3.1. Heat equation. Solve the following IBVP:

$$
\begin{array}{rlrl}
u_{t}-u_{x x} & =0 & & x \in(0, \pi), t>0 \\
u(0, t) & =0 & & t>0 \\
u(\pi, t) & =0 & & t>0 \\
u(x, 0) & =\left\{\begin{array}{lll}
1 & \text { if } \frac{\pi}{3} \leq x \leq \frac{2 \pi}{3}, & \\
0 & \text { if } x<\frac{\pi}{3} \text { or } \frac{2 \pi}{3}<x .
\end{array}\right.
\end{array}
$$

Solution: Since we have null Dirichlet boundary conditions, following the discussion given in class (Lecture 3) we use the following Ansatz

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-n^{2} t} \sin (n x)
$$

Since we only have sin functions as a basis, we compute the Fourier series of the odd extension of $u(x, 0)$ with period 2π

$$
A_{n}=\frac{2}{\pi} \int_{0}^{\pi} u(x, 0) \sin (n x) d x=\frac{2}{\pi} \int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \sin (n x) d x=\frac{2}{n \pi}\left[\cos \left(\frac{n \pi}{3}\right)-\cos \left(\frac{2 n \pi}{3}\right)\right]
$$

Notice that the sequence $a_{n}:=\cos \left(\frac{n \pi}{3}\right)-\cos \left(\frac{2 n \pi}{3}\right)$ is periodic with period 6 and its values are $a_{1}=1, a_{2}=0, a_{3}=-2, a_{4}=0, a_{5}=1, a_{6}=0, \ldots$

Thus, the solution of the original problem is given by

$$
u(x, t)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{a_{n}}{n} e^{-n^{2} t} \sin (n x)
$$

3.2. Extreme points of piecewise C^{1}. Given $T>0$, let $f:(-T, T) \rightarrow \mathbb{R}$ be a function such that there exists a partition $\left\{t_{0}=-T<t_{1}<\ldots<t_{k}=T\right\}$ and a constant $C>0$ such that $f_{\mid\left(t_{i}, t_{i+1}\right)}$ is a C^{1} function and $|f(t)|+\left|f^{\prime}(t)\right| \leq C$ for all $t_{i}<t<t_{i+1}$, for $i=0,1, \ldots, k-1$.

Prove that, for any $i=0,1, \ldots, k-1$, there exists $f^{+}\left(t_{i}\right):=\lim _{t \rightarrow t_{i}^{+}} f(t)$ as well as $f^{-}\left(t_{i}\right):=\lim _{t \rightarrow t_{i}^{-}} f(t)$.

Solution: We prove the esistence of $f^{+}\left(t_{i}\right)$; the proof is analogous for $f^{-}\left(t_{i}\right)$. For notational convenience, without loss of generality, we assume that $t_{i}=0$.
Consider the sequence $f(1), f\left(\frac{1}{2}\right), f\left(\frac{1}{3}\right), f\left(\frac{1}{4}\right), \ldots$ It is a bounded sequence of real numbers (boundedness follows from the assumption $|f| \leq C$) and therefore, by
compactness, there is a subsequence $f\left(\frac{1}{n_{1}}\right), f\left(\frac{1}{n_{2}}\right), f\left(\frac{1}{n_{3}}\right), \ldots$ which converges to a number x. We will prove that $f^{+}(0)=x$.
Take any $\varepsilon>0$ and choose $k \in \mathbb{N}$ such that $\frac{1}{n_{k}}<\varepsilon$ and $\left|f\left(\frac{1}{n_{k}}\right)-x\right|<\varepsilon$ (we can always find it since $n_{k} \rightarrow \infty$). By the triangle inequality and the fundamental theorem of calculus we have
$|f(\varepsilon)-x| \leq\left|f(\varepsilon)-f\left(\frac{1}{n_{k}}\right)\right|+\left|f\left(\frac{1}{n_{k}}\right)-x\right| \leq \int_{\frac{1}{n_{k}}}^{\varepsilon}\left|f^{\prime}(t)\right| d t+\varepsilon \leq C\left|\varepsilon-\frac{1}{n_{k}}\right|+\varepsilon \leq(1+C) \varepsilon$.
From the latter inequality, using the definition of limit, one deduce

$$
\lim _{\varepsilon \rightarrow 0^{+}} f(\varepsilon)=x
$$

which is what we wanted to prove.
3.3. Fourier series for symmetric functions. Let f be a 2π-periodic function. Prove the following statements:
(a) If f is even, i.e. $f(-t)=f(t) \forall t$, then the Fourier series of f has the following form

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos (k t)
$$

(b) If f is odd, i.e. $f(-t)=-f(t) \forall t$, then the Fourier series of f has the following form

$$
\sum_{k=1}^{\infty} b_{k} \sin (k t)
$$

Solution:

(a) The coefficients b_{k} have the following form

$$
b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \sin (k s) d s, k \geq 1
$$

Since

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(s) \sin (k s) d s & =\int_{-\pi}^{0} f(s) \sin (k s) d s+\int_{0}^{\pi} f(s) \sin (k s) d s \\
\text { (substitution } s=-t) & =\int_{0}^{\pi} f(-t) \sin (-k t) d t+\int_{0}^{\pi} f(s) \sin (k s) d s \\
(f \text { is even }) & =\int_{0}^{\pi}-f(t) \sin (k t) d t+\int_{0}^{\pi} f(s) \sin (k s) d s=0
\end{aligned}
$$

then $b_{k}=0$ for any $k \geq 1$.
(b) The coefficients a_{k} have the following form

$$
a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \cos (k s) d s, k \geq 0
$$

Since

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(s) \cos (k s) d s & =\int_{-\pi}^{0} f(s) \cos (k s) d s+\int_{0}^{\pi} f(s) \cos (k s) d s \\
\text { (substitution } s=-t) & =\int_{0}^{\pi} f(-t) \cos (-k t) d t+\int_{0}^{\pi} f(s) \cos (k s) d s \\
(f \text { is odd }) & =\int_{0}^{\pi}-f(t) \cos (k t) d t+\int_{0}^{\pi} f(s) \cos (k s) d s=0
\end{aligned}
$$

then $a_{k}=0$ for any $k \geq 1$.
3.4. Fourier series I. Compute the real Fourier series (sine/cosine form) of the 2-periodic function

$$
f(x)=1-x^{2}, \quad-1<x<1
$$

Solution: The Fourier series of f is given by the formula

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

Since f is even, $b_{k}=0$ for any $k \geq 1$. We just need to compute a_{n}, for $n=0,1,2, \ldots$ For a_{0}, we have

$$
a_{0}=\int_{-1}^{1}\left(1-x^{2}\right) d x=2-\left[\frac{x^{3}}{3}\right]_{-1}^{1}=\frac{4}{3}
$$

For a_{n}, we have

$$
\begin{aligned}
a_{n} & =\int_{-1}^{1}\left(1-x^{2}\right) \cos (n \pi x) d x \\
& =\int_{-1}^{1} \cos (n \pi x) d x-\int_{-1}^{1} x^{2} \cos (n \pi x) d x \\
& =-\left[\frac{\sin (n \pi x)}{n \pi} x^{2}\right]_{-1}^{1}+\int_{-1}^{1} \sin (n \pi x) \frac{2 x}{n \pi} d x \\
& =-\left[\frac{\cos (n \pi x)}{n \pi} \frac{2 x}{n \pi}\right]_{-1}^{1}+2 \int_{-1}^{1} \frac{\cos (n \pi x)}{(n \pi)^{2}} d x \\
& =-\frac{2}{(n \pi)^{2}}[\cos (n \pi)+\cos (-n \pi)]=-\frac{4}{(n \pi)^{2}}(-1)^{n} \\
& =\frac{4}{(n \pi)^{2}}(-1)^{n+1}
\end{aligned}
$$

Therefore, the Fourier series of f is

$$
\frac{2}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n+1}}{n^{2}} \cos (n \pi x)\right]
$$

3.5. Convergent series. Compute the value of the following series

$$
\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{(2 m-1)^{3}}
$$

Hint: Compute the Fourier series of 2π-periodic function $f(x)=x^{3}-\pi^{2} x$ for $x \in(-\pi, \pi)$.
Solution: The function $f(x)=x^{3}-\pi^{2} x=x(x-\pi)(x+\pi)$ for $x \in(-\pi, \pi)$ is odd, then $a_{n}=0$ and

$$
\begin{aligned}
b_{n}= & \frac{2}{\pi} \int_{0}^{\pi}\left(x^{3}-\pi^{2} x\right) \sin (n x) d x \\
= & -\left.\frac{2}{\pi} x^{3} \frac{\cos (n x)}{n}\right|_{0} ^{\pi}+\frac{2}{\pi} \int_{0}^{\pi} 3 x^{2} \frac{\cos (n x)}{n} d x \\
& +\left.\frac{2}{\pi} \pi^{2} x \frac{\cos (n x)}{n}\right|_{0} ^{\pi}-\frac{2}{\pi} \int_{0}^{\pi} \pi^{2} \frac{\cos (n x)}{n} d x \\
= & \frac{6}{\pi n} \int_{0}^{\pi} x^{2} \cos (n x) d x \\
= & \left.\frac{6}{\pi n} x^{2} \frac{\sin (n x)}{n}\right|_{0} ^{\pi}-\frac{6}{\pi n} \int_{0}^{\pi} 2 x \frac{\sin (n x)}{n} d x \\
= & \left.\frac{12}{\pi n^{2}} x \frac{\cos (n x)}{n}\right|_{0} ^{\pi}-\frac{12}{\pi n^{2}} \int_{0}^{\pi} \frac{\cos (n x)}{n} d x \\
= & \frac{12}{n^{3}}(-1)^{n} .
\end{aligned}
$$

Therefore, we have

$$
f(x)=\sum_{n=1}^{\infty} \frac{12}{n^{3}}(-1)^{n} \sin (n x)
$$

We insert $x=\pi / 2$ in $\sin (n \cdot)$ and compute

$$
\sin (n \pi / 2)= \begin{cases}0 & \text { if } \quad n=2 m \\ (-1)^{m+1} & \text { if } \quad n=2 m-1\end{cases}
$$

$4 / 5$

This gives

$$
f(\pi / 2)=-\frac{3 \pi^{3}}{8}=\sum_{m=1}^{\infty} \frac{12}{(2 m-1)^{3}}(-1)^{2 m-1}(-1)^{m+1}
$$

and we have

$$
\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{(2 m-1)^{3}}=\frac{\pi^{3}}{32}
$$

