $k \ge 1$.

3.4. Fourier series I. Compute the real Fourier series (sine/cosine form) of the 2-periodic function

$$f(x) = 1 - x^2$$
, $-1 < x < 1$.

Solution: The Fourier series of f is given by the formula

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right] \,.$$

Since f is even, $b_k = 0$ for any $k \ge 1$. We just need to compute a_n , for n = 0, 1, 2, ...For a_0 , we have

$$a_0 = \int_{-1}^1 (1 - x^2) \, dx = 2 - \left[\frac{x^3}{3}\right]_{-1}^1 = \frac{4}{3}.$$

For a_n , we have

$$a_n = \int_{-1}^{1} (1 - x^2) \cos(n\pi x) dx$$

= $\int_{-1}^{1} \cos(n\pi x) dx - \int_{-1}^{1} x^2 \cos(n\pi x) dx$
= $-\left[\frac{\sin(n\pi x)}{n\pi}x^2\right]_{-1}^{1} + \int_{-1}^{1} \sin(n\pi x)\frac{2x}{n\pi} dx$
= $-\left[\frac{\cos(n\pi x)}{n\pi}\frac{2x}{n\pi}\right]_{-1}^{1} + 2\int_{-1}^{1}\frac{\cos(n\pi x)}{(n\pi)^2} dx$
= $-\frac{2}{(n\pi)^2}\left[\cos(n\pi) + \cos(-n\pi)\right] = -\frac{4}{(n\pi)^2}(-1)^n$
= $\frac{4}{(n\pi)^2}(-1)^{n+1}$.

3/5

Therefore, the Fourier series of f is

$$\frac{2}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \left[\frac{(-1)^{n+1}}{n^2} \cos(n\pi x) \right].$$

3.5. Convergent series. Compute the value of the following series

$$\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{(2m-1)^3} \, .$$

Hint: Compute the Fourier series of 2π -periodic function $f(x) = x^3 - \pi^2 x$ for $x \in (-\pi, \pi)$.

Solution: The function $f(x) = x^3 - \pi^2 x = x(x - \pi)(x + \pi)$ for $x \in (-\pi, \pi)$ is odd, then $a_n = 0$ and

$$b_n = \frac{2}{\pi} \int_0^{\pi} (x^3 - \pi^2 x) \sin(nx) dx$$

$$= -\frac{2}{\pi} x^3 \frac{\cos(nx)}{n} \Big|_0^{\pi} + \frac{2}{\pi} \int_0^{\pi} 3x^2 \frac{\cos(nx)}{n} dx$$

$$+ \frac{2}{\pi} \pi^2 x \frac{\cos(nx)}{n} \Big|_0^{\pi} - \frac{2}{\pi} \int_0^{\pi} \pi^2 \frac{\cos(nx)}{n} dx$$

$$= \frac{6}{\pi n} \int_0^{\pi} x^2 \cos(nx) dx$$

$$= \frac{6}{\pi n} x^2 \frac{\sin(nx)}{n} \Big|_0^{\pi} - \frac{6}{\pi n} \int_0^{\pi} 2x \frac{\sin(nx)}{n} dx$$

$$= \frac{12}{\pi n^2} x \frac{\cos(nx)}{n} \Big|_0^{\pi} - \frac{12}{\pi n^2} \int_0^{\pi} \frac{\cos(nx)}{n} dx$$

$$= \frac{12}{n^3} (-1)^n .$$

Therefore, we have

$$f(x) = \sum_{n=1}^{\infty} \frac{12}{n^3} (-1)^n \sin(nx) \,.$$

We insert $x = \pi/2$ in $\sin(n \cdot)$ and compute

$$\sin(n\pi/2) = \begin{cases} 0 & \text{if } n = 2m \\ (-1)^{m+1} & \text{if } n = 2m - 1. \end{cases}$$

4/5

D-CHEM	Mathematik III	ETH Zürich
Prof. Dr. A. Carlotto	Solutions of problem set 3	HS 2021

This gives

$$f(\pi/2) = -\frac{3\pi^3}{8} = \sum_{m=1}^{\infty} \frac{12}{(2m-1)^3} (-1)^{2m-1} (-1)^{m+1}$$

and we have

$$\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{(2m-1)^3} = \frac{\pi^3}{32}.$$