9.1. Homogeneous wave equation on the real line. Let $u: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ be a solution of the PDE

$$
\begin{cases}u_{t t}-u_{x x}=0 & \text { for } x \in \mathbb{R}, t>0 \\ u(x, 0)=e^{-x^{2}} & \text { for } x \in \mathbb{R} \\ u_{t}(x, 0)=0 & \text { for } x \in \mathbb{R}\end{cases}
$$

1. Find the PDE satisfied by the Fourier transform of u with respect to the x variable.
2. Solve the ODE satisfied by $t \mapsto \hat{u}(\xi, t)$ when $\xi \in \mathbb{R}$ is fixed.
3. By computing the inverse Fourier transform of \hat{u}, find an explicit formula for u.

Solution: The Fourier transform of the solution u satisfies

$$
\widehat{u}_{t t}(\xi, t)+\xi^{2} \widehat{u}(\xi, t)=0
$$

The Fourier transform of the initial condition is

$$
\widehat{u}(\xi, 0)=\sqrt{\pi} e^{\frac{-\xi^{2}}{4}} \quad \text { and } \quad \widehat{u}_{t}(\xi, 0)=0 .
$$

Then we have

$$
\left\{\begin{array}{l}
\widehat{u}_{t t}(\xi, t)+\xi^{2} \widehat{u}(\xi, t)=0 \\
\widehat{u}(\xi, 0)=\sqrt{\pi} e^{\frac{-\xi^{2}}{4}} \\
\hat{u}_{t}(\xi, 0)=0
\end{array}\right.
$$

If we fix ξ, we have a second-order ODE in t, so the solution is given by

$$
\widehat{u}(\xi, t)=A(\xi) \cos (\xi t)+B(\xi) \sin (\xi t)
$$

For $A(\xi)$ and $B(\xi)$, by the initial condition we have

$$
A(\xi)=\hat{u}(\xi, 0)=\sqrt{\pi} e^{\frac{-\xi^{2}}{4}} \quad \text { and } \quad \xi B(\xi)=\hat{u}_{t}(\xi, 0)=0
$$

The solution is then

$$
\widehat{u}(\xi, t)=\sqrt{\pi} e^{-\xi^{2} / 4} \cos (\xi t)
$$

Now we compute the inverse Fourier transform and have

$$
\begin{aligned}
u(x, t) & =\frac{1}{2 \pi} \int_{\mathbb{R}} \sqrt{\pi} e^{-\xi^{2} / 4} \cos (\xi t) e^{i x \xi} d \xi \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \sqrt{\pi} e^{-\xi^{2} / 4} \frac{e^{i \xi t}+e^{-i \xi t}}{2} e^{i x \xi} d \xi \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \sqrt{\pi} e^{-\xi^{2} / 4} \frac{1}{2} e^{i(x+t) \xi} d \xi+\frac{1}{2 \pi} \int_{\mathbb{R}} \sqrt{\pi} e^{-\xi^{2} / 4} \frac{1}{2} e^{i(x-t) \xi} d \xi \\
& =\frac{1}{2} \mathcal{F}^{-1}\left(\sqrt{\pi} e^{-\xi^{2} / 4}\right)(x+t)+\frac{1}{2} \mathcal{F}^{-1}\left(\sqrt{\pi} e^{-\xi^{2} / 4}\right)(x-t) \\
& =\frac{1}{2}\left(e^{-(x+t)^{2}}+e^{-(x-t)^{2}}\right)
\end{aligned}
$$

This solution is the same as the solution given by d'Alembert's formula.
9.2. Inhomogeneous wave equation on the real line. Let $u: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ be a solution of the PDE

$$
\begin{cases}u_{t t}-4 u_{x x}=\sin (4 t)+x & \text { for } x \in \mathbb{R}, t>0 \\ u(x, 0)=2 x^{2} & \text { for } x \in \mathbb{R} \\ u_{t}(x, 0)=6 \cos (x) & \text { for } x \in \mathbb{R}\end{cases}
$$

1. Find a particular solution v (which does not necessarily satisfy the initial conditions) by employing the Ansatz $v(x, t)=v_{1}(x)+v_{2}(t)$.
2. Write down the PDE satisfied by $w:=u-v$.
3. Use d'Alembert's formula to find an explicit formula for w and deduce an explicit formula for u.

Solution: We first find a particular solution v of the PDE

$$
v_{t t}-4 v_{x x}=\sin (4 t)+x
$$

Since on the right-hand-side space and time variables are separated, we are led to make the Ansatz $v(x, t)=v_{1}(x)+v_{2}(t)$. The PDE is then equivalent to the couple of ODEs

$$
\begin{cases}-4 v_{1}^{\prime \prime}(x)=x & \text { for } x \in \mathbb{R} \\ v_{2}^{\prime \prime}(t)=\sin (4 t) & \text { for } t>0\end{cases}
$$

whose solutions are readily found:

$$
v_{1}(x)=-\frac{x^{3}}{24} \quad \text { and } \quad v_{2}(t)=-\frac{\sin (4 t)}{16}
$$

We have then the particular solution

$$
v(x, t)=-\frac{x^{3}}{24}-\frac{\sin (4 t)}{16}
$$

Now, if u solves the original problem, $w=u-v$ solves the homogeneous problem

$$
\begin{cases}w_{t t}-4 w_{x x}=0 & \text { for } x \in \mathbb{R}, t>0 \\ w(x, 0)=2 x^{2}+\frac{x^{3}}{24} & \text { for } x \in \mathbb{R} \\ w_{t}(x, 0)=6 \cos (x)+\frac{1}{4} & \text { for } x \in \mathbb{R}\end{cases}
$$

which we solve by directly using d'Alembert's formula (where the speed of propagation is $c=2$):

$$
\begin{aligned}
& w(x, t)=\frac{w(x-2 t, 0)+w(x+2 t, 0)}{2}+\frac{1}{4} \int_{x-2 t}^{x+2 t}\left(6 \cos (u)+\frac{1}{4}\right) \mathrm{d} u \\
& =\frac{1}{2}\left(2(x-2 t)^{2}+\frac{(x-2 t)^{3}}{24}+2(x+2 t)^{2}+\frac{(x+2 t)^{3}}{24}\right)+\frac{1}{4}\left[6 \sin (u)+\frac{u}{4}\right]_{x-2 t}^{x+2 t} \\
& =\frac{1}{2}\left(4 x^{2}+16 t^{2}+\frac{1}{24}\left(2 x^{3}+24 x t^{2}\right)\right) \\
& \quad+\frac{1}{4}\left(6(\sin (x+2 t)-\sin (x-2 t))+\frac{1}{4}(x+2 t-x+2 t)\right) \\
& =2 x^{2}+8 t^{2}+\frac{x^{3}}{24}+\frac{x t^{2}}{2}+3 \cos (x) \sin (2 t)+\frac{t}{4}
\end{aligned}
$$

where we used the trigonometric identity $\sin (\alpha+\beta)-\sin (\alpha-\beta)=2 \cos (\alpha) \sin (\beta)$ in the last equality. We conclude that u is

$$
u(x, t)=v(x, t)+w(x, t)=2 x^{2}+8 t^{2}+\frac{x t^{2}}{2}+\frac{t}{4}-\frac{\sin (4 t)}{16}+3 \cos (x) \sin (2 t)
$$

Alternative solution (only accessible after Lecture 10): We use directly d'Alembert's formula for the inhomogeneous wave equation (based on Duhamel's principle):

$$
\begin{aligned}
u(x, t)= & \frac{2(x-2 t)^{2}+2 u(x+2 t)^{2}}{2} \\
& +\frac{1}{4} \int_{x-2 t}^{2+2 t} 6 \cos (u) \mathrm{d} u \\
& +\frac{1}{4} \int_{0}^{t} \int_{x-2(t-\tau)}^{x+2(t-\tau)} \sin (4 \tau)+u \mathrm{~d} u \mathrm{~d} \tau
\end{aligned}
$$

We then compute:

$$
\frac{2(x-c t)^{2}+2 u(x+c t)^{2}}{2}=2 x^{2}+8 t^{2}
$$

$$
\frac{1}{4} \int_{x-2 t}^{2+2 t} 6 \cos (u) \mathrm{d} u=3 \cos (x) \sin (2 t)
$$

and

$$
\frac{1}{4} \int_{0}^{t} \int_{x-2(t-\tau)}^{x+2(t-\tau)} \sin (4 \tau)+u \mathrm{~d} u \mathrm{~d} \tau=\frac{1}{4}\left(t+2 t^{2} x-\frac{1}{4} \sin (4 t)\right)
$$

We then conclude that the solution is, as before,

$$
u(x, t)=v(x, t)+w(x, t)=2 x^{2}+8 t^{2}+\frac{x t^{2}}{2}+\frac{t}{4}-\frac{\sin (4 t)}{16}+3 \cos (x) \sin (2 t)
$$

