7.1. Fourier transform of the indicator function of an interval As in Lecture 7 , let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the indicator function of $(-1,1)$, namely

$$
f(x):= \begin{cases}1 & \text { if }-1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the convolution product $f * f$.
(b) Without performing any explicit computation (you may use only part (a) and the basic properties of the Fourier transform) determine the Fourier transform of the function

$$
g(x):= \begin{cases}T+C-x & \text { if } C \leq x \leq C+T \\ T-C+x & \text { if } C-T \leq x \leq C \\ 0 & \text { otherwise }\end{cases}
$$

in terms of the positive parameters $T, C>0$.

Solution:

(a) Since f is the indicator function of $(-1,1)$, we have

$$
\int_{E} f(y) d y=|E \cap(-1,1)|
$$

where $|\cdot|$ denotes the measure (i.e, the length) of a set. Therefore, we have

$$
\begin{aligned}
f * f(x) & =\int_{\mathbb{R}} f(y) f(x-y) d y=\int_{-1}^{1} f(x-y) d y=\int_{x-1}^{x+1} f(y) d y \\
& =|(-1,1) \cap(x-1, x+1)|
\end{aligned}
$$

If $|x|>2$, then $|(-1,1) \cap(x-1, x+1)|=0$. If $|x| \leq 2$, then $\mid(-1,1) \cap(x-$ $1, x+1)|=2-|x|$. Hence, we deduce that

$$
f * f(x)=\max (0,2-|x|)
$$

(b) One can check (for example by drawing a graph or checking the equality separately in the intervals $[-\infty, C-T],[C-T, C],[C, C+T],[C+T, \infty])$ that

$$
g(x)=\max (0,2 T-|x-C|)=T \max \left(0,2-\left|\frac{x-C}{T}\right|\right)
$$

Therefore, the basic properties of the Fourier transform yield

$$
\begin{align*}
\mathcal{F}(g(x))(\xi) & =T e^{-i C \xi} \mathcal{F}\left(\max \left(0,2-\left|\frac{x}{T}\right|\right)\right)(\xi) \tag{1}\\
& =T^{2} e^{-i C \xi} \mathcal{F}(\max (0,2-|x|))(T \xi)
\end{align*}
$$

Under Fourier transform, convolution becomes product, thus using (a) we have

$$
\mathcal{F}(\max (0,2-|x|))(\xi)=\mathcal{F}(f * f)(\xi)=\mathcal{F}(f)(\xi)^{2}
$$

and the Fourier transform of f is given by

$$
\mathcal{F}(f)(\xi)=\int_{-1}^{1} e^{-i x \xi} d x=\frac{e^{i \xi}-e^{-i \xi}}{i \xi}=2 \frac{\sin (\xi)}{\xi}
$$

thus we obtain

$$
\begin{equation*}
\mathcal{F}(\max (0,2-|x|))(\xi)=4 \frac{\sin ^{2} \xi}{\xi^{2}} \tag{2}
\end{equation*}
$$

Joining (1) and (2), we get

$$
\mathcal{F}(g(x))(\xi)=4 e^{-i C \xi} \frac{\sin ^{2}(T \xi)}{\xi^{2}}
$$

7.2. Fourier transform. Compute the Fourier transform of the following functions
(a) $f(x):=x^{2} e^{-2|x|}$
(b) $g(x):=\sin (2 x+1) e^{-4(x+1)^{2}}$

Hint: For (a), compute the Fourier transform of $h(x)=e^{-2|x|}$ and find the connection with the Fourier transform of f. For (b) use the basic properties of the Fourier transform to reduce the problem to the computation of the Fourier transform of $e^{-x^{2}}$ (which was performed in class).

Solution:

(a) Let $h(x):=e^{-2|x|}$. Thanks to the basic properties of the Fourier transform, we have

$$
\mathcal{F}\left(x^{2} h(x)\right)(\xi)=-\frac{d^{2}}{d \xi^{2}} \mathcal{F}(h(x))(\xi)
$$

The Fourier transform of h is given by

$$
\begin{aligned}
\mathcal{F}(h(x))(\xi) & =\int_{0}^{\infty} e^{-(2+i \xi) x} d x+\int_{-\infty}^{0} e^{(2-i \xi) x} d x \\
& =\frac{1}{2+i \xi}+\frac{1}{2-i \xi} \\
& =\frac{4}{4+\xi^{2}}
\end{aligned}
$$

Therefore, the Fourier transform of $f(x)$ is given by

$$
\begin{aligned}
\mathcal{F}(f(x))(\xi) & =\mathcal{F}\left(x^{2} h(x)\right)(\xi)=-\frac{d^{2}}{d \xi^{2}} \mathcal{F}(h(x))=-\frac{d^{2}}{d \xi^{2}} \frac{4}{4+\xi^{2}}=\frac{d}{d \xi} \frac{8 \xi}{\left(4+\xi^{2}\right)^{2}} \\
& =\frac{8}{\left(4+\xi^{2}\right)^{2}}-\frac{8 \xi 4 \xi}{\left(4+\xi^{2}\right)^{3}}=\frac{8\left(4-3 \xi^{2}\right)}{\left(4+\xi^{2}\right)^{3}}
\end{aligned}
$$

(b) Note the following general identities, valid for any integrable function φ,

$$
\begin{align*}
\mathcal{F}(\varphi(x-a))(\xi) & =e^{-i a \xi} \mathcal{F}(\varphi(x))(\xi) \tag{3}\\
\mathcal{F}(\varphi(\lambda x))(\xi) & =\frac{1}{|\lambda|} \mathcal{F}(\varphi(x))(\xi / \lambda) \tag{4}\\
\mathcal{F}\left(e^{i a x} \varphi(x)\right)(\xi) & =\mathcal{F}(\varphi(x))(\xi-a) \tag{5}
\end{align*}
$$

Thanks to (3), we have

$$
\mathcal{F}\left(\sin (2 x+1) e^{-4(x+1)^{2}}\right)(\xi)=e^{i \xi} \mathcal{F}\left(\sin (2 x-1) e^{-(2 x)^{2}}\right)(\xi)
$$

thanks to (4) we have

$$
\mathcal{F}\left(\sin (2 x-1) e^{-(2 x)^{2}}\right)(\xi)=\frac{1}{2} \mathcal{F}\left(\sin (x-1) e^{-x^{2}}\right)\left(\frac{\xi}{2}\right)
$$

thanks to the linearity of the Fourier transform we have (we are using $\sin (x)=$ $\frac{e^{i x}-e^{-i x}}{2 i}$)

$$
\mathcal{F}\left(\sin (x-1) e^{-x^{2}}\right)(\xi)=\frac{1}{2 i}\left(e^{-i} \mathcal{F}\left(e^{i x} e^{-x^{2}}\right)(\xi)-e^{i} \mathcal{F}\left(e^{-i x} e^{-x^{2}}\right)(\xi)\right)
$$

thanks to (5) we have

$$
\mathcal{F}\left(e^{i x} e^{-x^{2}}\right)(\xi)=\mathcal{F}\left(e^{-x^{2}}\right)(\xi-1) \quad \text { and } \quad \mathcal{F}\left(e^{-i x} e^{-x^{2}}\right)(\xi)=\mathcal{F}\left(e^{-x^{2}}\right)(\xi+1)
$$

Using together all the identities we have shown, we get

$$
\mathcal{F}(g(x))(\xi)=\frac{e^{i \xi}}{4 i}\left[e^{-i} \mathcal{F}\left(e^{-x^{2}}\right)\left(\frac{\xi}{2}-1\right)-e^{i} \mathcal{F}\left(e^{-x^{2}}\right)\left(\frac{\xi}{2}+1\right)\right]
$$

and, since it was seen in class that the Fourier transform of $e^{-x^{2}}$ is given by $\sqrt{\pi} e^{-\frac{\xi^{2}}{4}}$, we deduce

$$
\mathcal{F}(g(x))(\xi)=\frac{\sqrt{\pi} e^{i \xi}}{4 i}\left[e^{-i} e^{\frac{-(\xi / 2-1)^{2}}{4}}-e^{i} e^{\frac{-\xi / 2+1)^{2}}{4}}\right]
$$

7.3. Fourier transform. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous integrable function and let $a \in \mathbb{R}$ be a real number. Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ as $f(x):=g(x+a)-g(x)$. Show that there are infinitely many values $\xi \in \mathbb{R}$ such that $\hat{f}(\xi)=0$.

Solution: Using the basic properties of the Fourier transform, we obtain

$$
\hat{f}(\xi)=e^{i \xi a} \hat{g}(\xi)-\hat{g}(\xi)=\left(e^{i \xi a}-1\right) \hat{g}(\xi) .
$$

The term $e^{i \xi a}-1$ has infinitely many zero points, which are

$$
\xi_{k}=\frac{2 \pi k}{a} \quad \text { for } \quad k \in \mathbb{Z}
$$

and therefore \hat{f} has infinitely many zero points.
7.4. Solving an ODE with the Fourier transform. Find a solution $u: \mathbb{R} \rightarrow \mathbb{R}$ to the ODE

$$
-u^{\prime \prime}(x)+u(x)=e^{-|x|} .
$$

Hint: Take the Fourier transform of the whole ODE and recall that, for any integrable $f, \mathcal{F}(f * f)=\mathcal{F}(f)^{2}$.

Solution: Assuming that u is a function that solves the ODE, let us compute the Fourier transform of both sides of the equation (taking for granted that everything is appropriately integrable). Since $\mathcal{F}\left(u^{\prime \prime}\right)=-\xi^{2} \hat{u}(\xi)$ and $\mathcal{F}\left(e^{-|x|}\right)=\frac{2}{1+\xi^{2}}$ (as shown in Exercise 6.4), we have

$$
\left(1+\xi^{2}\right) \hat{u}=\mathcal{F}\left(-u^{\prime \prime}+u\right)=\mathcal{F}\left(e^{-|x|}\right)=\frac{2}{1+\xi^{2}} .
$$

Hence, using the formula that links the Fourier transform of a convolution with the product of Fourier transforms, we have

$$
\hat{u}(\xi)=\frac{1}{2}\left(\frac{2}{1+\xi^{2}}\right)^{2}=\frac{1}{2} \mathcal{F}\left(e^{-|x|}\right)^{2}=\frac{1}{2} \mathcal{F}\left(e^{-|x|} * e^{-|x|}\right) .
$$

Thus (taking the inverse Fourier transform of the last identity), a solution to the ODE is given by

$$
u(x):=\frac{1}{2} e^{-|x|} * e^{-|x|}=\int_{\mathbb{R}} e^{-|y|} e^{-|x-y|} d y .
$$

Now it remains only to compute the integral explicitly. Let us assume $x \geq 0$ (the case $x<0$ is analogous) and let us split the integral in three parts:

$$
\begin{aligned}
\int_{-\infty}^{0} e^{-|y|} e^{-|x-y|} d y & =\int_{-\infty}^{0} e^{y} e^{y-x} d y=e^{-x} \int_{-\infty}^{0} e^{2 y} d y=\frac{e^{-x}}{2} \\
\int_{0}^{x} e^{-|y|} e^{-|x-y|} d y & =\int_{0}^{x} e^{-y} e^{y-x} d y=e^{-x} \int_{0}^{x} 1 d y=x e^{-x} \\
\int_{x}^{\infty} e^{-|y|} e^{-|x-y|} d y & =\int_{x}^{\infty} e^{-y} e^{x-y} d y=e^{x} \int_{x}^{\infty} e^{-2 y} d y=\frac{e^{-x}}{2}
\end{aligned}
$$

Summing the three contributions, we obtain that for any $x \geq 0$ it holds

$$
\left(e^{-|x|} * e^{-|x|}\right)(x)=(1+x) e^{-x}
$$

Repeating the same computations for $x<0$ we obtain that for any $x \in \mathbb{R}$ it holds

$$
\left(e^{-|x|} * e^{-|x|}\right)(x)=(1+|x|) e^{-|x|}
$$

and thus the solution to the ODE is given by

$$
u(x)=\frac{1}{2}(1+|x|) e^{-|x|}
$$

Notice that the function u is smooth for $x \neq 0$ and satisfies $-u^{\prime \prime}(x)+u(x)=e^{-|x|}$ for any $x \neq 0$. At $x=0$, one can see that u is differentiable twice (with $u^{\prime}(0)=0$ and $\left.u^{\prime \prime}(0)=-\frac{1}{2}\right)$ and satisfies $-u^{\prime \prime}(0)+u(0)=1=e^{-|0|}$.

