Exam Geometrie HS 2021

Exercise 1

Without justification, decide whether the following statements are true or false.

- 1. Let γ be a locally length-minimizing curve in a metric space. Then every subcurve of γ also locally minimizes lengths.
- 2. If (X, d) is a metric space, then (X, d^2) is also a metric space.
- 3. If the respective angles of two spherical triangles are equal, then their areas are equal.
- 4. The transformation $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}, f(z) = (\overline{z}+1)/(\overline{z}-1)$ preserves orientation.

1 point for every correct answer, 0 points for every unanswered question, and -1 points for every wrong answer. The minimum number of points for this exercise is 0.

Exercise 2

Let K be a circle in \mathbb{C} . Let E be a cline in $\hat{\mathbb{C}}$ that intersects K in two points at a 90°-angle. Show that inversion in K sends E to itself.

Exercise 3

Let \mathbb{H}^2 be the Poincaré disk. Let C be the circle with midpoint $1 + i \in \mathbb{C}$ and radius 1. Let α be the hyperbolic geodesic $C \cap \mathbb{H}^2$. Find the hyperbolic distance from 0 to the nearest point of α .

Exercise 4

Let \mathbb{H}^2 be the Poincaré disk. Find an isometry of \mathbb{H}^2 that sends the point $-\frac{1}{2} \in \mathbb{H}^2$ to $+\frac{1}{2} \in \mathbb{H}^2$, but does not preserve the origin.

Exercise 5

Recall that $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is the extended complex plane. Let $\hat{\sigma} \colon S^2 \to \hat{\mathbb{C}}$ be the ordinary stereographic projection, based at the north pole N = (0, 0, 1). Let $\hat{\rho} \colon S^2 \to \hat{\mathbb{C}}$ be the stereographic projection based at the *south* pole S = (0, 0, -1). Find an explicit formula for the map $\hat{\sigma} \circ \hat{\rho}^{-1}$.

1

[4 points]

[4 points]

[4 points]

[4 points]

[4 points]