Serie 4

Aufgabe 1

Verwende die hyperbolische Verison von Geogebra¹, um folgende hyperbolische Objekte zu konstruieren. Als Herausforderung können diese hyperbolischen Objekte auch im üblichen Euklidischen Geogebra² konstruiert werden.

- (1) Konstruiere 4 Geodäten, die sich alle jeweils nicht schneiden.
- (2) Platziere zwei Punkte und konstruiere die Mittelsenkrechte dazwischen.
- (3) Platziere drei Punkte. Konstruiere einen Punkt, der von allen drei Punkten den gleichen Abstand hat. Verwende das Kreis-Tool um einen hyperbolischen Kreise durch die drei Punkte zu legen. Bemerke, dass hyperbolische Kreise auch Euklidische Kreise sind. Wie unterscheiden sich die Mittelpunkte der hyperbolischen/Euklidischen Kreise voneinander?
- (4) Konstruiere ein 4-Eck mit drei rechten Winkeln und einem Winkel, der strikt kleiner als 90° ist.

Aufgabe 2

Beantworte für die Funktionen (1) - (7) die Fragen (a) - (e). Es handelt sich immer um stetige Funktionen $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ der Riemann-Sphäre $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Bei (1) - (5) gilt $f(\infty) = \infty$.

- (a) Finde die Fixpunktmenge $\{z \in \hat{\mathbb{C}} : f(z) = z\}$.
- (b) Wird die Einheitsscheibe erhalten?
- (c) Werden V-Kreise zu V-Kreisen gesendet?
- (d) Ist die Funktion eingeschränkt auf C eine Ähnlichkeitsabbildung?
- (e) Ist die Funktion orientierungserhaltend oder orientierungsumkehrend?
- (1) $f_1: z \mapsto z + a$, wobei $a \in \mathbb{C}$ fest.
- (2) $f_2: z \mapsto rz$, wobei r > 0 fest.
- (3) $f_3: z \mapsto e^{i\varphi}z$, wobei $\varphi \in [0, 2\pi)$ fest.
- (4) $f_4: z \mapsto \bar{z}$.
- (5) $f_5: z \mapsto z^2$.
- (6) $f_6: z \mapsto \frac{z}{|z|^2}$, wobei $f(\infty) = 0$ und $f(0) = \infty$.
- (7) $f_7: z \mapsto \frac{1}{z}$, wobei $f(\infty) = 0$ und $f(0) = \infty$.

 $^{^{1}} www.geogebra.org/m/tHvDK\overline{Wd}C$

²www.geogebra.org/geometry

Aufgabe 3

Für $a \in (-1,1) \subseteq \mathbb{R}$ betrachte die Funktion

$$f_a \colon \hat{\mathbb{C}} \to \hat{\mathbb{C}}$$

 $z \mapsto \frac{z+a}{az+1}.$

Info: Dies ist eine Isometrie der hyperbolischen Ebene.

- (1) Berechne $f_a(-a)$ und $f_a(0)$.
- (2) Finde alle Fixpunkte von f_a .
- (3) Zeige, dass f den Einheitskreis auf den Einheitskreis abbildet.
- (4) Skizziere die Wirkung von f auf die hyperbolische Ebene mit Pfeilen.