Serie 5

- 1. Finden Sie je ein Beispiel für
 - (a) eine unbeschränkte, stetige Funktion auf einem beschränkten Intervall;
 - (b) eine unbeschränkte, stetige Funktion auf einem abgeschlossenen Intervall;
 - (c) eine unbeschränkte Funktion auf einem kompakten Intervall, die in höchstens einem Punkt unstetig ist.

Sie müssen keine Beweise angeben.

- 2. Welche der folgenden Teilmengen sind offen? Welche abgeschlossen? Begründen Sie.
 - (a) Der Punkt $A = \{0\}$ in \mathbb{R} ,
 - (b) Die ganzen Zahlen \mathbb{Z} in \mathbb{R} ,
 - (c) Das Intervall $C = [0, \infty)$ in \mathbb{R} ,
 - (d) Das Intervall $D = (0, \infty)$ in \mathbb{R} ,
 - (e) Die Menge $E = \left\{ \frac{1}{n} \mid n \in \mathbb{N}, n > 0 \right\}$ in \mathbb{R} ,
 - (f) Die Menge $F = E \cup \{0\}$ in \mathbb{R} ,
 - (g) Die Halbgerade $G = \{z = x + iy \in \mathbb{C} \mid x \in [0, \infty), y = 0\}$ in \mathbb{C} ,
 - (h) Die Halbgerade $H = \{z = x + iy \in \mathbb{C} \mid x \in (0, \infty), y = 0\}$ in \mathbb{C} ,
 - (i) Die rationalen Zahlen ℚ in ℝ.
 Hinweis: Verwenden Sie die Tatsache, dass √2 irrational ist, um viele andere irrationale Zahlen zu konstruieren.
- 3. Sei $D \subset \mathbb{R}$ eine nichtleere Teilmenge und $f : D \to \mathbb{R}$ eine Funktion. Drücken Sie die Aussagen "f ist nicht stetig in $x_0 \in D$ " und "f ist nicht stetig" in Prädikatenlogik aus. Zeigen Sie damit, dass die Funktion

$$f \colon \mathbb{R} \to \mathbb{R}, \ x \mapsto \begin{cases} x+1, & x \geqslant 0, \\ x, & x < 0, \end{cases}$$

nicht stetig ist.

4. Sei $f : \mathbb{R} \to \mathbb{R}$ die Abbildung gegeben durch $f(x) = \inf\{|x-k| \mid k \in \mathbb{Z}\}$. Skizzieren Sie den Graphen der Funktion f und zeigen Sie, dass f in jedem Punkt $x_0 \in \mathbb{R}$ stetig ist.

- 5. Sei K ein Körper.
 - (a) Sei $f \in K[T]$. Zeigen Sie, dass $x \in K$ genau dann eine Nullstelle von f ist, wenn das Polynom $T - x \in K[T]$ ein Teiler von f ist.
 - (b) Folgern Sie, dass ein Polynom $f \in K[T] \setminus \{0\}$ vom Grad deg f = n höchstens n verschiedene Nullstellen haben kann.
 - (c) Seien nun $n \in \mathbb{N}_0$ und $f, g \in K[T]$ Polynome mit Grad höchstens n, die in mehr als n Punkten übereinstimmen (d.h. $|\{x \in K \mid f(x) = g(x)\}| > n$). Zeigen Sie, dass f = g gilt.
- 6. Sei $X \subset \mathbb{R}$ eine beliebige Teilmenge. Wir nennen eine Teilmenge $D \subset X$ dicht in X, falls für jede offene Teilmenge $O \subset \mathbb{R}$ mit $O \cap X \neq \emptyset$ auch $O \cap D \neq \emptyset$ gilt. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:
 - (i) Die Teilmenge $D \subset X$ ist dicht in X.
 - (ii) Jeder Punkt von $X \setminus D$ ist ein Häufungspunkt von D.
 - (iii) Jede abgeschlossene Teilmenge von \mathbb{R} , die D enthält, enthält auch X.
- 7. Multiple-Choice-Fragen (ohne Wertung im Bonussystem)

Bemerkung: Mehrere Antworten können richtig sein!

(a) Seien $A \subset \mathbb{R}$ und $x_0 \in \mathbb{R}$. Welche der folgenden Aussagen sind äquivalent zur Aussage, dass x_0 ein Häufungspunkt von A ist?

i.
$$\forall \varepsilon > 0 \exists ! a \in A : 0 < |a - x_0| < \varepsilon$$

ii.
$$\forall \varepsilon > 0 \,\exists a \in A \colon 0 < |a - x_0| < \varepsilon$$

iii.
$$\exists \varepsilon_0 > 0 \, \forall \varepsilon \in (0, \varepsilon_0) \, \exists a \in A \colon 0 < |a - x_0| < \varepsilon$$

iv.
$$\forall \varepsilon > 1 \,\exists a \in A \colon 0 < |a - x_0| < \varepsilon$$

(b) Seien $m, n \in \mathbb{N}_0$ mit $m \leq n$. Wie viele Summanden kommen in der Summe $\sum_{k=m}^{n} a_k$ vor?

i.
$$n - m - 1$$

ii.
$$n-m$$

iii.
$$n-m+1$$

(c) Seien $m, n \in \mathbb{N}_0$ mit $m \leq n$. Welche der folgenden Ausdrücke stimmen stets mit der Summe $\sum_{k=m}^{n} a_k$ überein?

i.
$$\sum_{i=m}^{n} a_{m+n-i}$$

i.
$$\sum_{i=m}^{n} a_{m+n-i}$$

ii. $\sum_{j=1}^{n-m} a_{n+1-j}$

iii.
$$\sum_{k=0}^{n-m} a_{m+k}$$
iv.
$$\sum_{l=0}^{n-m} a_{n-l}$$

iv.
$$\sum_{l=0}^{n-m} a_{n-l}$$

(d) In der verallgemeinerten Dreiecksungleichung

$$\left| \sum_{k=1}^{n} a_k \right| \leqslant \sum_{k=1}^{n} |a_k|$$

für n komplexe Zahlen $a_1,\ldots,a_n\in\mathbb{C}$ gilt Gleichheit genau dann wenn die Summanden $a_1,\ldots,a_n\ldots$

- i. ... alle dasselbe Vorzeichen haben.
- ii. ... über \mathbb{R} linear abhängig sind.
- iii. ... auf einer Geraden $\mathbb{R}z := \{rz \mid r \in \mathbb{R}\}$ mit $z \in \mathbb{C}^{\times}$ liegen.
- iv. ... auf einem Strahl $\mathbb{R}_{\geqslant 0}z:=\{rz\mid r\in\mathbb{R}_{\geqslant 0}\}$ mit $z\in\mathbb{C}^{\times}$ liegen.
- (e) Welche der folgenden Zahlen sind algebraisch? (Vgl. Abschnitt $3.2.3 \, \mathrm{im} \, \mathrm{Skript.})$
 - i. $z_1 = 1 + \sqrt{2}$
 - ii. $z_2 = \sqrt{1 + \sqrt{2}}$
 - iii. $z_3 = i + \sqrt{1 + \sqrt{2}}$
- (f) Seien $k, n \in \mathbb{N}$ mit $k \leq n$. Welche der folgenden Formeln gelten stets?
 - i. $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n-1}{k-1}$
 - ii. $\binom{n}{k} = \frac{n-k+1}{k} \binom{n}{k-1}$
 - iii. $\sum_{j=0}^{n} \binom{n}{j} = 2^n$
 - iv. $\sum_{j=0}^{n} (-1)^{j} \binom{n}{j} = 2^{n-1}$
- (g) Sei $X = \{(-1)^n + 1/n \mid n \in \mathbb{N}\}$. Was ist die Menge der Häufungspunkte von X?
 - i. {1}
 - ii. $\{-1\}$
 - iii. $\{(-1)^n \mid n \in \mathbb{N}\}$
 - iv. $\{\pm 1\}$
 - $\mathbf{v}.\ X$