
Geometrie 2021

Tom Ilmanen

December 10, 2021



PART

@ Copyright 2021 Tom Ilmanen.
Figures copyright by their respective authors.

2



Contents

I Beginning 6

1 Preliminaries 7
1 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Introduction 21
5 First off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Metric spaces 28
7 Definition of metric spaces . . . . . . . . . . . . . . . . . . . . . . 29
8 Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9 Examples of metric spaces . . . . . . . . . . . . . . . . . . . . . . 36
10 More examples of metric spaces . . . . . . . . . . . . . . . . . . . 39

II Spheres 43

4 Area and circumference of an intrinsic disk in S2 44
11 Length and distance in S2 . . . . . . . . . . . . . . . . . . . . . . 45
12 Area and circumference of an intrinsic disk . . . . . . . . . . . . 49

5 Angle excess 56
13 Angle excess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
14 Proof of the angle excess formula . . . . . . . . . . . . . . . . . . 61

6 Stereographic projection 63
15 The map problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
16 Stereographic projection . . . . . . . . . . . . . . . . . . . . . . . 67
17 The spherical metric on R2 . . . . . . . . . . . . . . . . . . . . . 71

7 Spherical arclength on S2 73
18 Similarities of R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
19 Spherical arclength . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3



PART CONTENTS

20 Stereographic projection is conformal . . . . . . . . . . . . . . . . 81

III Hyperbolic space 84

8 The hyperbolic metric 85
21 The hyperbolic metric . . . . . . . . . . . . . . . . . . . . . . . . 86
22 Sizes near the boundary . . . . . . . . . . . . . . . . . . . . . . . 88

9 Geodesics 90
23 Minimizing curves and geodesics . . . . . . . . . . . . . . . . . . 91
24 The x-axis is a minimizing geodesic . . . . . . . . . . . . . . . . . 93
25 Length along the x-axis . . . . . . . . . . . . . . . . . . . . . . . 95
26 Geodesics in H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10 Circumference and area of a hyperbolic disk 101
27 Other expressions for the length . . . . . . . . . . . . . . . . . . . 102
28 Circumference and area of a hyperbolic disk . . . . . . . . . . . . 103
29 Visualization and resources . . . . . . . . . . . . . . . . . . . . . 105

11 The extended complex plane and clines 111
30 The extended complex plane and the Riemann sphere . . . . . . 112
31 Clines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

12 Inversion 115
32 Inversion in a cline . . . . . . . . . . . . . . . . . . . . . . . . . . 116
33 Transferring operations between Ĉ and S2 . . . . . . . . . . . . . 118
34 Inversion takes clines to clines and is conformal . . . . . . . . . . 120
35 The stretch factor of 1/z . . . . . . . . . . . . . . . . . . . . . . . 122

13 Möbius transformations 124
36 Möbius transformations . . . . . . . . . . . . . . . . . . . . . . . 125
37 Handling ∞ correctly . . . . . . . . . . . . . . . . . . . . . . . . 126
38 Möbius transformations are invertible . . . . . . . . . . . . . . . 128

14 The group of Möbius transformations 131
39 Transformation groups . . . . . . . . . . . . . . . . . . . . . . . . 132
40 The Möbius transformations form a group . . . . . . . . . . . . . 135
41 Matrix multiplication and Möb+ . . . . . . . . . . . . . . . . . . 137

15 Factoring Möbius transformations 140
42 Factoring Möbius transformations . . . . . . . . . . . . . . . . . 141
43 Möbius transformations are conformal and preserve clines . . . . 143
44 Relation of Möb to Conf(S2) . . . . . . . . . . . . . . . . . . . . 144

16 Properties of Möbius transformations 145
45 Möbius transformations are 3-transitive . . . . . . . . . . . . . . 146

4



CONTENTS PART

46 The cross ratio and its symmetries . . . . . . . . . . . . . . . . . 149
47 The cross ratio is preserved . . . . . . . . . . . . . . . . . . . . . 152
48 When the cross ratio is real . . . . . . . . . . . . . . . . . . . . . 154

17 The elements of Möb+(B1) 156
49 Some elements of Möb+(B1) . . . . . . . . . . . . . . . . . . . . . 157
50 Factoring elements of Möb+(B1) . . . . . . . . . . . . . . . . . . 162

18 Isometries, geodesics, and distances in H2 163
51 Isometries of H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
52 Geodesics of H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
53 Cross ratio formula for distance . . . . . . . . . . . . . . . . . . . 167
54 Arccosh formula for distance . . . . . . . . . . . . . . . . . . . . 168

IV End 169

19 Bibliography 170
55 Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
56 Articles, blogs, and references . . . . . . . . . . . . . . . . . . . . 173
57 Software, visualization, and activities . . . . . . . . . . . . . . . . 174

List of figures 175

5



Part I

Beginning

6



1

Preliminaries

7



PART I 1. PRELIMINARIES

§1 Metadata

Tom Ilmanen, lecturer

Raphael Appenzeller, organizer

Lectures Friday 14-16 weekly in HG F5:

24.09.; 01.10.; 08.10.; 15.10.; 22.10.; 29.10.; 05.11.; 12.11.; 19.11.; 26.11.; 03.12.;
10.12.; 17.12. (exam)

Exercise sections Monday 16-18 biweekly:

27.09.; 11.10.; 25.10.; 08.11.; 22.11.; 06.12.; 20.12.

Exercises are issued Friday week n, discussed in section Monday week n+1, due
Monday week n+ 2, returned in section Monday week n+ 3, where n is odd.

Website: https://metaphor.ethz.ch/x/2021/hs/401-1511-00L

Exercises: https://metaphor.ethz.ch/x/2021/hs/401-1511-00L

Script: https://metaphor.ethz.ch/x/2021/hs/401-1511-00L/literatur/script.
pdf

Forum: https://forum.math.ethz.ch/t/geometrie-herbst-2021/277

Exam: 17.12.20 in class.
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1. PRELIMINARIES PART I

§2 References

For more detail and additional sources, see §55, §56, §57.

Last year’s script:

• T. Ilmanen, Geometrie 2020, https://metaphor.ethz.ch/x/2020/hs/
401-1511-00L/literatur/script.pdf.
The topics were different, but the older script has more about group theory.
It also has many pictures and audiovisuals.

Very accessible:

• J. R. Weeks, The Shape of Space, recommended.
• M. Hitchman, Geometry with an Introduction to Cosmic Topology, https:
//mphitchman.com/geometry/frontmatter.html, recommended.

• E. A. Abbott, Flatland.

For fractals:

• Falconer, The geometry of fractal sets.

For group theory:

• D. Saracino, Abstract Algebra: A First Course.

For linear algebra:

• K. Jänich, Lineare Algebra.
• G. Fischer, Lineare Algebra: Eine Einführung für Studienanfänger.

For complex analysis:

• L. Ahlfors, Complex Analysis. Looking for a more available reference.

For hyperbolic geometry:

• J. W. Anderson, Hyperbolic Geometry, recommended.
• W. P. Thurston, Three-dimensional Geometry and Topology.
• B. Loustau, Hyperbolic geometry, online notes.
• A. F. Beardon, The Geometry of Discrete Groups.

Mathematical symbols:

• Liste mathematischer Symbole,
https://de.wikipedia.org/wiki/Liste_mathematischer_Symbole

Mathematical dictionaries:

• G. Eisenreich, R. Sube, Dictionary of Mathematics; Wörterbuch Mathe-
matik, Verlag Harry Deutsch, 1987.

Images:

• Details of the picture credits are in the List of Figures after Part IV.
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PART I 1. PRELIMINARIES

§3 Set theory

References

◦ Saracino 1-3 (sets), 59-65 (functions), 80-82 (equivalence relations).
◦ Rotman, Appendix II (equivalence relations), Appendix III (functions).

In this section we cover

• Sets, elements, subsets
• Products of sets
• Functions, graphs
• Injective, surjective, bijective
• Images and preimages
• Composition
• Equivalence relations
• Divisibility

Sets

A set is a collection of elements. The elements can be anything, including other
sets. The order in which the elements are listed is not important. Nor do
repetitions count. We use curly brackets for sets.

The empty set (the set with no elements) is written ∅ or {}.

Examples x

• {1, 2, 3} = {3, 1, 2} = {2, 2, 1, 3}
• {a, b} = {c, d} iff (a = c and b = d) or (a = d and b = c)
• {a, b} = {c} iff a = b = c

• N+ = {1, 2, 3, 4, 5, . . . }
• N0 = {0, 1, 2, 3, 4, 5, . . . }
• Z,Q,R,C
• The quaternions H

We can also define sets by giving a domain A and a condition P (x) in the form

{x ∈ A : P (x)},

where P (x) is a proposition about x, that is, a function of x that takes the
values “true” or “false”.

Examples x

Table of Contents 10



1. PRELIMINARIES PART I

• {x ∈ R : x10 > 100}
• {n ∈ N+ : n2 < −2} = ∅
• {n ≥ 2 : (q > 0 & q|n)⇒ (q = 1 or q = n)} (the prime numbers)

We write
x ∈M

to mean “x is an element of A".

Examples x

• 1 ∈ {1, 2}
• π /∈ Q.

We write
A ⊆ B

to mean “A is a subset of B”, that is,

A ⊆ B ⇐⇒ (∀a : a ∈ A =⇒ a ∈ B) (3.1)

Note that ∀ means “for all” and ∃ means “there exists”.

Examples x

• {1, 2} ⊆ {1, 2, 3}
• {(a, b, c) : a, b, c ∈ N+, a

17 + b17 = c17} ⊆ ∅.

Let n ≥ 0. An n-tuple is an ordered list of mathematical objects with n entries.
Differently from a set, the order matters. Repetitions are allowed and they
matter. We use parentheses to indicate an n-tuple. A 2-tuple is also called an
ordered pair.

Examples x

• (2, 3, 5, 3) 4-tuple
• (5, sin(x), {3, 5}) 3-tuple
• () 0-tuple
• (2, 3) 6= (3, 2)

Definition 3.1 Let A and B be sets. The Cartesian product of A and B is the
set of ordered pairs (a, b) with a ∈ A and b ∈ B, i.e.

A×B := {(a, b)
∣∣ a ∈ A and b ∈ B} (3.2)

11 Table of Contents



PART I 1. PRELIMINARIES

Similarly, we define
A1 × . . .×An

as the set of all n-tuples (x1, . . . , xn}, where xi ∈ Ai, i = 1, . . . , n. We write An
for

A× . . .×A︸ ︷︷ ︸
n times

.

We identify
A×B × C

with
(A×B)× C,

etc. This involves dropping some internal parentheses.

In particular, the set of all n-tuples of real numbers is written Rn. In this
lecture, we’ll mostly be interested in R2 and R3.

Functions

Definition 3.2 A function f from a set X to a set Y is a rule that assigns to
each x in X exactly one element y in Y . We write it as follows:

f : X → Y

x 7→ y = f(x)

We also write
X

f→ Y.

If X is finite, a function can be defined by a table. The graph of f is the set of
all ordered pairs (x, f(x)) such that x ∈ X:

(x, y) ∈ graph(f) ⇐⇒ y = f(x).

The graph of f is a subset of X × Y .

The set X is called the domain of f , written dom(f). The set Y is called the
target space, written target(f). The image of f is the set

im(f) := {f(x)
∣∣x ∈ X}.

More generally, the image of a subset A ⊆ X is defined by

f(A) := {f(x)
∣∣x ∈ A}.

f is called surjective if
im(f) = Y,

Table of Contents 12



1. PRELIMINARIES PART I

that is, every y ∈ Y gets hit by some x ∈ X. In symbols:

f is surjective ⇐⇒ ∀y ∈ Y ∃x ∈ X f(x) = y. (3.3)

Figure 3.1: Surjective

Note that the definition of surjective depends on our choice of the target space
Y . Therefore, strictly speaking, the definition of a function must include a
specification of its target space, and two functions are not equal unless they
have the same target space. Usually, but not always, we can overlook this.

Question Is the function f : R→ R, x 7→ x2 surjective? What about g : R→
[0,∞), x 7→ x2? Is f “equal” to g?

The preimage of an element y ∈ Y is the subset

{x ∈ X : f(x) = y}

of X. We write

f−1(a)

for it. If f−1(y) consists of a single point x, we sometimes use f−1(y) to mean
the element x rather than the set {x}.
Similarly, the preimage of a subset B ⊆ Y is the subset

f−1(B) := {x ∈ X : f(x) ∈ B}

of X.

The function f is called injective if for each y ∈ Y , f−1(y) consists of at most
one element. That is, y gets hit by at most one element of X. In symbols:

f is injective ⇐⇒ (∀x, x′ ∈ X : f(x) = f(x′) =⇒ x = x′) (3.4)

13 Table of Contents
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Figure 3.2: Injective

A function f is called bijective if f is both injective and surjective. Such a
function is also said to be a one-to-one correspondence.

Figure 3.3: Bijective

If f is bijective, there exists a function (the inverse of f)

f−1 : Y → X

which takes each element y ∈ Y to its (unique) preimage x in X.

Let f : X → Y be a function. If A ⊆ X, we define the restriction

f |A : A→ Y,

of f to A by
(f |A)(x) := f(x) for all x ∈ A.

If A 6= X, then f |A has a different domain from f , so it’s a different function.

Occasionally (!) we might want to explicitly redefine the target space as well.
If B ⊇ im(f), we define the co-restriction

f � B : X → B,

of f to A by
(f � B)(x) := f(x) for all x ∈ X.

It’s the same “rule”, but it has a different target space, so it’s a different function.
Officially, f � B 6= f unless B = Y . Usually this will not matter.

Table of Contents 14



1. PRELIMINARIES PART I

Let X, Y and Z be sets. Let

f : X → Y, g : Y → Z

be functions. The function

g ◦ f : X → Z,

x 7→ g(f(x)),

that assigns g(f(x)) to x is called the composition of f and g. To make the
order precise, we say “f followed by g”. In symbols

(g ◦ f)(x) := g(f(x)).

We can also write the commutative diagram

X Y

Z

f

g◦f g

Figure 3.4: Commutative diagram

Equivalence relations

A relation P is a function P (x, y) with two arguments and values in {true, false}.
Usually it is written with the relation sign in the middle. So

xPy

means x has the relation P to y. An example of a relation is

x is a sister of y.

An equivalence relation is a relation ∼= such that:

x ∼= x (reflexive)
x ∼= y ⇐⇒ y ∼= x (symmetric)
x ∼= y, y ∼= z =⇒ x ∼= z (transitive).

An example of an equivalence relation is

x and y have the same parents.

15 Table of Contents
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A partition or decomposition of a set X is a subdivision of X into disjoint subsets
(Ai)i∈I whose union is X:

X =
⋃
{Ai

∣∣ i ∈ I}, Ai ∩Aj = ∅ for i 6= j ∈ I.

The main fact about equivalence relations is that they induce a partition of the
set on which they are defined, characterized by the condition

x ∼= y ⇐⇒ x and y lie in the same element Ai of the partition.

Figure 3.5: Equivalence relation

See Saracino, pp 80-82, Rotman, Appendix III for details.

Divisibility

Definition 3.3 Let a, b ∈ Z. We say that a divides b if b is an integer multiple
of a:

a
∣∣b ⇐⇒ ∃ k ∈ Z : b = ka (3.5)

Table of Contents 16
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§4 Complex numbers

References

◦ L. Ahlfors, pp. 1-11, 76-88
◦

In this section we cover

• Complex numbers
• Complex conjugate, norm
• Exponential function
• Polar coordinates

Complex numbers

x+iy.

}

x

{y ●

Figure 4.1: Complex numbers

The complex number system C is R2 equipped with addition and a nonobvious
multiplication. Let

(x, y) ∈ R2.

Define

(x, y) + (x′, y′) := (x+ x′, y + y′), (x, y) · (x′, y′) := (xx′ − yy′, xy′ + x′y).

If we define

1 := (1, 0), i := (0, 1), t(x, y) := (tx, ty) for t ∈ R,

then we have effectively identified R with the x-axis via

t 7→ t · 1 = (t, 0).

17 Table of Contents



PART I 1. PRELIMINARIES

Furthermore
z = (x, y)

may be rewritten as
z = x1 + yi = x+ iy.

Then

(x+iy)+(x′+iy′) = x+x′+i(y+y′), (x+iy)(x′+iy′) = xx′−yy′+i(xy′+x′y).

These rules are consistent with (can be deduced from) the rule

i2 = −1

together with the distributive law. Indeed, the complex numbers satisfy all the
usual laws of algebra (field axioms), including the existence of inverses. For
z = x+ iy 6= 0, the multiplicative inverse is given by

z−1 = (x+ iy)−1 =
x− iy
x2 + y2

,

as may easily be verified.

Complex conjugation

If
z = x+ iy,

we call x the real part of z and y the imaginary part, and define

Re z := x, Im z := y.

We define the complex conjugate of z by

z̄ := x− iy.

The complex conjugate operation preserves all algebraic operations; it is an
algebraic isomorphism (field isomorphism) C→ C. In particular,

z + w = z̄ + w̄, zw = z̄w̄, z−1 = z̄−1,

as may easily be verified.

Norm

The absolute value, norm, or length of z is defined by

|z| :=
√
x2 + y2, z = x+ iy ∈ C.

Table of Contents 18
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The reader may verify that

|z|2 = zz̄, z ∈ C,

so
|z| =

√
zz̄, z ∈ C.

There is also the multiplicative property

|zw| = |z||w|, z, w ∈ C.

and the inverse formula
1

z
=

z̄

|z|2
The unit circle is defined by

S1 := {z ∈ C : |z| = 1}.

Exponential function

The exponential function is best defined as the limit of the convergent sequence

ez = exp(z) :=

∞∑
n=0

zn

n!
, z ∈ C,

where
n! := n(n− 1)(n− 2) · · · · · 2 · 1, 0! := 0,

is the factorial function. But even without knowing how this works, we can
characterize ez by its properties in such a way that we can work with it. We
have

ez+w = ezew, z, w ∈ C. (4.1)

eiθ = cos θ + i sin θ, θ ∈ R, e2πi = 1. (4.2)

So
θ 7→ eiθ, θ ∈ R,

is surjective and traces S1 infinitely many times in both directions. In other
words, for every

w ∈ S1

there is t such that eit = w, and all the numbers

. . . t− 2π, t, t+ 2π, . . .

map to w under the exponential map.

This picture shows a rectangular grid in C and its image under the exponential
map.

19 Table of Contents
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Figure 4.2: Grid (Mathematica)

-3 -2 -1 0 1 2 3
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-1

0
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3

Figure 4.3: Exponential image of grid
(Mathematica)

Exercise 4.1 Fix z ∈ C. Verify that dxz/dx = zxz−1, where x is a real vari-
able.

Polar coordinates

Fix z ∈ C. Set
r := |z|.

Then
z

|z| = eiθ

for some θ ∈ R. θ is only well-defined up to adding a multiple of 2π. Typically
we require 0 ≤ θ < 2π, which makes θ unique, but not continuous as a function
of z. So we have

z = reiθ.

This is called the polar representation of z. r is called the magnitude and θ is
called the argument of z.

Multiplication is rather easy in the polar representation: if

z = reiφ, w = seiψ,

then
zw = rsei(φ+ψ).

Table of Contents 20
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PART I 2. INTRODUCTION

§5 First off

Here’s what the course is about:

I Metric spaces
II The sphere
III The hyperbolic plane

It’s different from last year.

We’ll start with hyperbolic. Actually, we’ll start with three spaces.

S2 sphere compact(finite) positive curvature

R2 Euclidean space infinite zero curvature (flat)

H2 hyperbolic space infinite negative curvature

Here is the 2-sphere:

Figure 5.1: The 2-sphere

We consider the 2-sphere as a world in itself. That is, we take the point of view
of an ant that lives on the surface of the sphere, and wanders around. He can’t
see off the sphere. Even his light rays travel along the surface of the sphere.

He experiences the geometry of the surface by walking. So, for him, the little
ant scientist, distance is the distance he walks. The shortest distance between
two points is a geodesic arc.

Table of Contents 22



2. INTRODUCTION PART I

Figure 5.2: A geodesic arc

Wherever he goes on the sphere, it looks the same. We call this homogeneous.
Also, whichever direction he looks, it looks the same. We call this isotopic. So
the 2-sphere is homogeneous and isotropic.

Here is the Euclidean plane:

R
2

Figure 5.3: The Euclidean plane

The plane is also homogeneous and isotropic.

A space is called simply-connected if every loop can be contracted to a point
within the space. The above three spaces are simply connected, whereas the
surface of a torus is not.

It turns out that (up to scale) S2, R2 and H2 are the only simply-connected,
homogeneous, isotropic spaces in dimension 2.1 to a sphere They are called
2-dimensional space forms. They are the

But what is hyperbolic space? That is harder to define, and will be a major
topic of the class. Here is a picture to give you an idea.

1We say “up to scale” because you can always multiply distances by a constant. This leads
to a different space, but it’s just a rescaling of the old space.

23 Table of Contents



PART I 2. INTRODUCTION

Figure 5.4: Order-4 bisected pentagonal tiling of the hyperbolic plane (Rocchini,
Wikipedia)

The blue triangles form a tessellation, or tiling, of the hyperbolic plane. They
are there to give you an idea of the geometry.2

The true distances on the hyperbolic plane are not as they appear. In fact, by
declaration, all the triangles are the same size. Also, the sides of the triangles
are “straight lines” for the inhabitants. That is, in the local geometry, they are
the shortest distance between two points.

Notice that as one goes to the edge of the disk, there are more and more triangles.
This shows that the distance to the edge is really infinite. For the inhabitants,
there is no edge; their world goes on forever.

It also suggests another property of the hyperbolic plane: there is a huge amount
of area out towards infinity. It turns out that

1) The area of a disk grows roughly exponentially as a function of radius.

To be precise,
A(r) ∼ Cecr for large r.

So area grows much faster than it does in the Euclidean plane, where A(r) = πr2.

We will discuss this later in detail. Now I’m just giving an idea.

Hyperbolic space has many other strange features. For example,

2) To an inhabitant, objects of a given size at a given distance appear far
smaller in hyperbolic space than they do in Euclidean space.

3) Bodies moving in a straight line experience internal tidal effects, in con-
tract to Euclidean space.

Here is something very odd. Despite the huge size of hyperbolic space:

4) There is a universal upper bound to the area of a triangle.
2See Uniform tilings in hyperbolic plane, Wikipedia.
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To be precise, Very strange.

There is a hyperbolic space Hn in every dimension. Here is a screenshot from
J. Weeks’ Curved Spaces app:

Figure 5.5: A tessellated hyperbolic space (J. Weeks’ Curved Spaces app)

Let’s fly around in hyperbolic space.

The following Curved Spaces app is by J. Weeks. There are various hyperbolic
tessellations you can view.

• http://www.geometrygames.org/CurvedSpaces/index.html
On the net, there are thousands of graphics, videos and blogs on hyperbolic
space. I found dozens on youtube alone. It’s everybody’s favorite subject. B.
Loustau wrote:3

Hyperbolic geometry... is the star of geometries, and geometry is
the star of mathematics!

3Loustau, p. 4.
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§6 Euclidean space

In this section we cover

• Rn with the Euclidean metric
• Norms, inner products

1 nx=(x ,...,x ) Rn

x

x1

2

... xn

● ∈

Figure 6.1: Point x in Rn

By Rn we mean the set of ordered n-tuples

x = (x1, . . . , xn),

of real numbers x1, . . . , xn. The numbers xi vary freely in R. The formula

x ∈ Rn

reads
x is an element of Rn.

y

d(x,y) := |x-y|

x

●

●

Figure 6.2: Distance between x and y
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Definition 6.1 Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two points
in Rn. The distance d(x, y) between x and y is given by

d(x, y) :=
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

The function d is called the Euclidean metric on Rn.

Inner product and norm

We can relate the distance in Rn to the inner product and norm as follows:

Definition 6.2 Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

a) The inner product of x and y is defined by

x · y :=
∑
i

xiyi.

b) The norm of the vector x is defined by

|x| :=
√∑

i

x2i =
√
x · x.

Then
d(x, y) = |x− y|.
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§7 Definition of metric spaces

References

◦ Ahlfors, pp. 51-54.

In this section we cover

• Metric spaces
• A three-point example
• Rn example
• Sierpinski gasket

The definition

The idea of a metric space is to enthrone a notion of distance in a fully abstract
setting. Distance is the essence of geometry.

Let X be a set.

Definition 7.1 A function

d : X ×X → R

is a metric on X if for all x, y, z ∈ X we have

i) d(x, y) ≥ 0 (positivity)
ii) d(x, y) = 0 ⇐⇒ x = y (definiteness)
iii) d(x, y) = d(y, x) (symmetry)
iv) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

The pair (X, d) is called a metric space. We often use X as an abbreviation for
(X, d).

The triangle inequality means that it shouldn’t take longer to go from x to z
than it takes to go from x to y, then y to z.
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x

y

z

d(x,y)

d(x,z)

d(y,z)

Figure 7.1: Triangle inequality

Notice that metric spaces don’t have angles, lengths, or areas – at least not at
first. We would have to work hard to define usable versions of these concepts in
a general metric space, if it works at all. But we won’t do that in this course.

A three-point metric space

This metric space has 3 points.

7

5 6

Figure 7.2: A three-point metric space

Rn

A fundamental example of a metric space is Rn with the Euclidean metric d.

Positive definiteness and symmetry of d are obvious. These are i)-iii).

To prove iv) the triangle inequality for d, the reader must establish the following
basic propostion of analysis:

Proposition 7.2 Let x, y, z ∈ Rn. Then
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a) (Cauchy-Schwarz inequality) |x · y| ≤ |x||y|
b) (Triangle inequality for norms) |x+ y| ≤ |x|+ |y|
c) (Triangle inequality for distances) |x− z| ≤ |x− y|+ |y − z|.

Proof 1. Step a) is tricky. For any t ∈ R, we have

|x+ ty|2 = |x|2 + 2tx · y + t2|y|2.

Since this is nonnegative for all real values of t, there can be at most one real root
t. So the discriminant b2 − 4ac must be nonpositive. Here a = |y|2, b = 2x · y,
c = |x|2. So

0 ≥ b2 − 4ac

= (2x · y)2 − 4|y|2|x|2,

which becomes

|x · y| ≤ |y||x|,

which is a).

2. To prove b), compute

|x+ y|2 = (x+ y) · (x+ y)

= |x|2 + 2x · y + |y|2

≤ |x|2 + 2|x||y|+ |y|2 by a)

= (|x|+ |y|)2,

from which b) follows by taking the square root.

3. We obtain c) from b) by substituting x → x − y, y → y − z in b). Because
b) and c) are so closely related, they are both called the triangle inequality.

2

Sierpinski gasket

The Sierpinski gasket G is the limit of the following construction as the number
of “levels” goes to infinity.
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Figure 7.3: The Sierpinski gasket

Use the metric of R2 to give it a metric. It is a fractal. That means, it has a
non-integer dimension. Its dimension1 is

log(3)

log(2)
≈ 1.5849625.

This says that it has a higher dimension than a curve (dimension one), but is
“thinner” than R2.2

1Hausdorff dimension, for the experts
2We don’t claim to have defined dimension. It is defined in the subject of Geometric

Measure Theory.
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§8 Isometries

In this section we cover

• Isometries of metric spaces
• Example
• Isometries of Rn

Isometries

Let X, Y be metric spaces.

Definition 8.1 An isometry from (X, dX) to (Y, dY ) is a bijection

f : X → Y, x 7→ f(x),

that preserves distances between points:

dX(x, y) = dY (f(x), f(y)), x, y ∈ X. (8.1)

Here, x is a point of X, and f(x) is its image under the mapping f .

2. INTRODUCTION 7. METRIC SPACES

Use the metric of R2 to give it a metric. It is a fractal. That means, it has a
non-integer dimension. Its dimension is

log(3)

log(2)
⇡ 1.5849625.

This says that it has a higher dimension than a curve (dimension one), but is
“thinner” than R2.1

1We don’t claim to have defined dimension. It is defined in the subject of Geometric
Measure Theory.
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x

y

d(x,y)

f(x)

f(y)

d(f(x),f(y))

= d(x,y)

Figure 8.1: Distance is preserved

It means the metric spaces look the same, for all practical purposes.

R
φ R

Figure 8.2: An isometry of an R to another R
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Note: The injective part of “bijective” follows automatically from the distance-
preserving property. So only the surjectivity must be checked.3

Define
Isom(X,Y ) := {f : X → Y |f is an isometry)

A self-isometry (usually just called an isometry) of X is an isometry from X to
X. Write

Isom(X) := Isom(X,X).

Exercise 8.1 Show that the set of self-isometries has the following 3 properties:

a) idX ∈ Isom(X),
b) f, g ∈ Isom(X) implies f ◦ g ∈ Isom(X),
b) f ∈ Isom(X) implies f−1 ∈ Isom(X).

Isometries of the Sierpinski gasket to itself

Consider the Sierpinski gasket again:

Figure 8.3: The Sierpinski gasket

Exercise 8.2 How many self-isometries does it have?

Isometries of Rn to itself

A self-isometry of Rn is often called a rigid motion.

Distance-preserving maps from Rn to Rn are automatically surjective, and there-
fore bijective. This is not obvious, but requires a linear algebra proof.

3Surjective means that every point of Rn is hit by at least one point x under φ. Injective
means that every point of Rn is hit by at most one point x under φ. Bijective means injective
and surjective. A bijective function is a one-to-one correspondence.
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Isometries of Rn also preserve angles, areas, and volumes. This requires a proof.4

Here are some isometries of Rn:

• The identity map idRn : Rn → Rn, x 7→ x

• Translations, rotations
• Reflections in planes, lines, or points.

Then there are some exotic ones:

• Roto-reflections, glide reflections, screw motions.

These rigid motions are amply explained in Geometrie 2020, https://metaphor.
ethz.ch/x/2020/hs/401-1511-00L/literatur/script.pdf, in many places:
§§2,12,14,15,16,17,32,48 and others.

The following kinds of maps are generally not isometries:

expansions, contractions, shears, projections, distortions, rips, tears,
constant maps.

Isom(Rn) is called the Euclidean group.

4For general metric spaces, such notions are more subtle or don’t exist. But when they
exist, they are preserved.
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§9 Examples of metric spaces

References

◦ Wikipedia, Taxicab geometry.
◦ Falconer, The geometry of fractal sets.

In this section we cover

• L1 metric on Rn

• sup metric on Rn

• Infinite-dimensional vector spaces, function spaces

L1 metric on Rn

Define on Rn the distance function

d1(x, y) :=
∑
i

|xi − yi|, x, y ∈ Rn.

This is called the L1 metric.

Exercise 9.1 Prove that this is a metric.

The L1 metric is often called the taxicab metric, because if R2 gets a New-York
style grid of streets parallel to the coordinate axes, it would be the distance a
taxi has to drive to get from x to y.

@ Copyright 2021 Tom Ilmanen.
Figures copyright by their respective authors.

2

x
●

● y

d (x,y) = 4+8 = 12

4

8

1

Figure 9.1: Taxi metric

Indeed, notice that there are often many alternate taxi routes from x to y of
minimum length:
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@ Copyright 2021 Tom Ilmanen.
Figures copyright by their respective authors.

2

x
●

●
y

Figure 9.2: Many pathways of the same length

This contrasts starkly with the situation in Euclidean space, where there is only
one shortest path between two points.

Now, in (R2, d1), if x, y differ by only one coordinate, then they do have a
shortest path between them, whereas if they differ in both coordinates, they
have infinitely many shortest paths between them.

Indeed, define

R(x, y) := {z ∈ R2 : d(x, z) + d(z, y) = d(x, y)},
that is, the triangle inequality is saturated. If x, y differ by only one coordinate,
then R(x, y) is a line, whereas if they differ in both coordinates, then R(x, y) is
a rectangle.

●

●
x

y

R(x,y)

Figure 9.3: Set of points that saturate the triangle inequality

So (Rn, d1) does not look the same in all directions. The directions given by the
coordinate axes are special.

Exercise 9.2 What is the set {x : d1(x, 0) ≤ 1}?
(This is called the unit ball of (Rn, d1).)
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Exercise 9.3 What are the isometries of (Rn, d1)? Are there less of them than
with the Euclidean metric?

Sup metric on Rn

Define on Rn the distance function

d∞(x, y) := max
i
|xi − yi|, x, y ∈ Rn.

This is called the sup metric or L∞ metric.

@ Copyright 2021 Tom Ilmanen.
Figures copyright by their respective authors.

2

x
●

● y

d (x,y) = max(4,8) = 8

4

8

∞

Figure 9.4: Sup metric

Exercise 9.4 We can ask the same questions for d∞ as we did for d1.

Exercise 9.5 Prove that (R2, d1) is isometric to (R2, 2d∞).

Function spaces

We can make infinite infinite-dimensional vector spaces into metric spaces, called
Banach spaces. Very often these are spaces of functions, called function spaces.

This can be done in many ways, and it is very subtle. But it is essential in
Analysis and Partial Differential Equations. The subject is called Functional
Analysis.
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§10 More examples of metric spaces

In this section we cover

• Metric subspaces
• Path-length metrics
• S2 with the path-length metric
• Sierpinski gasket with the path-length metric
• Koch snowflake
• √ metric
• The infinite-dimensional simplex

Metric subspaces

Any subset of a metric space becomes a metric space in a natural way.

Indeed, let (X, dX) be a metric space. Let Y ⊆ X be any subset. Then Y
inherits a metric space structure, called the subspace metric, defined by

dY := dX |(Y × Y ).

That is, we just use the same distances in Y that we were already using in X.
It is trivial to verify that

(Y, dY )

is a metric space. (Y, dY ) is called a metric subspace of (X, dX).

Example: The Sierpinski gasket is a metric subspace of R2. But then so is any
other subset.

Path-length metrics

For a subset Y of Rn, we can define another metric d′Y on Y called geodesic
distance or the path-length metric.

Let γ be any path in Y . If γ is not too irregular, we can define the length L(γ)
of γ.

Let x, y ∈ Y . Define d′Y (x, y) to be the length of the shortest path between x
and y that stays within Y . If there is no shortest path, then use the infimum
instead:

d′Y (x, y) := inf{L(γ) : γ is a path in Y connecting x to y.}

Observe:

1) d′Y is not always a metric, because it may be impossible to connect x and y
by a finite-length path.
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2) Exercise: Prove that if every x and y in Y can be connected by a finite-length
path, then d′Y is a metric on Y .

3) d′Y ≥ dY always.

4) Actually, L(γ) can be defined for any continuous path in any metric space,
though it might be infinite. So d′Y can be defined for any subset Y of any
metric space X, and is a metric if every two points of Y can be connected by a
finite-length path lying in Y . But we won’t do that here.

Sometimes dY is called the extrinsic distance and d′Y is called the intrinsic
distance. So Y gets two different induced metrics.

Path-length metric on the Sierpinski gasket

Recall the Sierpinski gasket. Call it G. Use the path-length metric d′.

Figure 10.1: The Sierpinski gasket

Exercise 10.1 Suppose a side of the containing triangle has length 1.

a) What is the average distance from a randomly chosen point of G to a
corner point?

b)* What is the average distance between two randomly chosen points of G?

Here is a hint on how to understand the probability. Let x be a random point.
Require

1) For any closed subsets A, B of G that are isometric, we have

Prob(x ∈ A) = Prob(x ∈ B).

2) The probability of hitting a particular point is zero.

Koch snowflake

Here is another fractal. The limit of the following process is called the Koch
snowflake S.
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Figure 10.2: Koch snowflake (Wxs, Wikipedia)

The dimension5 of the Koch snowflake is

log(4)

log(3)
≈ 1.261860

It is a bit “thinner” than the Sierpinski gasket.

Exercise 10.2 What is the path-length metric on S?

For more about fractals, see Falconer, The geometry of fractal sets.

R with √ metric

Another way to define a fractal metric space is by modifying the Euclidean
metric in place. Define a new metric d√ on R by

d√(x, y) =
√
|x− y|, x, y ∈ R.

This is easily seen to be a metric. In particular, the triangle inequality follows
from the well-known inequality

√
a+ b ≤ √a+

√
b, a, b ≥ 0. (10.1)

Exercise 10.3 Prove (10.1).

Let’s call this metric space (R, d) the √-space.
An isometric embedding is a distance-preserving function. It must be injective;
it need not be surjective. It is the same as an isometry onto a metric subspace
of the target space.

5Hausdorff dimension, for the experts
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Figure 10.3: Isometric embedding

Exercise 10.4 Prove or disprove: The √ space cannot be isometrically embed-
ded in Rn for any n.

Exercise 10.5 What are the isometries of (R, d√)?

The infinite-dimensional simplex

Let Z be the set of all unit vectors of the form

ei = (0, . . . , 0, 1, 0, . . .),

where the 1 occurs in the i’th place. Note that

d(x, y) =
√

2, x 6= y ∈ Z.

Z is sometimes called the infinite-dimensional simplex. It is a so-called discrete
space, since no point has other points arbitrarily close to it.

Exercise 10.6 Show that Z cannot be isometrically embedded in Rn for any n.

Exercise 10.7 Find a metric space with four points that cannot be isometrically
embedded in Rn for any n.

Exercise 10.8 Find a metric on R2 so that every bijective map f : R2 → R2 is
an isometry.
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§11 Length and distance in S2

Length of paths in S2

Let
S2 := {x ∈ R3 : |x| = 1}

be the 2-sphere Rn+1.

Figure 11.1: Two-sphere

Generally, for a continuously differentiable curve

γ : [a, b]→ Rn,

we define its length by the integral

L(γ) :=

∫ b

a

∣∣∣∣dγdt (t)

∣∣∣∣ dt

u(t)

u(a)

u(b)●

u'(t)

Figure 11.2: Path with velocity vector

The idea is that distance traveled is the integral of speed over time. The units
check out:

x ∼ x

t
t.
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The length of a path in S2 is just its length in R3. So we write L(γ) without a
subscript.

For simple curves such as geodesic arcs, we can compute the length directly: it
is just equal to the central angle subtended by the arc.

θ

L(γ) = θ

Figure 11.3: Central angle is length

S2 with two metrics

Write d′ = d′S2 for the path-length metric on S2, and d = dS2 for the subspace
metric.

Then d′ is the length of the shorter geodesic arc γ connecting x and y, namely

d′(x, y) := L(γ).

On the other hand, d is the length of the chord connecting x and y, namely

d(x, y) := |x− y|.

See the picture.

d

d′
x

y

Figure 11.4: Arc versus chord
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For example, if N is the north pole and S is the south pole, then

d(N,S) = 2, d′(N,S) = π.

We won’t prove them at this point, but you can try your hand at the following
two exercises. They are a little tricky.

Exercise 11.1 In R2, a line is the shortest curve between two points.

Exercise 11.2 In (S2, d′), a geodesic arc (of length ≤ π) is the shortest curve
between two points.

In particular, the infimum is really a minimum in both cases.

Let us focus on d′. We exclude geodesic arcs of length > π because they go the
“long way around” and aren’t the most efficient way to get from x to y.

x
y

Figure 11.5: The red path is the long way around

Note that there can be many paths that realize the minimum. Indeed, if x and
y are antipodal points, then d′(x, y) = π, and every semicircle from x to y has
length π. The reader can compare this to the nonunique minimizing path in the
taxicab metric, but the mechanisms seem to be quite different.

x y

Figure 11.6: Many paths
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Angle

A curve α(t) is called regular if it is continuously differentiable and its velocity
vector dα/dt is nowhere vanishing.

The angle between two regular curves α(t), β(t) in S2 that meet at a point

α(t0) = β(t0)

is the angle between their velocity vectors at the point of intersection.

∠

(
dα

dt
(t0),

dβ

dt
(t0)

)
∈ [0, π].
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§12 Area and circumference of an intrinsic disk

References

◦ J. R. Weeks, The Shape of Space, pp. 125-134.

We compute the area and circumference of an intrinsic disk in S2, and reflect
upon our result. We briefly mention the hyperbolic case.

Let N be the north pole of S2. Let Dr = Dr(N) be the intrinsic disk of radius
r defined by

Dr := {x ∈ S2 : d′(x,N) < r},
where d′ is the geodesic distance on S2. Let

Kr := {x ∈ S2 : d′(x,N) = r}

be its boundary, the intrinsic circle of radius r with center N .

Figure 12.1: Circumference of a disk

Circumference

We can easily compute the circumference of Kr.

Let θ be the central angle subtended by N and any point x on Kr. Then

θ = r

So the radius of Cr as a circle in 3-space is given by

r̃ := sin θ = sin r.

(see figure).
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Figure 12.2: Euclidean radius of circle

So the circumference of Kr is 2πr̃, which is

CS(r) = 2π sin(r), 0 ≤ r ≤ π.

Now let us reflect on this: sin(r) has the expansion

sin(r) = r − r3

6
+O(r5) as r → 0,

where the big-O notation O(g) refers to any function ε(r) that satisfies

|ε(r)| ≤ Cg(r) for small r,

where C is some constant independent of r. So we have

CS(r) = 2πr − πr3

3
+O(r5) as r → 0.

Compare this to the Euclidean formula

CE(r) = 2πr, r ≥ 0.

So the spherical formula is asymptotically equal to the Euclidean formula as
r → 0, but it is a little smaller. If r is much greater than 0, it is a lot smaller.

The hyperbolic plane. A glimpse into the future. For the hyperbolic plane, the
circumference will be 2π sinh(r), which grows exponentially. See §22, §28.
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0 1 2 3 4
0

5

10
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Circumference

2

2
2H
R

S

Figure 12.3: Circumference of a circle: H2, R2 and S2 (Mathematica)

Area (by calculus)

Next let us find the area of Dr. We will do it two ways, by calculus and by
quoting Archimedes’ theorem on the area of spherical sectors.

For the calculus proof, we fill the region between N and Kr by “parallel” circles

Ks, 0 < s ≤ r.

Figure 12.4: Area of the disk by integration of shells

The circles are everywhere equidistant, and the distance between Ks and Kt is
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|t− s|. So we can compute the area of Dr by

AS(r) =

∫ r

0

L(Ks) ds

=

∫ r

0

CS(s) ds

=

∫ r

0

2π sin(s) ds from above

= (−2π cos(s)]
s=r
s=0

= −2π cos(r) + 2π cos(0)

= 2π(1− cos(r)).

So the spherical area of the disk is

AS(r) = 2π(1− cos(r)), 0 ≤ r ≤ π.

Let us compare this to the Euclidean result. cos(r) has the expansion

cos(r) = 1− r2

2
+
r4

24
+O(r6) as r → 0,

So we have

AS(r) = πr2 − πr4

12
+O(r6) as r → 0.

Compare this to the Euclidean formula

AE(r) = πr2, r ≥ 0.

That means, the area is asymptotically equal to the Euclidean value as r → 0,
but it is smaller. It resembles the length in this way.

A visual proof that the area is smaller for the sphere case is given by this picture,
adapted from J. Weeks, p. 133.

We slice up a spherical disk into angular sectors in order to be able to press it
flat onto the plane. Space opens up between the sectors. This establishes that
the area of a spherical disk is less than the area of the Euclidean disk of the
same radius.

The hyperbolic plane. Message from the future: For the hyperbolic plane we get
that the area is 2π(cosh(r)−1), which grows exponentially. Here is a comparison
of all three.
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Figure 12.5: Area of a circle: H2, R2 and S2 (Mathematica)

Area (by Archimedes’ theorem)

Archimedes’ theorem says the following:1

The area of a sphere cut by two parallel planes normal to an axis
equals the corresponding area of a circumscribing cylinder with the
same axis.

Figure 12.6: The two sectors have equal areas

Such an annular region on the sphere is called a spherical sector. The annular
region on the cylinder is called a cylindrical sector.

Archimedes’ theorem has a purely geometric proof, without using symbolic in-
tegration.2 However, it does use “geometric” integration and differentiation, as

1Archimedes, On the Sphere and Cylinder (Περὶ σφαίρας καὶ κυλίνδρου), around 225 B.C.
2T. M. Apostol & M. A. Mnatsakanian, A fresh look at the method of Archimedes, Math.

Assoc. of America Monthly 111, 2004.
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invented by Archimedes to solve problems like this.

Archimedes’ theorem can be used to calculate the area of a unit sphere – namely,
it is the same as the lateral area of the circumscribed cylinder of the same height.
This leads to the standard formula 4π.

Figure 12.7: A sphere inscribed in a cylinder

If we apply Archimedes’ theorem to the spherical cap Dr, we find that it has
the same area as a cylinder of radius 1 and height h.

Figure 12.8: A spherical cap compared to a short cylinder

From Figure 12.2,
h = 1− cos(r).

Therefore

AS(r) = 2πrcylinderh

= 2πh

= 2π(1− cos(r)),
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as before.

Summary

The circumference and area of an intrinsic disk of radius r in the sphere are

CS(r) = 2π sin(r), 0 ≤ r ≤ π,
AS(r) = 2π(1− cos(r)), 0 ≤ r ≤ π.

Exercise 12.1 (Dido on the sphere) Suppose you are given a rope of length
a. You are told: you can claim as much land as you can enclose with the rope.
Assuming that you want as much land as possible, are you better off in R2 or
in S2? Does it depend on the length of the rope?
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§13 Angle excess

Recall the famous angle sum formula in R2 (known to Euclid). It says that for
a triangle in R2,

α+ β + γ = π.

Here is the triangle.

Figure 13.1: Triangle in R2

What is the corresponding fact in S2?

Figure 13.2: Triangle in S2

Obviously the Euclidean formula does not hold in the sphere. Just consider a
triangle with three right angles: one at the north pole and two on the equator.
Then the angle sum is 3π/2, significantly larger than π.

On the other hand, a very small triangle is nearly Euclidean, so its angle sum
is nearly π.

57 Table of Contents



PART II 5. ANGLE EXCESS

The larger the triangle, the more it partakes of the sphere’s curvature. Here is
a half orange slice:1

Figure 13.3: Half an orange slice

Its angle sum is
π

2
+
π

2
+ α = π + α.

So it’s more than π. The angle excess is

X(T ) := (angle sum)− π
= (π + α)− π
= α.

It’s proportional to the angle α.

On the other hand, the area of T is also proportional to α. Let us calculate the
area of T .

If we take two copies of T , we get a full orange-slice L. This is also called a
lune.2

A lune is characterized by an angle α. If α reaches 2π, then L becomes S2. So

A(L) =
α

2π
A(S2)

=
α

2π
(4π)

= 2α,

1Halborangenscheibe.
2Kugelzweieck.
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so

A(T ) =
1

2
A(L)

= α.

So for the half-lune,
angle excess = area.

Amazing.

In fact, this is always true:3

Theorem 13.1 (Angle excess formula) Let T be a triangle in S2 of interior
angles α, β, γ. Then

(α+ β + γ)− π = A(T ).

We will prove this in the next section.

Here is another example. The lune itself is a triangle. It may not look like a
triangle, but is a degenerate triangle as shown in the picture:

It has angles α, α, π and angle excess

X(T ) = (α+ α+ π)− π = 2α.

And as computed above,
A(T ) = 2α.

So again, for the lune,
angle excess = area.

Hyperbolic case

Here is a glimpse into the future:

The hyperbolic plane is somehow the opposite of the 2-sphere. It has an angle
deficit. Namely, α+ β + γ < π, and

π − (α+ β + γ) = A(T ),

just the opposite of S2. Triangles in H2 are skinnier than Euclidean ones,
whereas spherical ones are fatter.

3J. Weeks tells us that this result appeared in “De la mesure de la superfice des triangles
et polygones sphéricques, nouvellement inventée” in the book Invention nouvelle en l’algebre
by Albert Girard, 1629.
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Figure 13.4: Triangle in H2

Tantalizing question How large can the area of a triangle in H2 be?

Surprisingly, it turns out that the area is limited by π (proof needed).

But at the same time, there is exponentially much area in H2.

So it seems that very large triangles (triangles with long sides) ought to have
extremely much area. Yet they don’t.

How can these apparently contradictory assertions be reconciled? At this point,
we have no idea. We’re swimming. We’ll have to wait.

Here is a comparison of triangles in the three spaces, borrowed from Jeff Weeks.
32 THE SHAPE OF SPACE

Figure 3.7: The hemisphere, the plane, and the
hyperbolic plane all have different intrinsic geometries.

���������
�������	
�

Figure 13.5: Three types of triangles (J. Weeks)
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§14 Proof of the angle excess formula

References

◦ J. R. Weeks, The Shape of Space, pp. 125-134.

Proof of Theorem 13.1 Note that in going from the half orange-slice to the
full orange-slice, there seemed to be a kind of additivity. Let’s try to exploit
this to prove the Angle Excess Formula.

Let T be a triangle with angles α, β, γ. Extend all three sides until they are
three great circles. Then the three circles divide S2 into 8 triangles.

Now the proof can be seen at a glance from this picture and the one below, but
the verbal description takes a little longer.

Consider the antipodal map4

Z : S2 → S2, x→ −x.

It takes T to its opposite triangle

Z(T ) = −T

and back again.

Now T and −T are isometric. To see this, observe that Z can be expressed as
the composition

Z = Rx ◦ Ry ◦Rz

of three mirror reflections, namely

Rx := reflection across the y-z plane,
Ry := reflection across the x-z plane,
Rz := reflection across the x-y plane.

Since each of these is an isometry of S2, Z is an isometry of S2 (maybe this was
obvious).

So T is isometric to −T . So T and −T have the same angles and the same area.

Now the 8 triangles arrange thenselves into lunes in many ways. Any two
adjacent triangles form a lune.

The remaining 6 triangles besides T and −T form a cyclic chain that lies between

4Antipodenabbildung.
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T and −T . The successive triangles in this chain have angles

α, π − β, π − γ
π − α, β, π − γ
π − α, π − β, γ
α, π − β, π − γ
π − α, β, π − γ
π − α, π − β, γ.

We can fuse the 1st and 2nd triangle, the 3rd and 4th triangle, and the 5th and
6th triangle to form 3 disjoint lunes, defined by angles

π − γ, π − β, π − α.

Together with the two original triangles, these three lunes exactly fill the sphere.
The following picture is adapted from Weeks, p. 130.

Recalling our observation in the last section, the lunes have areas

2(π − γ), 2(π − β), 2(π − α).

It follows that the two triangles T , −T have total area

A(T ) +A(−T ) = A(S2)− (area of 3 lunes)
= 4π − 2(π − γ)− 2(π − β)− 2(π − α)

= 2(γ + β + α)− 2π.

Since T and −T are isometric, they must have the same area. So

A(T ) = (α+ β + γ)− π,

the angle excess of T , as was desired to prove.

2
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§15 The map problem

References

◦ Mercator projection, Wikipedia
◦ Conformal map projection, Wikipedia
◦ Equal-area map, Wikipedia
◦ Lambert cylindrical equal-area projection, Wikipedia

Let’s discuss maps of the earth’s surface.

Maps

A geographical map is a bijection

f : U ⊆ S2 → V ⊆ R2

between an open subset of the sphere and an open subset of the plane. We use
f to transport all features (cities, coastlines, graticule,1 etc.) from U to V .

Here is the familiar Mercator map:

Figure 15.1: Mercator map (Strebe, Wikipedia)

It extends infinitely far upwards and downwards.

Here is the bijection (called the Mercator projection) that produces it.

It takes circles of latitude to horizontal lines and lines of longitude to vertical
lines. It is a cylindrical projection followed by unrolling2 of the cylinder.

1Gradnetz oder Kartennetz.
2Entrollen.
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The exact function that assigns latitude circles to cylinder circles in the Merca-
tor projection is carefully computed so that the Mercator projection preserves
angles. It is not obvious (it’s not straight-line projection).

Preservation of properties

In constructing a map, one wishes to preserve all geometric properties: length,
distance, angle, area.

It is impossible to preserve all of these at once. So some kind of compromise
has to be made.

Why can’t we preserve all of these at once?

First of all, one can show in all generality:3

Lengths determine both angles and areas.

So it would be enough to preserve lengths. Then everything is preserved.

On the other hand, one can also show:4

If both angle and area are preserved, then length is preserved.

We haven’t proven these things, but you can imagine how they might be proven.5

Now here’s the thing:

The function f cannot preserve lengths.

Here’s why: In §§12-14, we’ve shown that the intrinsic geometric properties of
S2 differ in essential ways from those of R2. In particular:

• The circumference and area of a disk are different.
• The angle sum of a triangle is different.

So there cannot be a isometry between any open subset of S2 and an open set
of R2.

It then follows:

f cannot preserve both angle and area.

For if both were preserved, then length would be preserved, which is impossible.

Types of maps

So there are, broadly speaking, two categories of geographical map in use:

• Angle-preserving,
• Area preserving,

3In any dimension.
4In any dimension.
5Linear algebra.
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as well as some hybrid forms. You have to make tradeoffs and there is no perfect
solution.

An angle-preserving function is called conformal. The Mercator projection
above is conformal.

A well-known area-preserving map is the Lambert cylindrical equal area projec-
tion:

Figure 15.2: Lambert cylindrical equal area projection (Strebe, Wikipedia)

It is obtained by projecting horizontally outward from the vertical axis onto the
cylinder of height 2 that is tangent to S2 along the equator, and then unrolling
the cylinder. Like the Mercator projection, it is a cylindrical projection.

Figure 15.3: How Lambert is done (KoenB, Schuyler Erle, Wikipedia)

The Lambert projection preserves area because of Archimedes’ Theorem.

Exercise 15.1 The Lambert cylindrical equal area projection has a lot of angu-
lar distortion, especially toward the poles. What is a very simple way to reduce
the distortion? (Hint: Wikipedia)

Wikipedia lists at least 13 conformal projections and 21 equal area projections,
and some mixed ones. These are ones that were significant enough to get names.
There are infinitely many.
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§16 Stereographic projection

References

◦ Stereographic projection, Wikipedia
◦ Stereographic map projection, Wikipedia

Note: The notation in this section has been changed.

Mathematically, perhaps the most important mapping from S2 to R2 is stereo-
graphic projection. It will turn out to be conformal.

It is defined as follows. Let N = (0, 0, 1) be the north pole of S2, and let R2 be
the x-y plane. Then R2 is the horizontal plane containing the equator of S2.

Fix P ∈ S2, P 6= N . Draw a line L through N and P . Let σ(P ) = Q be the
point where L meets R2. Then

σ : S2 \ {N} → R2

is stereographic projection.

Geometrically, it is clear that σ is a bijection.

Calculate stereographic projection

What is the formula for σ(P )?

Write
P = (X,Y, Z), σ(P ) = Q = (x, y).

The line L has the parametrization

t 7→ N + t(P −N), t ∈ R.

To obtain the intersection point Q of L with R2, we must solve

N + t(P −N) = (x, y, 0)

for t, x, y in terms of X, Y , Z. It becomes

(0, 0, 1) + t((X,Y, Z)− (0, 0, 1)) = (x, y, 0)

i.e.
tX = x, tY = x, 1 + t(Z − 1) = 0.

so
t = 1/(1− Z) > 0

since Z < 1. So
x =

X

1− Z , y =
Y

1− Z .
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So

σ(P ) = σ(X,Y, Z) =

(
X

1− Z ,
Y

1− Z

)
, σ : S2 \ {N} → R2.

Calculate the inverse map

The inverse map
τ = σ−1 : R2 → S2, Q 7→ τ(Q)

can be found by solving

σ(X,Y, Z) = (x, y), X2 + Y 2 + Z2 = 1,

for (X,Y, Z) in terms of x, y.

This takes a few steps. Here are the details.

We get
X

1− Z = x

Y

1− Z = y

X2 + Y 2 + Z2 = 1.

So
|(X,Y )| = (1− Z)|(x, y)| = (1− Z)|Q|.

So

1 = X2 + Y 2 + Z2 = (1− Z)2|Q|2 + Z2.

So

(1− Z)(1 + Z) = (1− Z)2|Q|2.

Because we can’t have Z = 1, we can divide by 1− Z and get

1 + Z = (1− Z)|Q|2.

So

Z =
|Q|2 − 1

|Q|2 + 1
. (16.1)

So
X = (1− Z)x =

2x

|Q|2 + 1
, Y = (1− Z)y =

2y

|Q|2 + 1
.
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So the inverse of stereographic projection is

τ(Q) = τ(x, y) = (X,Y, Z) =
(2x, 2y, |Q|2 − 1)

|Q|2 + 1
.

For future use, we write z = x+ iy instead of Q = (X,Y ). We get

τ(z) = τ(x, y) =
(2x, 2y, |z|2 − 1)

|z|2 + 1
, τ = σ−1 : C→ S2 \ {N}.

More images

Here is an image from Wikipedia:

Figure 16.1: Stereographic projection (Che Che, Mark.Howison, Wikipedia)

In this figure, instead of using the plane R2 = {Z = 0} as the target, we use
{Z = −1}. This does not make much difference. We could use any horizontal
plane {Z = a}, a < 1 as the target. The maps we obtain are all related by a
scale factor.6

Exercise 16.1 Verify this.

Here is what it looks like as a geographic map. The map is infinite in extent,
with an arbitrarily large amount of expansion of the Antarctic region. I have
to admit that the infiniteness is not very well shown on the map. What is the
projection point in this case?

6See Stereographic projection, Wikipedia.
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Figure 16.2: Stereographic projection (Strebe, Wikipedia)
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§17 The spherical metric on R2

How can we use stereographic projection to express the metric of S2 by calcu-
lations on R2?

An ant lives on C, but believes she lives in S2. That is, she walks around in
C, but she experiences the geometry of the corresponding points of S2 under the
inverse stereographic projection τ . This is considered a delusion by the other
ants.

Let us express her notion of distance in terms of C distances.

Answer:

It is just a calculation. Let z, w be points of C. Then the ant’s private notion
of distance is obtained by mapping the points z, w to S2 via

τ : C→ S2 \ {N},

finding the S2 distance between them (geodesic distance), and that’s the result.

That is, her private notion of distance is

dprivate(z, w) = dS(τ(z), τ(w)).

From the previous section, with z = x+ iy, w = u+ iv

P := τ(z) =
(2x, 2y, |z|2 − 1)

|z|2 + 1
,

and similarly

P ′ := τ(w) =
(2u, 2v, |w|2 − 1)

|w|2 + 1
.

Then

dprivate(z, w) = dS(P, P ′)

= θ from §11,

where P and P ′ are the image points in S2 and θ is the central angle between
them.
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Then by the rule relating angle to inner product (linear algebra)

cos(θ) =
P · P ′
|P ||P ′| ,

= P · P ′ since |P | = |P ′| = 1,

=

(
(2x, 2y, |z|2 − 1)

|z|2 + 1

)
·
(

(2u, 2v, |w|2 − 1)

|w|2 + 1

)
=

4xu+ 4yv + (|z|2 − 1)(|w|2 − 1)

(|z|2 + 1)(|w|2 + 1)

= 1 +
4xu+ 4yv + (|z|2 − 1)(|w|2 − 1)− (|z|2 + 1)(|w|2 + 1)

(|z|2 + 1)(|w|2 + 1)

= 1 +
4xu+ 4yv − 2|z| − 2|w|2

(|z|2 + 1)(|w|2 + 1)

= 1− 2
−2xu− 2yv + |z|2 + |w|2

(|z|2 + 1)(|w|2 + 1)

= 1− 2
−2xu− 2yv + x2 + y2 + u2 + v2

(|z|2 + 1)(|w|2 + 1)

= 1− 2
(x− u)2 + (y − v)2

(|z|2 + 1)(|w|2 + 1)

= 1− 2
|z − w|2

(|z|2 + 1)(|w|2 + 1)
.

We conclude

dprivate(z, w) = arccos

(
1− 2

|z − w|2
(|z|2 + 1)(|w|2 + 1)

)
.

This is how to calculate her private fantasy of living on the sphere in terms of
the real-life geometry of the Euclidean plane.

Later every ant comes to share her perceptions, so they no longer have any way
to refute it, so it becomes reality.7 There is only one ant who’s left out, but he’s
a lightning calculator, so he can use the above formula to pretend he fits in with
the other ants.

In summary (changing the notation slightly):

Proposition 17.1 The metric of S2, expressed on R2 via stereographic projec-
tion, is

dS(z, w) = arccos

(
1− 2|z − w|2

(|z|2 + 1)(|w|2 + 1)

)
, z, w ∈ C.

7Shades of Philip K. Dick.
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§18 Similarities of R2

References
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Springer, 2014, pp. 212-221 (orientation).
◦ Weeks, pp. 41-58 (orientation of manifolds - lots of information).

In this section we:

• Define similarities
• Show that all similarities of Rn are conformal
• Find all the similarities of R2, and express them in complex notation.
• Classify them as orientation-preserving and orientation-reversing.

These ideas will help us to understand the result in the next section, and we’ll
use them later for Möbius transformations as well.

Similarities

A bijection
f : Rn → Rn

is a similarity1 if it stretches all distances by a constant factor:

|f(x)− f(y)| = λ|x− y|, x, y ∈ Rn,

where λ is a constant. If λ = 1 then it is an isometry. So a similarity is an
isometry, plus a scale factor. We can define the same concept for maps between
metric spaces.

It is obvious that compositions and inverses of similarities are similarities.

Similarities of Rn are conformal

Recall that a map is called conformal if it is angle-preserving. We have:

Proposition 18.1 A similarity of Rn is angle-preserving.

Proof Recall the law of cosines:

2ab cos(γ) = a2 + b2 − c2.
1Ähnlichkeitstransformation.
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But if we multiply all distances by the same constant λ, we don’t change cos(γ).
So we don’t change γ. This proves the result.

2

Note: The law of cosines is why we say that lengths determine angles.

Similarities of R2

What are the similarities of R2?

Here are some:

• Rotations about 0 by some angle θ (here λ = 1)
• Dilations (expansions, homotheties)2 by a factor λ > 0

• Reflections across a line through 0 (again λ = 1)
• Translations by some vector b (again λ = 1)

These can be represented in complex notation by

• Rotations: z 7→ eiθz, where θ ∈ R
• Dilations: z 7→ λz, where λ ∈ R, λ > 0

• Conjugation: z 7→ z̄

• Translations: z 7→ z + b, where b ∈ C.

In fact, as we shall see, these generate all the similarities of C.

Rotation-expansions

Rotations and expansions can be combined into one operation by defining

a := λeiθ

and become

• Rotation-expansions: z 7→ az, where a ∈ C, a 6= 0.

So a rotation-expansion is nothing more than a complex-linear map of C.

Reflections across lines

The third operation, conjugation, is only one example of reflection across a line.

Exercise 18.1 x
2Streckungen.
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a) Show that z 7→ eiφz̄ is the most general reflection across a line through 0.
b) What line does it reflect across?

Composition rules for orientation

A map is orientation-preserving if it takes right hands to right hands and left
hands to left hands. (See the references at the beginning of the section.)

A map is orientation-reversing if it takes right hands to left hands and left hands
to right hands.

Let
E = orientation-preserving, U = orientation reversing.

We have the following rules:

E ◦ E = E

E ◦ U = U

U ◦ E = U

U ◦ U = E

It’s a matter of parity, or lex talionis – two wrongs DO make a right.

Orientation-preserving similarities

Rotations, expansions, and translations are all orientation-preserving.

So by the composition rules for orientation, any composition of them is an
orientation-preserving similarity of C.

It turns out that the most general orientation-preserving similarity of C is a
rotation-expansion followed by a translation, namely

z 7→ az + b,

where a, b ∈ C, a 6= 0.

Exercise 18.2 Prove this.

So: an orientation-preserving similarity of C is the same as a complex affine
map.

It follows that the orientation-preserving similarities that fix zero are precisely
the complex-linear maps

z 7→ az,

where a ∈ C, a 6= 0.
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Orientation-reversing similarities

Conjugation z 7→ z̄ is orientation-reversing.

So by the composition rules for orientation, any composition of rotations, ex-
pansions, and translations, together with an odd number of conjugations, is an
orientation-reversing similarity of C.

It turns out that the most general orientation-reversing similarity of C is con-
jugation, followed by a rotation-expansion, followed by a translation, namely

z 7→ az̄ + b,

where a, b ∈ C, a 6= 0.

Exercise 18.3 Prove this.

Non-similarities

What linear maps of R3 are not similarities?

Two examples are

• shears, such as (x, y) 7→ (x, x+ y).

• maps with two different stretch factors, such as (x, y) 7→ (2x, 3y).

Exercises

Exercise 18.4 Let p ∈ C. Let Rp be reflection through p, that is, Rp(z) is the
point lying on the opposite size of p from z, but at the same distance from p as
z.

a) Is Rp a similarity transformation?
b) Show R2

p = id.
c) Is Rp orientation-preserving or orientation-reversing?
d) Express Rp(z) in terms of z using complex addition, multiplication, and

conjugation.
e) What is Rq ◦Rq?

Exercise 18.5 Let Ta be translation by a and Hλ multiplication by λ > 0.

a) Describe the effect of Ta ◦Hλ ◦ T−a geometrically. Express it in terms of
complex addition and multiplication.

b) Describe the effect of Hλ ◦ Ta ◦H1/λ geometrically. Express it in terms of
complex addition and multiplication.
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§19 Spherical arclength
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In order to better understand the experience of the ant, we want to find the
infinitesimal stretching factor of the function

τ : (map)→ (territory),

that is, of inverse stereographic projection from the flat map to the round ter-
ritory.3

Infinitesimal similarity

We have the following theorem.

Theorem 19.1 Let τ : C→ S2\{N} be the inverse of stereographic projection.
Then

a) For a very small neighborhood U around any point z, τ is nearly a simi-
larity between U and τ(U).

b) The stretch factor of τ at z is

g(z) :=
2

|z|2 + 1
, z = x+ iy ∈ C.

One could say that at each point, τ is a similarity at the infinitesimal level, with
the given stretch factor.

(It will follow from this in the next section that τ is conformal.)

Note that the stretch factor goes to zero as |z| → ∞, reflecting the fact that
distances on S2 are a very tiny multiple of distances on C when |z| is large.
The proof is a calculation.

Proof outline x

1. We prove b).

Fix z. If w, w′ are very close to z, say w,w′ ∈ U = Bδ(z), let us see how the
tiny segment

[w,w′]

in C gets stretched to form a tiny segment

[τ(w), τ(w′)]

3A. Korzybski, “The map is not the territory”.
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in R3.

Effectively, we have to do a differentiation at z, but we do it with O-notation.

Recall from the previous section that the metric dS of S2 can be expressed in
terms of the metric dE = | · − · | of R2. Write

D := dS(τ(w), τ(w′)).

ThenD is small when δ is small because τ is continuous. Then from the previous
section,

cos(D) = 1− 2|w − w′|2
(|w|2 + 1)(|w′|2 + 1)

1− D2

2
+O(D4) = 1− 2|w − w′|2

(|w|2 + 1)(|w′|2 + 1)

D2

2
(1 +O(D2)) =

2|w − w′|2
(|z|2 + 1)2

(1 +O(δ2)) (verify).

Taking the square root,

D(1 +O(D2)) =
2|w − w′|
|z|2 + 1

(1 +O(δ2)) (verify).

Since D is small, it follows that

D = O(|w − w′|)(1 +O(δ2)) = O(δ).

(Interestingly, the second equal sign is not symmetric.) We feed this back in to
the previous equation to get

D =
2|w − w′|
|z|2 + 1

(1 +O(δ2)).

or spelled out,

dS(τ(w), τ(w′)) =
2|w − w′|
|z|2 + 1

.

So τ |U is nearly a similarity transformation from U to τ(U), with stretch factor
equal to

2

|z|2 + 1
(1 +O(δ2))

on U = Bδ(z). This proves a).

2. As δ → 0, the stretch factor on Bδ(z) converges to 2/(|z|2 + 1). That is what
we mean by saying that τ has a stretch factor of

2

|z|2 + 1

at the point z. This proves b).

2
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Lengths of curves

Now we find out how to calculate path lengths of curves in S2, by transferring
the arclength of S2 to C via τ−1.

Let
dsE =

√
dx2 + dy2

denote Euclidean arclength in R2. This is shorthand for

LE(γ) =

∫
γ

dsE

=

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

As we saw above, the stereographic model

τ : C→ S2 \ {0},

has length multiplier

g(z) :=
2

|z|2 + 1
, z = x+ iy ∈ C.

So we define a “spherical” arclength on R2 by

dsS :=
2

|z|2 + 1
dsE .

This dsS lives on C, whereas the original dsS lives on S2.

This “spherical” arclength can now be used by the prophet ant of the last section
(or by her skeptical brother) to compute S2 lengths while living in C, as follows.

We get for a continuously differentiable curve γ : [a, b]→ C in C:

LS(γ) =

∫
γ

dsS

=

∫
γ

2

|z|2 + 1
dsE

=

∫ b

a

2

|z|2 + 1

√(
dx

dt

)2

+

(
dy

dt

)2

dt,

This is the “spherical” length of γ in c, and it equals the actual length of τ ◦ γ
in S2.
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§20 Stereographic projection is conformal

As a corollary, we have that stereographic projection is conformal.

Corollary 20.1 Let σ : C→ S2 \ {N} be stereographic projection. Let τ : C→
S2 \ {N} be its inverse. Then σ and τ τ preserve angles, that is, they are is
conformal.

This is obvious from Theorem 19.1, but we will give a long-winded proof just
to be sure.

It suffices to prove it for τ .

The brief sketch is this: By Theorem 19.1, τ is a similiarity transformation in
an infinitesimal neighborhood of each a ∈ R2, so it preserves angles at each a,
so it is conformal. If you are satisfied with this, you need read no further.

A fuller sketch: Using the law of cosines, we proved (Proposition 18.1) that
if the stretch factors are exactly constant then the function exactly preserves
angles.

For the case at hand, fix a. By Theorem 19.1, the stretch factors in a small
neighborhood U about a are nearly constant, so τ nearly preserves angles near
a.

We pass the size of U to zero to show that τ exactly preserves angles at a. This
is true for all a in R2. So τ is conformal.

An alternative way to prove this is to combine Theorem 31.2 and §34, Remark
3.

Yet another alternative is to use calculus (derivatives).

Here is the full proof.

Proof 1. We will use the law of cosines to make the proof rigorous. It reduces
angles to distances, as in the last section.

Note that it suffices to prove that τ is c onformal.

Let L, M be lines in R2 that meet at a at an angle α.

Then τ(L) and τ(M) are curves in S2 that meet at a′ = τ(a) at some angle α̃.

We may assume 0 < α, α̃ < π. Our aim is to prove

α̃ = α.

2. This will be successful due to the fact that τ is nearly a similarity transfor-
mation for points close to a.

Select points b, c on L, M close to a and consider the tiny triangle bac. Then
the angle of this triangle at a is α.
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Let
a′ = τ(a), b′ = τ(b), c′ = τ(c).

Let α, β, γ be the angles at a, b, c. Let α′, β′, γ′ be the angles at a′, b′, c′. Let
B, C, A′, B′, C ′ be the lengths of the edges opposite a, b, c, a′, b′, c′.

For technical reasons we will require

B = C

so that the triangle is not too distorted. Then α′ ≈ α̃, and indeed

α′ → α̃

as b, c→ a.

3. Now here is the punchline – because τ is nearly a similarity transformation
near a, we can use the law of cosines to show that

α′ ≈ α.

Indeed, by the law of cosines, in R2 we have

2BC cosα = B2 + C2 −A2 (20.1)

and in R3 we have

2B′C ′ cosα′ = (B′)2 + (C ′)2 − (A′)2, (20.2)

So the distances determine the angle.

But τ is nearly a similarity transformation near a. This yields (examining the
proof of Theorem 19.1),

A′ = (1 +O(ε2))λA, B′ = (1 +O(ε2))λB, C ′ = (1 +O(ε2))λC,

where ε := B = C ≥ A/2 and λ := g(a) is the stretch factor at a. So (20.2)
becomes

(1 +O(ε2))2 2(λB)(λC) cosα′

= (1 +O(ε2))2 (λA)2 + (1 +O(ε2))2 (λB)2 − (1 +O(ε2))2 (λC)2.

which becomes

2BC cosα′ = B2 + C2 −A2 +O(ε4).

Comparing with (20.1), we get

2BC cosα = 2BC cosα′ +O(ε4).

Dividing by 2BC, we get

cosα = cosα′ +O(ε2).
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Passing b, c→ a, and recalling that α′ → α̃, and we get

cosα = cosα′ +O(ε2)→ cos α̃.

So
cosα = cos α̃.

But cos : [0, π]→ [−1, 1] is bijective, and 0 < α, α̃ < π, so

α̃ = α.

So τ preserves angles. So τ is conformal.

2
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PART III 8. THE HYPERBOLIC METRIC

§21 The hyperbolic metric

References

◦ Weeks, chapter 10.
◦ Hitchman, section 5.1 (but he has already covered the Möbius group).
◦ Anderson, section 3.2.

We’ll present

• The hyperbolic plane
• Path length
• Distance
• Angles

Recall the Euclidean length element on the plane, called

dsE .

In §19, we derived the spherical length element, inherited from S2 via stereo-
graphic projection. It is

dsS =
2

1 + |z|2 dsE , z ∈ R2.

We get the hyperbolic length element by flipping the sign. It is

dsH :=
2

1− |z|2 dsE , |z| < 1.

The length stretching factor is

h(z) :=
2

1− |z|2 , |z| < 1.

The unit disk B1, equipped with this notion of arclength, is called the Poincaré
disk model of the hyperbolic plane. We write

(B1, dsH)

to denote this structure. We write

H2

to denote any space isometric to it.
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Let γ : [a, b]→ C be a continuously differentiable curve. Its length is given by

LH(γ) =

∫
γ

dsH

=

∫
γ

2

1− |z|2 dsE

=

∫ b

a

2

1− |z|2

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Distance is given by

dH(z, w) := inf{LH(γ) : γ is a continuously differentiable curve connecting z to w}.

What about angles?

We define hyperbolic angles (between two curves) to be the same as the euclidean
angle.

We won’t justify this completely at this time, but there is a very good reason for
this: In a small neighborhood U of a point z0, the hyperbolic metric is nearly a
constant multiple of the Euclidean metric, namely by a factor

h(z) = h(z0)(1 + o(1)), z ∈ U.

So the hyperbolic angles are nearly the same as the Euclidean angles. Since we
can take U as small as we like without affecting the angle at z0, this relationship
is exact.

Exercise 21.1 We said earlier “distance determines angle”. Use the law of
cosines

2ab cos(γ) = a2 + b2 − c2,
valid in Euclidean space, to make the above heuristic argument more precise.

Because the two metrics have the same angles, we say that they are conformally
equivalent.
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§22 Sizes near the boundary

We return to the figure mentioned in §5.

Figure 22.1: Order-4 bisected pentagonal tiling of the hyperbolic plane (Rocchini,
Wikipedia)

The triangles appear to get smaller and smaller as z → ∂B1, but in the hyper-
bolic metric, they are the same size. Indeed, the stretch factor is

2

1− |z|2 =
2

(1 + |z|)(1− |z|) ∼
1

1− |z|

as |z| → 1. Asymptotically, the hyperbolic metric is proportional to the inverse
of the Euclidean distance to the boundary.

So the equal-sized hyperbolic triangles must get smaller and smaller as we con-
verge to the boundary. Indeed, they must have Euclidean size roughly pro-
portional to the Euclidean distance to the boundary. And indeed, viewing the
figure, this seems to be the case.

Exercise 22.1 Suppose we use the “number of triangles” as a crude way of
gauging distance. Start at the origin and proceed n triangles towards the bound-
ary. Very roughly, how many triangles are at this “distance” from the origin?

Answer: Say that the Euclidean size of a triangle is roughly λ times its Eu-
clidean distance to the boundary. For convenience (because this is only a rough
estimate) suppose λ = 1.

We make a chain
T1, T2, . . .

of triangles starting at the origin and proceeding toward the boundary.
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Then, very roughly, T1 has Euclidean size 1/2, T2 has size 1/4, etc. In general

size of Tn = 2−n, dist(Tn, ∂B1) = 2−n.

So Tn touches the circle Cr defined by r = 1− 2−n. The Euclidean length of Cr
is roughly 6, so the hyperbolic length is roughly

6

1− r = 6 · 2n

Since the triangles are all the same hyperbolic size, say c, there are roughly

6 · 2n
c

= C · 2n

such triangles along Cr. But we can’t trust the number 2 – our estimate is not
exact enough. So we expect roughly

Cecn

triangles along Cr, for some c > 0.

To summarize:

The number of triangles that are n triangles away from the origin
is roughly Cecn for large n.

That is, hyperbolic space grows exponentially fast.

For example, in the actual figure, if I go out from the origin by 4 concatenated
blue triangles, it appears, by inspection, that there are around 100 blue triangles
circling the origin at that distance.

And each time we add 1 triangle to the radius, we multiply the number of
triangles around the circumference by a constant.

That is a lot.
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§23 Minimizing curves and geodesics

We define

• Minimizing curves
• Locally minimizing curves
• Geodesics

Let X be any metric space whose metric is obtained by taking the infimum of
path-lengths.

Definition 23.1 A curve γ : [a, b]→ X is length-minimizing or minimizing if

LX(γ) = distX(γ(a), γ(b)).

The word “minimizing” is used because, by definition,

distX(x, y) = inf{LX(γ) : γ is a suitable curve connecting x to y}.

So the definition says that γ minimizes the length, and realizes the infimum.

If γ is minimizing, it follows that any sub-curve

β = γ | [c, d], a ≤ c < d ≤ b,

is minimizing as well.

For if there were a shorter competitor for β, it could be used to construct a
shorter competitor for γ.

The definition can be extended to open-ended curves (including infinite curves)
β : (a, b) → X by saying that β is length-minimizing if every closed-ended
sub-curve β|[c, d], a < c < d < b, is length-minimizing in the original sense.

If this is true only for short sub-curves, we have the following definition.

Definition 23.2 A curve is locally length-minimizing if

a) every interior point of the curve is contained in the interior of a length-
minimizing sub-curve.

b) every endpoint of the curve is an endpoint of a length-minimizing sub-curve.

Definition 23.3 A geodesic is a locally length-minimizing curve.

This figure from §11 shows minimizing and non-minimizing geodesics.
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x
y

Figure 23.1: The blue path is minimizing. The red one is not.

On the other hand, the many geodesics that join two antipodal points of S2 are
all length-minimizing. See Figure 11.6.

A geodesic is allowed to cross itself, but as soon as it does so, it is not minimizing.

There is an equivalent definition of a geodesic that uses an ODE (ordinary
differential equation). The ODE says: the curve turns neither to the right or
to the left. The ODE is studied in differential geometry. The ODE only works
if the space is smooth enough. It would not work in the Sierpinski gasket, for
example, nor in the L1 metric on Rn. We don’t need the ODE definition for
now. See J. M. Lee, Introduction to Riemannian Manifolds, 2018, Theorem
4.27. (A great book.)
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§24 The x-axis is a minimizing geodesic

Write
A := B1 ∩ (x-axis).

Theorem 24.1 A is a minimizing geodesic in H2.

Broadly speaking, this follows from the fact that the length stretch factor

gH(z) =
2

1− |z|2

is a convex function of z and is symmetric under the reflection z 7→ z̄. But we
will prove it concretely.

Proof 1. Let −1 < a < b < 1 be two points in A. Let

γ(t) = (x(t), 0) = (a+ (b− a)t, 0), 0 ≤ t ≤ 1

be the interval from a to b along the x-axis. Let β : [0, 1]→ B1 given by

β(t) = (u(t), v(t)), 0 ≤ t ≤ 1,

be any other curve connecting a to b.

We must show that
LH(β) ≥ LH(γ),

for any such β.

2. We will show that β gets shorter if it is projected to the x axis. That is
because orthogonal projection decreases the Euclidean length, and also decreases
the hyperbolic length factor.

The curve
β̃(t) := (u(t), 0), 0 ≤ t ≤ 1,

is the orthogonal projection of β to the x-axis.

Then

LH(β) =

∫ 1

0

gH(β(t))

√(
du

dt

)2

+

(
dv

dt

)2

dt

=

∫ 1

0

2

1− u(t)2 − v(t)2

√(
du

dt

)2

+

(
dv

dt

)2

dt

≥
∫ 1

0

2

1− u(t)2

∣∣∣∣dudt
∣∣∣∣ dt

= LH(β̃).
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3. So
LH(β) ≥ LH(β̃),

where β̃ stays on the x-axis. It suffices to prove that

LH(β̃) ≥ LH(γ).

But this is intuitively obvious, because β̃ goes from a to b, but may have back-
tracking, whereas γ goes from a to b without backtracking.

It is more efficient to do it without backtracking. So γ is shorter that β̃.

4. Here are the details of the backtracking argument.

We have γ(t) := (x(t), 0), 0 ≤ t ≤ 1, and

LH(γ) =

∫ 1

0

2

1− x(t)2

∣∣∣∣dxdt
∣∣∣∣ dt,

whereas β̃(t) := (u(t), 0), 0 ≤ t ≤ 1, and

LH(β̃) =

∫ 1

0

2

1− u(t)2

∣∣∣∣dudt
∣∣∣∣ dt.

Both x(t) and u(t) accomplish the same journey, that is,

x(0) = u(0) = a, x(1) = u(1) = b. (24.1)

The difference is that x increases the whole way (dx/dt > 0), whereas u can
meander. That makes x more efficient than u.

We get

LH(γ) =

∫ 1

0

2

1− x(t)2

∣∣∣∣dxdt
∣∣∣∣ dt

=

∫ 1

0

2

1− x(t)2
dx

dt
dt since dx/dt > 0

=

∫ b

a

2

1− x2 dx using (24.1)

=

∫ b

a

2

1− u2 du

=

∫ 1

0

2

1− u(t)2
du

dt
dt using (24.1)

≤
∫ 1

0

2

1− u(t)2

∣∣∣∣dudt
∣∣∣∣ dt

= LH(β̃)

The “waste” is accounted for by the inequality in the 6th line. This proves the
result.

2
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§25 Length along the x-axis

Ultimately, we want to calculate the hyperbolic distance between any two points
z, w in H2. But this will take some time, and we can’t do it today.

Today, we will calculate the hyperbolic distance between two points a, b in the
x-axis. Write

A := H2 ∩ (x-axis).
Recall that A is a minimizing geodesic.

We obtain the following formula:

Theorem 25.1 Let a, b be points in A with a < b. Then

dH(a, b) = log
(1− a)(1 + b)

(1 + a)(1− b) .

Note that the right-hand side is positive since a < b. If we took the points in
the other order, we would have to flip the expression to get a positive value.

The proof is easy. The fact that A is a minimizing geodesic (Theorem 52.1) is
essential.

Proof Because A is a minimizing geodesic, we have

dH(0, b) = LH([0, b]).

Now along A, we have Euclidean arclength

dsE = dx

and hyperbolic arclength

dsH = f(x) dx =
2

1− x2 dx

We integrate from x = a to x = b to get

dH(a, b) = LH([a, b])

=

∫ b

a

dsH

=

∫ b

a

2

1− x2 dx

=

∫ b

a

1

1 + x
+

1

1− xdx

= [log(1 + x)− log(1− x)]
x=b
x=a

= log(1 + b)− log(1− b)− (log(1 + a)− log(1− a))

= log
(1− a)(1 + b)

(1 + a)(1− b) .

2
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Distance to infinity

Take a = 0 and get for b > 0

dH(0, b) = log

(
1 + b

1− b

)
.

Indeed, by rotational symmetry, we get for any z ∈ H2,

dH(0, z) = log

(
1 + |z|
1− |z|

)
.

As a result,
dH(0, z)→∞ as |z| → 1.

So the hyperbolic distance to the edge of B1 is infinite.

Exercise 25.1 Prove that any path that goes to the edge of B1 has infinite
hyperbolic length.
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§26 Geodesics in H2

References

◦ Weeks, Chapter 10.
◦ Hitchmann, section 5.2.
◦ Anderson, 2-3, 188 (but he does the upper half-space model first).
◦ Loustau, 12-16.

We say what all the geodesics of H2 are.

Recall that the x-axis is a minimizing geodesic (proven above). It follows that
every Euclidean straight line through 0 is a minimizing geodesic.

Theorem 26.1 The geodesics of H2 are precisely the portions of lines and cir-
cles in B1 that meet ∂B1 orthogonally. They are all minimizing.

Figure 26.1: Hyperbolic geodesics (made with A. Zampa’s Geogebra applet)

The proof will be given much later (§52). We will begin using this theorem
immediately.

Euclid’s parallel axiom

Geodesics are called parallel if they don’t meet.1

1Some authors define parallel, in the hyperbolic case, to mean they have a common endpoint
at infinity (see below). We won’t do this.
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Now, Euclid’s geometry has five axioms (plus other assumptions that were later
recognized to be axioms). See Loustau, pp. 12-16 for a nice discussion.

The fifth axiom (the famous Parallel Postulate) says “through each point not on
a line there is exactly one parallel line”.

This is true in R2 but false in S2 and H2.

In S2, there are no parallel geodesics.

In H2, there are infinitely many parallel geodesics.

Figure 26.2: Many parallels through a given point (made with A. Zampa’s Geogebra
applet)

The other four Euclidean axioms are true in all three spaces.

Two kinds of parallel geodesic

Let β, γ be parallel geodesics in H2. They can be parallel in two ways.

If β and γ have a common endpoint on B1 as γ, we say that β and γ are limiting
parallel.
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Figure 26.3: Limiting parallel (made with A. Zampa’s Geogebra applet)

Otherwise, we say that β and γ are ultraparallel.

Figure 26.4: Ultraparallel (made with A. Zampa’s Geogebra applet)

Since the intersection point at infinity does not lie in H2, it does not yield a
measurement that ants living in H2 could make. It would be nice to have a
characterization of “tangent at infinity” and “ultraparallel” that is instrinsic to
hyperbolic space.

Exercise 26.1 x

(a) Show that ultraparallel geodesics move infinitely far apart at infinity.
(b) Show that limiting parallel geodesics approach each other exponentially at

infinity.
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Exercise 26.2 A sportsman in the hyperbolic plane has a double-barreled shot-
gun. The two barrels are 0.01 unit apart and both are orthogonal to a bar that
connects them.

a) Find the distance apart of the two bullet trajectories as a function of dis-
tance. What is its growth rate?

b) Is it very easy or very hard to aim in hyperbolic space?
c) What is the easiest target to hit in the sphere?
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§27 Other expressions for the length

Recall
A = B1 ∩ (x-axis).

Proposition 27.1 Let a, b be points in A, −1 < a < b < 1. Then

dH(a, b) = log
(1− a)(1 + b)

(1 + a)(1− b) (27.1)

= 2 arctanh(b)− 2 arctanh(a) (27.2)

= arccosh

(
1 +

2(a− b)2
(1− a2)(1− b2)

)
. (27.3)

= arcsinh

(
2|a− b|

√
1 + a2b2 − 2ab

(1− a2)(1− b2)

)
. (27.4)

We leave the proof as an exercise. It is a routine algebraic manipulation of the
definitions of arctanh, arccosh and arcsinh.

The usefulness of (27.1) is that it is easy to compute with.

The usefulness of (27.2) is that it is easy to visualize.

The usefulness of (27.3) is that it is analogous to the formula for spherical
distance that we derived in §17.

The usefulness of (27.4) is to calculate the hyperbolic circumference of a circle
in the next section.

So they are all useful!

Comparison to spherical distance

To see the analogy involving (27.3), recall the formula for spherical distance
from Proposition 17.1, namely

dS(z, w) = arccos

(
1− 2|z − w|2

(1 + |z|2)(1 + |w|2)

)
, z, w ∈ C.

Specialize this to the case where a, b lie in the x-axis. Obtain

dS(a, b) = arccos

(
1− 2(a− b)2

(1 + a2)(1 + b2)

)
, a, b ∈ x-axis.

This differs from (27.3) purely by reversing some signs!
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§28 Circumference and area of a hyperbolic disk

Let’s derive a relation between circumference and area of a hyperbolic disk. We
restate the relationship we mentioned in §12 – but now as a theorem.

Theorem 28.1 Let Kr be a circle of hyperbolic radius with center 0. Then it
has hyperbolic circumference

CH(r) = 2π sinh(r),

and hyperbolic area
AH(r) = 2π(cosh(r)− 1).

So the circumference and area grow exponentially as r → ∞, as we previously
said several times.

Exercise 28.1 Argue that it is easy to get lost in hyprbolic space.

Proof 1. By rotational symmetry of the hyperbolic metric about 0, a hyperbolic
circle with center 0 is also a Euclidean circle with center 0, it’s just that the
hyperbolic radius is not the same as the Euclidean radius.

By Proposition 27.1 with a = 0, these two radii are related by

r = arcsinh

(
2b

1− b2
)
,

where
r = hyperbolic radius, b = Euclidean radius.

So
2b

1− b2 = sinh(r).

Now calculate

CH(r) = CE(b) gH(b) (Euclidean circumference × stretch factor)

= (2πb)

(
2

1− b2
)

=
4πb

1− b2
= 2π sinh(r), from above

as desired.

2. Now we integrate this to get the area AH(r). It’s just like we did for the
spherical area AS(r) in §12.

103 Table of Contents



PART III 10. CIRCUMFERENCE AND AREA OF A HYPERBOLIC DISK

We fill the region between 0 and Kr by “parallel” circles

Ks, 0 < s ≤ r.

The circles are equidistant from each other, and the distance between Ks and
Kt is |t− s|. So we can compute the hyperbolic area of the enclosed disk by

AH(r) =

∫ r

0

LH(Ks) ds

=

∫ r

0

CH(s) ds

=

∫ r

0

2π sinh(s)

= (2π cosh(s)]
s=r
s=0

= 2π cosh(r)− 2π cos(0)

= 2π(cosh(r)− 1).

So the hyperbolic area of the disk is

AH(r) = 2π(cosh(r)− 1), r > 0,

as required.

2
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§29 Visualization and resources

There are a number of visualization apps, a new book, and an upcoming event
at ETH.

Hyperrogue

A great way to get intuition for hyperbolic space – especially its hugeness and
lostness – is the Hyperrogue program, available at

• Hyperrogue: https://roguetemple.com/z/hyper/
You can play in the browser but it’s much better to download the app. It’s easy
to get into, but under the surface it has extremely diverse features and many
setting – a lot to explore.

Figure 29.1: Hyperrogue (screenshot)

ZenoTheRogue

The same group that made Hyperrogue have produced a few dozen geometry
videos on various topics including hyperbolic geometry. They can be found on
Youtube.

• ZenoTheRogue :

https://www.youtube.com/channel/UCfCtbgiDxwFtlqrbEralvTw

Geogebra

An applet for hyperbolic geometry can be found on the Geogebra website. You
can use it to do ruler-and-compass constructions in hyperbolic geometry.1

1Zirkel und Lineal.
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• Hyperbolic geometry on Geogebra:

https://www.geogebra.org/classic/tHvDKWdC

Here is a screenshot.

Figure 29.2: Geogebra (screenshot)

The general Geogebra website is:

• Geogebra: https://www.geogebra.org

It has applets for all different topics, including several for hyperbolic geometry.
The one we’ve selected may be the best. There is also a “general” app where
you can write your own applets.

Hitchman book

I want to recommend the online book by Michael Hitchman, which I just found.
It is called Geometry with an Introduction to Cosmic Topology. It is about
hyperbolic geometry, elliptic geometry, and cosmic topology.

•Hitchman book: https://mphitchman.com/geometry/frontmatter.html

Hyperbolic billiards

In addition to these, I had a great experience the other day. Jeff Weeks was in
town and demonstrated his virtual reality software for hyperbolic billiards.
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Figure 29.3: Hyperbolic billiards VR system (J. Weeks paper)

You can do billiards either in hyperbolic space, spherical space, or the torus.
For example, in hyperbolic space there exists a polygon with

5 sides, 5 right angles.

Here is a picture:

Figure 29.4: Pentagon with five right angles (Lixin Liu)

Such a pentagon is impossible in R2, but exists in H2. A regular pentagon in
R2 has angle sum

α+ α+ α+ α+ α = (5− 2)π = 3π.
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But this hyperbolic pentagon with 5 right angles has angle sum

α+ α+ α+ α+ α = π/2 + π/2 + π/2 + π/2 + π/2 = (5/2)π.

Therefore it has angle defect

3π − (5/2)π = π/2.

Since the angle defect formula

(angle defect) = (area)

is valid for any convex polygon in hyperbolic space (check!), we find that the
pool table has area

A(P ) = π/2.

Weeks explains the VR billiards system in

• J. Weeks, Non-Euclidean Billiards in VR

http://archive.bridgesmathart.org/2020/bridges2020-1.pdf.

Kaleidotile

If we repeat the billiards table infinitely often in H2, we get a tiling2 of H2 by
90-degree pentagon. 5-sided figure meet 4 to a corner, so it’s called a (5, 4)
tiling.

Figure 29.5: Hyperbolic (5, 4) tiling (made with Kaleidotile)

Here is a (7, 3) tiling.
2Tesselation, Parkettierung.
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Figure 29.6: Hyperbolic (7, 3) tiling (made with Kaleidotile)

Here is a more complicated kind of tiling. It has the same (2, 3, 7) symmetry of
H2 as the (7, 3) tiling.

Figure 29.7: Hyperbolic tiling with (2, 3, 7) symmetry (made with Kaleidotile)

These are produced by Kaleidotile of Jeff Weeks. It can be downloaded from

• Kaleidotile: https://www.geometrygames.org/KaleidoTile

Let’s take a look at it on my computer. You can adjust the colors. You can
move the control point in a 2-dimensional space of possibilities. This varies the
geometry without changing the symmetry group.

You can move around in hyperbolic space with the mouse. It has momentum.
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The program is very fast and smooth.

You can change the symmetry group. If you do that, the tiling will close up
differently to produce either a hyperbolic space, a Euclidean plane, or a sphere.

Gomath

From 14 to 25 March 2022, there will be a 2 weeks math exhibition in the ETH
main building called The Shape of Space. Jeff Weeks will be demonstrating his
software (in particular the Hyperbolic Billiards VR experience) and giving talks,
and other activities. See

• Gomath:
https://math.ethz.ch/news-and-events/events/gomath/gomath-2022.
html
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§30 The extended complex plane and the Rie-
mann sphere

Recall that stereographic projection is a bijection

σ : S2 \ {N} → C.

Inspired by this, we find it convenient to add a “point at infinity”, called ∞, to
the complex plane to produce the extended complex plane1

Ĉ := C ∪ {∞}.

We then define a bijection
σ̂ : S2 → Ĉ

by

σ̂(P ) =

{
σ(P ) P ∈ S2 \ {N}
∞ P = N.

In this context, we call S2 the Riemann sphere2

We define the bijection
τ̂ : Ĉ→ S2

as the inverse of σ̂. It takes ∞ to N = (0, 0, 1).

Higher dimensions

A similar procedure can be done in higher dimensions. There is higher-dimensional
stereographic projection, an extended space R̂n = Rn ∪ {∞}, and a theory of
higher dimensional conformal maps. But we won’t do this.

1Erweiterte komplexe Ebene.
2Riemannscher Zahlenkugel.
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§31 Clines

We work in the extended complex plane Ĉ.

Definition 31.1 x

a) An extended line3, is a line together with the point ∞.
b) A cline,4 or generalized circle, is either a circle or an extended line.

The idea is that as a circle gets larger and larger, it can converge to an extended
line. To complete the collection of circles, we need to include the extended lines.

When working in Ĉ, we will usually refer to an extended line simply as a line.

Let σ̂ : S2 → Ĉ be the correspondence of the Riemann sphere to the extended
complex plane.

Theorem 31.2 Under σ̂, circles in S2 correspond to clines in Ĉ.

In particular:

(a) Circles in S2 that pass through N correspond to extended lines in Ĉ.

(b) Circles in S2 that don’t pass through N correspond to circles in C.

Proof Let C be a circle in S2. Then C = S2 ∩ P , where P is a plane in R3

(a) This is really easy. If P passes through N , then σ takes C \ {N} to the line

L := P ∩ C.

So σ̂ takes C to the extended line L̂.

(b) Let C be a circle in S2 that doesn’t pass through N . So σ̂(C) = σ(C).

We can visualize σ(C) by drawing all the lines that pass through N and an
arbitrary point in C. They meet C in σ(C). The union of these lines is a kind
of cone.

In order to compute what σ(C) is, we write the equation of P :

P : aX + bY + cZ = d,

where we must require that P meets S2, P is not tangent to S2, and P 63 N .
This can be effected by

a2 + b2 + c2 = 1, d < 1, c 6= d.

Then the equation of σ(C) is

C : aX + bY + cZ = d, X2 + Y 2 + Z2 = 1.

3Erweiterte Gerade.
4V -Kreis, oder verallgemeinerter Kreis.
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We substitute P = τ(z) = τ(x, y) into this to find the equation of τ(C). The
equation X2 + Y 2 + Z2 = 1 is automatically fulfilled, so we get

σ(C) : (a, b, c) · τ(x, y) = d.

which represents the intersection of the “cone” with C. This becomes

(a, b, c) · (2x, 2y, |z|2 − 1)

|z|2 + 1
= d.

(a, b, c) · (2x, 2y, x2 + y2 − 1) = d(x2 + y2 + 1).

2ax+ 2by + c(x2 + y2 − 1) = d(x2 + y2 + 1).

We get the equation of σ(C):

σ(C) : (c− d)x2 + 2ax+ (c− d)y2 + 2by = c+ d

Using the conditions c 6= d, d < 1, and a2 + b2 + c2 = 1, we can verify that the
solution set is not empty, is not degenerate, and not just one point. So it is an
ellipse. But the coefficients of x2 and y2 are the same, so it is a circle. So σ(C)
is a circle in C.

2
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§32 Inversion in a cline

We will define a new kind of transformation, called inversion in a cline. It
generalizes reflection in a line.

Later, we will see that inversion in a cline is conformal.

Work in Ĉ. We start with the unit circle S1. Define inversion in the unit circle

J : Ĉ→ Ĉ

as follows.

1) Let z 6= 0,∞. Let Rz := {tz : t > 0} be the open ray from 0 through x.
Define J(z) to be the point on Rz with

|J(z)| = 1

|z| .

The formula is
J(z) =

z

|z|2 , z 6= 0.

2) Define J(0) :=∞, J(∞) := 0.

This defines J(z) for all z ∈ Ĉ.

The map J “flips” points inside S1 outside, and points outside inside, while
taking 0 to ∞ and ∞ to 0.

Relation to complex inverse

Let I be the complex inverse map

I(z) = 1/z.

Then

J(z) =
z

|z|2 =
z

zz̄
=

1

z̄
= I(C(z)),

where C(z) = z̄. So
J = I ◦ C = C ◦ I.

Also since C2 = 1,
I = C ◦ J = J ◦ C.

That is, 1/z is inversion in the unit circle followed by conjugation.
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Inversion in other circles

The map J fixes each point of the circle S1 and reverses the inside and the
outside. Also J2 = J ◦ J = id. We call a map whose square is the identity an
involution.

Let K be any circle in C. Let AK be a similarity transformation that takes S1

to K.

Define inversion in K to be

JK := AK ◦ J ◦ (AK)−1.

Note J = JS1 . Like J , JK fixes K, switches the inside and outside of K, has
(JK)2 = id, and throws the center of K to infinity.

Inversion in extended lines

The mirror reflection across a line L has similar properties to the above. So
wew define inversion in L̂ to be essentially reflection across L:

JL̂(z) :=

{
reflection of z across L z ∈ C
∞ z =∞.

The only new piece of information is that JL̂ fixes ∞. So JL̂ fixes every point
in L̂.

We now can invert in any cline.

Properties of inversions

To summarize, we have for any cline E,

JE fixes each point of E,

JE reverses the inside and outside of E,

(JE)2 = id.

If E is a circle, then JE swaps the center of E with ∞, whereas if E is an
extended line, then ∞ lies on E and JE fixes ∞.
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§33 Transferring operations between Ĉ and S2

Transformations of Ĉ

We have defined the following tansformations (bijections) of Ĉ.

General ones:

Ma = multiplication by a = az

Tb = translation by b = z + b

JE = inversion in the cline E

Special ones:

I = complex inverse =
1

z
C = complex conjugation = z̄ = Jx-axis

J = inversion in S1 = JS1

Orientation-preserving: Ma, Tb, I

Orientation-reversing: JE , C, J

Similarities of Ĉ: Ma, Tb, JL̂ (L̂ an extended line)

Corresponding transformations of S2

Given a bijection f of Ĉ, we get a bijection f̃ of S2 by

f̃ := σ−1 ◦ f ◦ σ.

Sometimes we write Wf for f̃ .

So we have M̃a, T̃b, J̃E , Ĩ, J̃ , C̃. What do they look like?

Here are some important examples:

1) Rotations about 0 become rotations of S2 about the Z-axis. These (and
others that look like them) are called elliptic.

Exercise 33.1 What becomes of rotations about other points b in C?

2) Homothetic expansion of Ĉ by a factor λ > 0 becomes an operation that
moves all the points of S2 along trajectories connecting the south pole to the
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north pole. This creates an interesting new operation on S2. These (and others
that look like them) are called hyperbolic.

Exercise 33.2 What is the effect on S2 of λ-expansion about other points b in
C?

Exercise 33.3 What if we combine rotation and expansion? What does that
look like on S2?

3) Translation of Ĉ becomes a strange new operation on S2 that fixes N and
moves the rest of the points “sideways”, with an interesting pattern of movement
near N . These (or anything that looks like them) are called parabolic.

Exercise 33.4 Study the pattern of movement of the transformation T̃b near
N by moving N to a place where we can study it by formula. Namely, let
ρ : S2 → Ĉ be stereographic projection from the south pole, and let Ub be the
transformation of C that corresponds to T̃b via ρ.

(a) Verify that
Ub =

z

1 + bz
.

(b) Let b > 0 and study the pattern made by this map near 0. You may use the
fact that Ub takes clines to clines (indeed, you’ll be able to prove his after the
next section).

(c) In particular, if we fix z 6= 0, ehat does the orbit

{Ub(z) : 0 < b <∞}

look like?

4) Inversion in S1 of Ĉ (the map J) becomes reflection of S2 across the XY -
plane. This is interesting because a nonlinear operation becomes an easy-to-
understand linear operation.

Exercise 33.5 x

(a) Describe the operation of J̃ , C, I on S2. It is remarkably simple

(b) The set {id, I, J, C} is closed under composition and taking the inverse func-
tion. Such a set of bijections is called a transformation group. This one is the
famous Klein 4-group, with four elements.

Exercise 33.6 Describe the effect of inversion in other circles of C.
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§34 Inversion takes clines to clines and is confor-
mal

Theorem 34.1 x

a) Inversion in a cline takes clines to clines.
b) Inversion in a cline is conformal.

Proof 1. If we invert in an extended line, then it is mirror reflection, so it
obviously takes clines to clines and is conformal.

2. If we invert in a circle K, then the inversion can be written as

JK := A ◦ J ◦A−1,

where A is a similarity transformation and J is inversion in the unit circle. Now
A and A−1 take clines to clines and are conformal, so it suffices to prove that J
takes clines to clines and is conformal.

3. By the Exercise in the previous section,

J = σ−1 ◦ S ◦ σ

where S is reflection of S2 in the XY -plane.

By Theorem 31.2, σ−1 takes clines to circles. Clearly S takes circles to circles.
By Theorem 31.2 again, σ takes circles to clines. So J takes clines to clines.

By Corollary 20.1, σ−1 is conformal. Clearly S is conformal. By Corollary 20.1
again, σ is conformal. So J is conformal.

2

Remark 1. That J takes clines to clines can also be proven by a direct calcula-
tion analogous to the proof of Theorem 31.2. One substitutes z = 1/w̄ in the
equation of a circle, resulting in a new circle after some calculation. Lines must
be treated as special cases.

Remark 2. That J is conformal can also be proven by a direct calculation
analogous to the proof of Theorem 19.1 and Corollary 20.1. One shows that J
is nearly a similarity transform on small open sets, which implies conformality.

This computation is done in the next section, for I. Use the formula J = C ◦ I
to apply it to J .

Remark 3. It is no coincidence that the two statements have essentially the
same proof. For taking clines to clines automatically implies conformality, at
least heuristically, as follows.

Table of Contents 120



12. INVERSION PART III

If a map f preserves clines, then in particular f takes small circles centered at
z to small circles around f(z) (not necessarily centered at f(z)).

But that implies (or strongly suggests) that near z, f stretches nearly isotropi-
cally – the same in all directions. That is, f is nearly a similarity transformation
on a small neighborhood. So f is conformal.

In fact, this can be taken as a (heuristic) definition of conformality: taking tiny
round circles to tiny nearly round small circles. (Rather than ellipses!)
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§35 The stretch factor of 1/z

I didn’t lecture on this

Write Sh(z) for the stretch factor of a conformal map h at the point z. (This
is not standard notation.)

Theorem 35.1 I(z) = 1/z is conformal for z 6= 0,∞, with stretch factor

Sf(z) = 1/|z|2.

This result says that large places shrink and small places grow, as we expect
from the action of I(z) = 1/z. 1/z takes large numbers to small numbers and
vice versa.

Proof 1. Conformality of I follows by factoring

I = C ◦ J

and observing that J is conformal by Theorem 34.1.

2. We will now give a second, computational proof of conformality that also
gives us the stretch factor SI of I. It is similar to the proof of Theorem 19.1
and Corollary 20.1, so we will only sketch it without bothering with O-notation.

Let z 6= 0. Assume w is very close to z (much closer to z than to zero).

What is I(w)− I(z) as a function of w − z (roughly)?

Calculate

δI = I(w)− I(z)

=
1

w
− 1

z

=
z − w
wz

= −w − z
wz

≈ − 1

z2
(w − z),

since w ≈ z.
That is, when w and z are really close, the transition from

w − z to I(w)− I(z)

is nearly multiplication by

− 1

z2
.
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But multiplication by −1/z2 is a similarity transformation. So this gives a
computational proof that I is conformal.

3. Then

|I(w)− I(z)| ≈
∣∣∣∣− 1

z2
(w − z)

∣∣∣∣
=

1

|z|2 |w − z|.

So the stretch factor at z is
SI(z) =

1

|z|2 .

The stretch factor is independent of the direction of w − z, reflecting the con-
formality of I.

2

Remark. In terms of complex derivatives, we have proven

I ′(z) = −1/z2, z 6= 0.

The stretch factor is given by

SI(z) = |I ′(z)| = | − 1/z2| = 1/|z|2, z 6= 0.

123 Table of Contents



13

Möbius transformations

124



13. MÖBIUS TRANSFORMATIONS PART III

§36 Möbius transformations

References

◦ Hitchman, @cite.
◦ Anderson, @cite.
◦ Ahlfors, 76-88.

Definition 36.1 AMöbius transformation, or fractional linear transformation,1
is a function

f : Ĉ→ Ĉ

given by

f(z) =
az + b

cz + d
, z ∈ Ĉ, (orientation-preserving)

or
f(z) =

az̄ + b

cz̄ + d
, z ∈ Ĉ, (orientation-reversing)

where a, b, c, d ∈ C, ad− bc 6= 0.

The first kind are orientation-preserving.2 They include similarities and the
complex inverse.

The second kind are orientation reversing.1 They include inversion in clines.

The set of all Möbius transformation is called Möb. The set of all orientation-
preserving Möbius transformation is called Möb+.

Goals:

We wish to do the following:

@re-order

• Handle ∞ correctly
• Prove they are bijective
• Prove they form a group
• Factor them into elementary transformations
• Prove they are conformal
• Prove they preserve clines

1Gebrochene Lineartransformationen.
2We leave this to the reader to verify.
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§37 Handling ∞ correctly

We wish to define the Möbius tranformations on all of Ĉ. To do this, we must
handle the two special cases

z =∞
which ordinarily “doesn’t compute”, and

z = −d
c

(
resp. z̄ = −d

c

)
,

which corresponds to the denominator being zero. These cases were passed over
in silence above.

The net result is a continuous map f defined on all of Ĉ, where Ĉ = C ∪ {∞}
is given the obvious topology.3

Here are the recipes. They are just common sense. We crucially use the fact
that ad− bc 6= 0.

1) First consider the orientation-preserving case f(z) = (az + b)/(cz + d).

Case 1 c 6= 0 and z =∞.

We have for z 6= 0,∞,

f(z) =
az + b

cz + d
=
a+ b/z

c+ d/z
, z 6= 0,∞.

This motivates us to write

f(∞) =
a+ b/∞
c+ d/∞ =

a+ 0

c+ 0
=
a

c
,

which makes sense because c 6= 0. This can be justified by taking the limit
z →∞.

Case 2 c 6= 0 and z = −d/c.
Write

f(−d/c) =
a(−d/c) + b

c(−d/c) + d
=
−ad+ bc

c · 0 =∞,

which makes sense because ad− bc 6= 0.

Case 3 c = 0.

We have for z 6=∞,

f(z) =
az + b

d
=
a

d
z +

b

d

3Ignore this remark if in the first year.
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This is a well-defined similarity transformation because ad− bc 6= 0, so a, d 6= 0.
It give a bijection of C to C.

So it makes sense to write

f(∞) =
a · ∞+ b

d
=
∞
d

=∞.

To summarise:

i) When c 6= 0, then ∞ and −d/c are distinct, and

f(∞) =
a

c
, f

(
−d
c

)
=∞.

ii) When c = 0, then −d/c =∞, f is a similarity, and

f(∞) =∞.

2) For the orientation-reversing case f(z) = (az̄ + b)/(cz̄ + d), simply apply the
first case to z̄, where ∞ =∞, to derive similar formulas.
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§38 Möbius transformations are invertible

@ This will be edited to make the motivation more transparent

Recall that a Möbius transformation has ad− bc 6= 0.

Proposition 38.1 Every Möbius transformation f is bijective, and the inverse
is a Möbius transformation.

1) The inverse of

f(z) =
az + b

cz + d

is
f−1(z) =

dz − b
−cz + a

.

2) The inverse of

f(z) =
az̄ + b

cz̄ + d

is

f−1(z) =
d̄z̄ − b̄
−c̄z̄ + ā

.

Proof 1. First let f be orientation-preserving, namely

f(z) =
az + b

cz + d
.

We will invert f .

2. Let us motivate the formula. To invert f , solve

az + b

cz + d
= w

for z in terms of w. We get

az + b = czw + dw

az − czw = dw − b
z(a− cw) = dw − b

z =
dw − b
−cw + a

This motivates the formula, but does not prove it. The reason is that we have
not been careful when dividing by zero; we cannot be sure that −cw + a 6= 0.

Also, we haven’t used the condition ad − bc 6= 0, so we can’t be done yet. In
fact, the simple calculation above fails in a very subtle way when ad− bc = 0.
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Exercise 38.1 Analyze what goes wrong when ad − bc = 0. Why isn’t this
calculation already a proof of invertibility?

3. To get a complete proof, define g(w) by

g(z) :=
dw − b
−cw + a

.

We will verify concretely that

g ◦ f = f ◦ g = idĈ.

Compute for z 6= −d/c,∞, where −d/c =∞ in the case c = 0,

g(f(z)) =
d
(
az+b
cz+d

)
− b

−c
(
az+b
cz+d

)
+ a

=
d(az + b)− b(cz + d)

−c(az + b) + a(cz + d)

=
(ad− bc)z
ad− bc

= z,

where we have used the fact that ad− bc 6= 0 in an essential way.

Using the special rules at the two omitted points, we verify

g(f(∞)) = g(a/c) =∞, g(f(−d/c)) = g(∞) = −d/c.

This even works in the extra-special case −d/c =∞. So

g ◦ f = idĈ

on all of Ĉ. In a similar way we check that

g ◦ f = idĈ

on all of Ĉ. So f is bijective with inverse g. This verifies the formula.

4. To see that f−1 is a Möbius transformation, observe that

da− (−b)(−c) = ad− bc 6= 0.

5. The orientation-reversing case easily follows from the orientation-preserving
case.

If f is orientation-reversing, then h := f ◦ C is orientation preserving. Since h
is bijective and C is bijective, f is bijective.
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To get the formula, compute

f−1 = (h ◦ C−1)−1 = C ◦ h−1,

h(z) =
az + b

cz + d

h−1(z) =
dz − b
−cz + a

f−1(z) =

(
dz − b
−cz + a

)
=

d̄z̄ − b̄
−c̄z̄ + ā

.

2
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§39 Transformation groups

References

◦ T. Ilmanen, Geometrie 2020, Chap. 6-9 et al., https://metaphor.ethz.ch/
x/2020/hs/401-1511-00L/literatur/script.pdf.
◦ D. Saracino, Abstract Algebra: A First Course.

We define transformation groups.

Definition 39.1 A transformation group is a collection G of bijections of a set
X such that

1) idX ∈ G,
2) f, g ∈ G =⇒ f ◦ g ∈ G, (closed under composition)
3) f ∈ G =⇒ f−1 ∈ G, (closed under inverses)

See Ilmanen, Geometrie 2020, §20. That script is full of information bout sym-
metry groups.

Our first example:

Proposition 39.2 Let (X, d) be a metric space. Then Isom(X) is a transfor-
mation group.

This was Exercise 8.1. The proof is obvious.

A set of bijections that preserve something is always a transformation group.

For example, let T be an equilateral triangle in the plane. The set

Sym(T ) := {f : R2 → R2|f is an isometry of R2, f(T ) = T},

is a transformation group with 6 elements. It is called the symmetry group of
the triangle. See Ilmanen, Geometrie 2020, §1, §19.

For another example, the five Platonic solids figures each have a lot of symme-
tries. Here are three Platonic solids.

Figure 39.1: Octahedron, Dodecahedron, Icosahedron (Cyp, Wikipedia)
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14. THE GROUP OF MÖBIUS TRANSFORMATIONS PART III

Exercise 39.1 How many self-isometries do each of these Platonic solids have?

See Ilmanen, Geometrie 2020, §6.

Subgroups

If G is a transformation group and

H ⊆ G

is a subset, then H is a transformation group in its own right if and only if it is
nonempty and closed under composition and inverses. (Check this!) We say in
this case that

H is a subgroup of G,

and write
H ≤ G

to indicate this. So Sym(T ) is a subgroup of Isom(R2).

See Ilmanen, Geometrie 2020, §26.

Further examples:
Sym(T ) ≤ Isom(R2),

Möb+ ≤ Möb.

The latter will be true once we prove that Möb and Möb+ are groups.

Isomorphisms

Two groups G, H are called isomorphic if there is a bijection f between them
that exactly preserves the group operations and the identity element. To wit:

F (gh) = F (g)F (h), F (g−1) = F (g)−1, F (idX) = idY ,

where G acts on X, H acts on Y . It is written

G ∼= H.

The bijection f is called an isomorphism. See Ilmanen, Geometrie 2020, §21.

Main examples

Our main examples will be

Möb, Möb+, Isom(H2), Isom+(H2),
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and some subgroups. The + indicates an orientation-preserving subgroup. We
will eventually show (or claim)

Isom(H2) ∼= Möb(B1), Isom+(H2) ∼= Möb+(B1),

where
Möb(B1) := {f ∈ Möb : f(B1) = B1}.

Note that
Möb(B1) ≤ Möb.

There is also

Conf(S2) := {conformal transformations of S2},

and subgroups. It is true that

Conf(S2) ∼= Möb, Conf+(S2) ∼= Möb+,

although we will (essentially) prove only one direction of this.
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§40 The Möbius transformations form a group

Theorem 40.1 Möb and Möb+ are groups.

Proof 1. We have already proven that they are closed inder inverses. Clearly
the identity transformation

f(z) =
z + 0

0 · z + 1
= z

belongs to both.

2. So we must show that each is closed under multiplication. Let us start with
Möb+. Let

f(z) =
az + b

cz + d
, g(z) =

ez + f

gz + h
.

Then

f(g(z)) =
a(ez + f)/(gz + h) + b

c(ez + f)/(gz + h) + d

=
a(ez + f) + b(gz + h)

c(ez + f) + d(gz + h)

=
(ae+ bg)z + (af + bh)

(ce+ dg)z + (cf + dh)

This has the form of a Möbius transformation, but we have to verify the nonzero
“determinant”. We get

(ae+ bg)(cf + dh)− (af + bh)(ce+ dg)

= aecf + aedh+ bgcf + bgdh− afce− afdg − bhce− bhdg
= aedh+ bgcf − afdg − bhce
= (ad− bc)(eh− fg)

6= 0.

So
f ◦ g ∈ Möb+

and Möb+ is a group.

3. For Möb, we have to take account of the various conjugates. All elements of
Möb have the form

f or f ◦ C
where f ∈ Möb+. So we have four multiplications to check:

f ◦ g, f ◦ (g ◦ C), (f ◦ C) ◦ g, (f ◦ C) ◦ (g ◦ C),
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where f, g ∈ Möb+.

By 2., f ◦ g ∈ Möb+, so the first two products lie in Möb. For the third and
fourth, we take advantage of the identity

C ◦ g = g̃ ◦ C,

where g̃ is the element

g̃(z) :=
āz + b̄

c̄z + d̄

when g(z) = (az + b)/cz + d). So for the third product,

(f ◦ C) ◦ g = (f ◦ g̃) ◦ C ∈ Möb

and similarly for the fourth product. So Möb is closed under multiplication. So
Möb is a group.

2
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§41 Matrix multiplication and Möb+

The reader may have noticed the similarity of the composition rule for orientation-
preserving Möbius transformations and matrix multiplixcation.

Let
F =

[
a b
c d

]
, G =

[
e f
g h

]
.

From these, define

f(z) =
az + b

cz + d
, g(z) =

ez + f

gz + h
.

Then we calculate
FG =

[
ae+ bg af + bh
ce+ dg cf + dh

]
.

and (see the formula in Step 2. of the proof above)

(f ◦ g)(z) =
(ae+ bg)z + (af + bh)

(ce+ dg)z + (cf + dh)
.

Comparing these formulas, we see that multiplication of F and G implements
composition of f and g.

Similiarly, matrix inversion

F−1 =

[
d −b
−c a

]
ad− bc =

[
d/(ad− bc) −b/(ad− bc)
−c/(ad− bc) a/(ad− bc)

]
.

yields the inverse of the map f , given by

f−1(z) =
dz − b
−cz + a

Note that the denominators go away when we turn F−1 into a Möbius trans-
formation.

We define a map

U : F =

[
a b
c d

]
→ f(z) =

az + b

cz + d
.

This is a map
U : GL2(C)→ Möb+,

where
GL2(C) :=

{[
a b
c d

]
: ad− bc 6= 0

}
is the general linear group of invertible complex 2x2 matrices, a transformation
group of C2.
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As we have seen above, U preserves multiplication and inverses. It also preserves
identity element. Such a map between groups is called a homomorphism. For a
homomorphism, we don’t require bijectivity.

U is obviously surjective.

But U is not injective.

Indeed, we observe that

F =

[
a b
c d

]
and

λF =

[
λa λb
λc λd

]
yield the same Möbius transformation, because

λaz + λb

λcz + λd
=
az + b

cz + d
.

Remark: Note that the representation as matrices works only for orientation-
preserving Möbius transformations.

Exercise 41.1 Express the following Möbius transformations as matrices:

• identity, translation, rotations, similarities, conjugation, complex inverse,
xxxx inversion in S1

Expression as a quotient group

For those who know group theory, we go a little further.

Since F , λF go to the same element (when λ 6= 0), we have

ker(U) := {F ∈ GL2(C) : U(F ) = idĈ}
= C∗ · id,

where C∗ := C \ {0}. It follows that Möb is the quotient group given by

Möb+ ∼= GL2(C)/(C∗ · id).

This expresses, in symbolic form, the ambiguity in choosing a matrix F to
represent f .

In order to get rid of the ambiguity, we usually normalize by requiring that
ad − bc = 1. Since we start with ad − bc 6= 0, this can be accomplished by
multiplying the matrix by a suitable λ.

Exercise 41.2 What is this λ?
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Define the special linear group of 2x2 complex matrices by

SL2(C) :=

{
F =

[
a b
c d

]
: ad− bc = 1.

}
It is a group because it is nonempty and closed under multiplication and inverses.

The map
U |SL2(C) : SL2(C)→ Möb+

is still surjective.

But F and −F have the same determinant. So this time, the kernel is

ker(U) = {id,−id}.

The map is still not injective, but the ambiguity is smaller. It follows that

Möb+ ∼= PSL2(C)/{id,−id) := SL2(C)/{id,−id}.

This is the projective special linear group.
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§42 Factoring Möbius transformations

Clearly translation, rotations, similarities, the complex inverse 1/z, complex
conjugation, and inversion 1/z̄ are Möbius transformations.

We can show that any Möbius transformation can be expressed as a product of
these.

1) Orientation-preserving case:

If c = 0, then because ad − bc 6= 0, we have d 6= 0 and f is a similarity
transformation. Compute

f(z) =
az + b

d

=
a

d
z +

b

d
,

so

f = Tb/d ◦Ma/d, (42.1)

if c = 0.

Note that the factors are bijections because d 6= 0.

If c 6= 0, then

f(z) =
az + b

cz + d

=
(a/c)(cz + d)

cz + d
+

(az + b)− (a/c)(cz + d)

cz + d

=
a

c
+
b− ad/c
cz + d

=
a

c
+
bc− ad

c

1

cz + d
.

From this we get the factorization

f = Ta/c ◦M(bc−ad)/c ◦ I ◦ Td ◦Mc.

This is what we did in class.

But we can do better. We continue the calculation with

f(z) =
a

c
+
bc− ad
c2

1

z + d/c

so

f = Ta/c ◦M(bc−ad)/c2 ◦ I ◦ Td/c, (42.2)

141 Table of Contents



PART III 15. FACTORING MÖBIUS TRANSFORMATIONS

if c 6= 0.

Note that all the factors are bijections because ad− bc 6= 0, c 6= 0.

Exercise 42.1 Use the factorization to give a new proof that Möbius transfor-
mations are invertible.

2) Orientation-reversing case:

Let
f(z) =

az̄ + b

cz̄ + d
.

Factor f as

f = Tb/d ◦Ma/d ◦ C, (42.3)

if c = 0.

Factor f as

f = Tb/d ◦M(bc−ad)/c2 ◦ I ◦ Td/c ◦ C. (42.4)

if c 6= 0.

Exercise 42.2 Show that inversion in any cline is a Möbius transformation.

The upshot is the following theorem:

Theorem 42.1 x

1) The group Möb+ is generated by multiplication operators, translation, and
the complex inverse.

2) The group Möb is generated by multiplication operators, translation, the com-
plex inverse, and complex conjugation.
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§43 Möbius transformations are conformal and
preserve clines

As a corollary to §42 we have:

Theorem 43.1 Every Möbius transformation is conformal and preserves clines.

Proof By the factorization formulas (42.1)-(42.4), all Möbius transformations
can be factored as translations, multiplications by nonzero constants, the com-
plex inverse, and complex conjugation.

We already know that each of these special types of transformation is conformal
and preserves clines.

(For the complex inverse: Recall that the complex inverse I(z) = 1/z can be
written I = J ◦C, where J(z) = z/|z|2 = 1/z̄, C(z) = z̄. We already know that
J and C are conformal and preserve clines. So I is conformal and preserves
clines.)

It follows that all Möbius transformations are conformal and preserve clines.

2
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§44 Relation of Möb to Conf(S2)

Here are some remarks that go a bit beyond the class. I will skip the details.

The sphere S2 can be identified with the extended plane Ĉ by stereographic
projection σ. This leads to a map

W : {bijections of Ĉ} → {bijections of S2}

given by
Wf := σ−1 ◦ f ◦ σ.

Obviously W is bijective and is a group isomorphism.

So we can regard each f ∈ Möb as acting on S2 via Wf .

By Corollary 20.1, σ is conformal for z 6= N := (0, 0, 1). By Theorem 43.1, f is
conformal for z 6=∞,−d/c.
SoWf is conformal except possibly at the images σ−1(∞), σ−1(∞) of the points
∞ and −d/c.
At the exceptional points, it can be checked by hand that Wf is conformal. We
will skip this.

So Wf is a conformal bijection of S2.

So we get the subgroup relation

W (Möb) ≤ Conf(S2),

where Conf(S2) is the group of all conformal transformations of S2.

Informally, regarding Ĉ and S2 as identical, we can write this as

Möb ≤ Conf(S2).

Is it equality? That is, can every conformal transformation of S2 be written as
a Möbius transformation?

The answer is yes.

But it requires methods of complex analysis, especially the Liouville Theorem.

The net result is (identifying Ĉ with S2)

Möb = Conf(S2).
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§45 Möbius transformations are 3-transitive

Theorem 45.1 x

1) The action of Möb+ on Ĉ is triply transitive, meaning that for each triple

z1, z2, z3 ∈ Ĉ

of distinct points, and each triple

w1, w2, w3 ∈ Ĉ

of distinct points, there is a transformation f ∈ Möb+ with

f(z1) = w1, f(z2) = w2, f(z3) = w3.

2) f is unique.

Proof 1. The points z1, z2, z2 and w1, w2, w3 are given. We must find f to
make the equations work.

Wlog we may assume

z1 = 0, z2 = 0, z3 =∞.

For then we can find f1, f2 such that

f1(0) = z1, f1(1) = z2, f1(∞) = z3,

f2(0) = w1, f2(1) = w2, f2(∞) = w3,

and then f := f2 ◦ (f1)−1 satisfies

f(z1) = w1, f(z2) = w2, f(z3) = w3.

2. So set
f(z) =

az + b

cz + d
.

We must find a, b, c, d so that

f(0) = w1, f(1) = w2, f(∞) = w3.

We proceed as follows.

Case 1: w3 =∞
Then f(∞) =∞. So c = 0. So

f(z) =
az + b

d
.
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Dividing all coefficients by d, wlog d = 1. We get

f(z) = az + b,

an OE similarity transformation. Since z1 6= z2, w1 6= w2, it is then geometri-
cally clear that there is a similarity transformation such that

f(0) = w1, f(1) = w2.

It is unique because of the OE requirement. Algebraically, we get b = w1,
a = w2 − w1. These values are forced, so f is unique.

Case 2: w3 6=∞.

Then c 6= 0. Dividing all coefficients by c, wlog c = 1. We require

f(0) = w1, f(1) = w2, f(∞) = w3,

where all wi are finite. This becomes

b

d
= w1,

a+ b

1 + d
= w2, a = w3,

i.e.
b = dw1, a+ b = w2 + dw2, a = w3,

Substituting the first and last equations into the middle one, we get

w3 + dw1 = w2 + dw2

so
d = −w2 − w3

w2 − w1

so
b = −w1

w2 − w3

w2 − w1
.

Summarizing,

a = w3, b = −w1
w2 − w3

w2 − w1
, c = 1, d = −w2 − w3

w2 − w1
.

These values are forced (under the normalization c = 1), so f is unique. To
prove existence, it suffices to back-substitute and verify

f(0) = w1, f(1) = w2, f(∞) = w3,

as can easily be done.

2

For the next application, we note the following fact.
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Proposition 45.2 Through every three distinct points of Ĉ runs a unique cline.

Proof Case 1: One of the points is ∞.

Then the unique extended line through the other two points is the unique cline
through all three points.

Case 2: The points are finite and collinear.

Then the unique extended line through all three points is the unique cline
through all three points.

Case 3: The points are finite and not collinear.

Then a classic theorem of geometry allows us to construct a unique circle through
the three points with ruler and compass. This circle is then the unique cline
through the three points.

2

As a corollary to the 3-transitivity, we now obtain the following transitivity on
clines.

Proposition 45.3 The orientation-preserving Möbius translations take any cline
to any other cline.

Proof Let E, F be two clines in Ĉ. Pick 3 distinct points z1, z2, z3 on E
and three distinct points w1, w2, w3 on F . Let f ∈ Möb+ take z1 → w1,
z2 → w2, z3 → w3. Then f(E) is a cline through w1, w2, w3, so f(E) = F
by the uniqueness statement of the previous proposition.

2
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§46 The cross ratio and its symmetries

We now come to an all-important invariant of Möb+ transformations called the
cross ratio.

Definition 46.1 Let z1, z2, z3, z4 ∈ Ĉ be distinct. We define their cross ratio
by

[z1, z2; z3, z4] :=
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)
.

If one argument is ∞, we cross out the factors where ∞ appears. For example:

(∞− z1)(z4 − z2)

(∞− z2)(z4 − z1)
=
z4 − z2
z4 − z1

which has only finite numbers.

The cross ratio is sort of miraculous, but it will take some investigation to see
this.

The symmetries of the cross ratio

The cross ratio has a lot of symmetries.

Proposition 46.2

[A,B;C,D] = [B,A;D,C] = [C,D;A,B] = [D,C;B,A].

The proof is trivial.

The proposition says: We can switch the first two and the last two, or the first
two with the last two. More precisely:

i) Switch positions 1↔ 2, 3↔ 4, no change.

ii) Switch 1↔ 3, 2↔ 4, no change.

This pattern explains the location of the semicolon.

If we define λ := [A,B;C,D], then we have further (table from Wikipedia)
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Proposition 46.3

[A,B;C,D] = [B,A;D,C] = [C,D;A,B] = [D,C;B,A] = λ

[A,B;D,C] = [B,A;C,D] = [C,D;B,A] = [D,C;A,B] =
1

λ
[A,C;B,D] = [B,D;A,C] = [C,A;D,B] = [D,B;C,A] = 1− λ

[A,C;D,B] = [B,D;C,A] = [C,A;B,D] = [D,B;A,C] =
1

1− λ
[A,D;B,C] = [B,C;A,D] = [C,B;D,A] = [D,A;C,B] =

λ− 1

λ

[A,D;C,B] = [B,C;D,A] = [C,B;A,D] = [D,A;B,C] =
λ

λ− 1
.

The proof is trivial. The special case where one of the inputs is∞ must be done
separately.

So the 24 permutations of A,B,C,D fall into 6 groups of 4, each of which has the
same value. So there are only 6 possible values for the cross ratio of A,B,C,D,
depending on the order, and they all can be calculated from each other.

The new rules can be summarized as follows:

iii) Switch 1↔ 2 or 3↔ 4, send λ to 1/λ.

iv) Switch 2↔ 3 or 1↔ 4, send λ to 1− λ
Together with i)-ii), these yield the first three rows of the table; the final three
rows follow by combining them.

Possible values of the cross ratio

Proposition 46.4
[z1, z2; z3, z4] 6= 0, 1,∞.

Proof x

1. It is obvious that [z1, z2; z3, z4] 6= 0,∞ because the numbers are all distinct.

2. If
[z1, z2; z3, z4] = 1,

then by Proposition 46.3, first and third lines,

[z1, z3; z2, z4] = 1− 1 = 0,

which is impossible by 1. So [z1, z2; z3, z4] = 1 is impossible.

2
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Are there other forbidden numbers like these?

Indeed, the set {0, 1,∞} is invariant under the six operations

λ, 1/λ, 1− λ, 1/(1− λ), (λ− 1)/λ, λ/(λ− 1).

So we won’t get any other forbidden numbers by applying the symmetries of
Proposition 46.3.
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§47 The cross ratio is preserved

References

◦ Loustau pp. 124-125

Theorem 47.1 Let
f(z) =

az + b

cz + d

be an element of Möb+. Let z1, z2, z3, z4 be distinct points of Ĉ. Then

[f(z1), f(z2), f(z3), f(z4)] = [z1, z2, z3, z4].

Proof x

1. If we insert f directly into the formula for the cross-ratio, we have to do a
long calculation. So let’s find another way.

Recall that
Ta,Mb, I

generate Möb+. So it suffices to check that each of these conserve the cross
ratio.

2. Let f = Ta, a ∈ C. Then

[f(z1), f(z2), f(z3), f(z4)] =
((z3 + a)− (z1 + a))((z4 + a)− (z2 + a))

((z3 + a)− (z2 + a))((z4 + a)− (z1 + a))

=
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)

= [z1, z2, z3, z4].

The case where one of the zi is ∞ is included above by striking the appropriate
factors on top and bottom.

3. Let f = Rb, b 6= 0. Then

[f(z1), f(z2), f(z3), f(z4)] =
(bz3 − bz1)(bz4 − bz2)

(bz3 − bz2)(bz4 − bz1)

=
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)

= [z1, z2, z3, z4].

The case where one of the zi is ∞ is included above by striking the appropriate
factors on top and bottom.

4. Let f = I. We have to do several cases.
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Assume first that none of the zi are 0 or ∞. Then

[I(z1), I(z2), I(z3), I(z4)] =
(1/z3 − 1/z1)(1/z4 − 1/z2)

(1/z3 − 1/z2)(1/z4 − 1/z1)

=
(z1 − z3)(z2 − z4)/(z1z2z3z4)

(z2 − z3)(z1 − z4)/(z1z2z3z4)

=
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)

= [z1, z2, z3, z4].

To handle the cases of 0 and/or ∞, it suffices to check the following four identi-
ties by hand. The remaining cases can be reduced to one of these via Proposition
46.2. The variables z2, z3, z4 are assumed to be distinct and not equal to 0 or
infty. Prove:

[I(0), I(z2), I(z3), I(z4)] = [0, z2, z3, z4],

[I(∞), I(z2), I(z3), I(z4)] = [∞, z2, z3, z4],

[I(0), I(∞), I(z3), I(z4)] = [0,∞, z3, z4],

[I(0), I(z2), I(∞), I(z4)] = [0, z2,∞, z4].

Each is trivial. We leave them to the reader.

2
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§48 When the cross ratio is real

Proposition 48.1 Let z1, z2, z3, z4 be distinct points of Ĉ. Then

[z1, z2, z3, z4] ∈ R

precisely when
z1, z2, z3, z4 lie on a common cline.

We begin with

Observation: [z, 1; 0,∞] = z.

(Proof trivial.)

Proof of Proposition 48.1 x

Let z1, z2, z3, z4 be distinct points in Ĉ. By triple transitivity, select f in Möb+
such that

f(z2) = 1, f(z3) = 0, f(z4) =∞.
Define z = f(z1). We then calculate:

z = [z, 1; 0,∞] by the observation
= [f(z1), f(z2), f(z3), f(z4)]

= [z1, z2, z3, z4] by invariance

(=⇒) Suppose [z1, z2, z3, z4] ∈ R. Then z ∈ R. So z, 1, 0,∞ lie on a common
cline, namely the real axis. That is, f(z1), f(z2), f(z3), f(z4) lie on a common
cline. But f−1 takes clines to clines. So z1, z2, z3, z4 lie in a common cline.

(⇐=) Suppose z1, z2, z3, z4 lie on a common cline. Since f takes clines to clines,
f(z1), f(z2), f(z3), f(z4) lie on a common cline. That is, z, 1, 0,∞ lie on a com-
mon cline. But any cline through 1, 0,∞ must be the real axis. So z ∈ R. But
then [z1, z2, z3, z4] = z ∈ R.

2

Here is the interpretation of the cross ratio in light of the Proposition and the
Observation.

The cross ratio [z1, z2, z3, z4] expresses a relationship between z1 and the refer-
ence points z2, z3, z4.

The points z2, z3, z4 are like markers, or guideposts, on the celestial sphere
S2 = Ĉ that play the role of 1, 0,∞. The cline E through z2, z3, z4 plays the
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role of the real axis. The entire sky is painted with tiny numbers, giving the
value

z = [z1, z2, z3, z4]

at the variable point z1.

z1 lies on the cline E if and only if z is real. More generally, the relationship of
z1 to z2, z3, z4 (in some mysterious “complex projective” sense) is the same as
the relationship of z to 1, 0,∞.

155 Table of Contents



17

The elements of Möb+(B1)

156



17. ELEMENTS PART III

§49 Some elements of Möb+(B1)

We define
Möb+(B1) := {f ∈ Möb+ : f(B1) = B1}

for the orientation-preserving Möbius transformations of B1. Then

f |B1 : B1 → B1

is a bijection. We will usually abbreviate this as f .

What are all the elements of Möb+?

Our goal in this section is to list certain useful ones.

1) Rotations about 0:

Obviously we have

Rθ = Meiθ ∈ Möb+(B1).

2) Movements along the real axis:

Let −1 < t < 1. Define

Kt(z) :=
z + t

tz + 1
, z ∈ B1.

Earlier in the course, you proved in an exercise (Serie 4 Aufgabe 3):

Kt(B1) = B1. (49.1)

As a result, we get

Kt ∈ Möb+(B1).

For the record, let’s prove (49.1).

Proof of (49.1) 1. First of all, let us show

Kt(B1) ⊆ B1.

Let z < 1. We must show Kt(z) < 1. That is, show∣∣∣∣ z + t

tz + 1

∣∣∣∣ < 1.
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We successively reduce this as follows

|z + t| < |tz + 1|
|z + t|2 < |tz + 1|2

(z + t)(z̄ + t) < (tz + 1)(tz̄ + 1)

|z|2 + zt+ z̄t+ t2 < t2|z|2 + tz + tz̄ + 1

|z|2 + t2 < t2|z|2 + 1

0 < (1− t2)(1− |z|2).

This latter is true because |t| < 1, |z| < 1. So all the previous inequalities are
true. So we get

Kt(B1) ⊆ B1,

as claimed.

2. Replacing t by −t we get

K−t(B1) ⊆ B1.

Now (as may easily be checked), Kt is the inverse of Kt, so applying Kt, we get

B1 ⊆ Kt(B1).

Combining this with the inclusion in 1., we get

Kt(B1) = B1,

as was desired.

2

Let us visualize Kt. Let L := x-axis ∩B1. Obviously

Kt(L) = L.

We also have
Kt(−1) = −1, Kt(1) = 1.

and
Kt(−t) = 0, Kt(0) = t.

We can ask:

a) Where does 0 go under repeated applications of Kt, and where does it come
from?

Let us suppose that 0 < t < 1.
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We calculate where 0 goes:

Kt(0) = t, Kt(Kt(0)) =
2t

t2 + 1
, Kt(Kt(Kt(0))) = . . .

The expressions get more and more complicated, but they keep increasing. In-
deed, one can confirm this by showing that for −1 < s < 1, t > 0,

Kt(s) > s.

To see where 0 comes from under Kt, we apply the inverse K−t:

K−t(0) = −t, K−t(K−t(0)) =
−2t

t2 + 1
, K−t(K−t(K−t(0))) = . . .

These points can be plotted on the real number line and we find

. . . < K3
−t(0) < K2

−t(0) < K−t(0) < 0 < Kt(0) < K2
t (0) < K3

t (0) < . . .

This gives us a picture of the action of Kt on the segment from −1 to +1: it
moves everything to the right in a nonlinear way. −1 is a source, +1 is a sink.

b) Where does the y-axis go under repeated applications of Kt, and where does
it come from?

We actually are interested in the segment M := y-axis ∩B1.

Since M is a cline normal to S1 (intersected with B1), and S1 goes to itself
under Kt, Kt(M) must be a cline normal to S1 (intersected with B1). Similarly,
Kt(M) will be normal to the x-axis.

Similar considerations apply to K2
t (M), K3

t (M), etc., and to K−t(M), K2
−t(M),

etc. So the sequence

. . . ,K2
−t(M), K−t(M), M, Kt(M), K2

t (M), . . .

are a sequence of circle arcs progressing from left to right, from the sources −1
to the sink +1, giving a striped effect.

c) What happens with clines through −1 and +1?

Let E be a cline through −1 and +1. I claim: Kt(E) = E.

First, Kt(E) is a cline. Since −1, +1 are fixed points of Kt, Kt(E) is a cline
through −1, +1.

Now we would like to prove that Kt(E) = E and not some other cline through
−1, +1.

@ How?

So we get
Kt(E) = E
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Now Kt moves every point of E along E rightwards, just as it does in the special
case E = x-axis ∩B1. −1 is the source and +1 is the sink.

The entire action of K − t can be described in pictures by filling B1 with flow
arrows that preserve the x-axis, preserve each circle from −1 to +1, and preserve
the upper and lower boundary semicircles of B1.

3) Movements along any line through 0:

Fix b ∈ B1. Define in analogy to Kt,

Kb(z) :=
z + b

b̄z + 1
, z ∈ B1.

If b 6= 0, define

Lb :=

{
s
b

|b| : −1 < s < 1

}
,

the intersection of B1 with the line determined by 0 and b.

Then we may easily prove by essentially the same proof as for Kt

Kb(B1) = B1.

(The proof needs the b̄ coefficient in the denominator.) So

Kb ∈ Möb+(B1).

We can verify
Kt(Lb) = Lb,

Kt

(
− b

|b|

)
= − b

|b| , Kt

(
b

|b|

)
=

b

|b| ,

Kb(−b) = 0, Kb(0) = b.

Factorization of Kb

Now, it is possible to write Kb in terms of Kt and rotations as follows. Assume
b 6= 0 (the b = 0 case is just the identity). Write b = |b|eiθ, where θ ∈ R, |b| > 0.
Calculate

Kb(z) =
z + b

b̄z + 1

=
z + |b|eiθ
|b|e−iθz + 1

= eiθ
e−iθz + |b|
|b|e−iθz + 1

= (Rθ ◦K|b| ◦R−θ)(z).
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So
Kb = Rθ ◦K|b| ◦R−θ.

This implies two things.

First, it gives a second proof (besides the one mentioned above) that Kb is a
bijection of B1 to itself.

Second, it shows that the way Kb acts on B1 is just the same as the way K|b|
acts on B1, but rotated by θ. In particular, we can get a picture of the action
of Kb by rotating the K|b| picture by θ.

.
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§50 Factoring elements of Möb+(B1)

We have seen that Rθ,Kb ∈ Möb+(B1). We are now in a position to prove that
they generate the group.

Theorem 50.1 x

(a)

Möb+(B1) =

{
ax+ b

b̄z + ā
: a, b ∈ C, |a| > |b|

}
(b) As a consequence, every element of Möb+(B1) can be written in the form

f(z) = eiθ
z + b

b̄z + 1
, z ∈ B1,

that is,
f = Rθ ◦Kb.

We omit the proof because there is no time. The easy step is going from (a) to
(b). The harder step is (a). The theorem is used in the next section.
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§51 Isometries of H2

Theorem 51.1 The isometries of H2 are exactly the Möbius transformations
that preserve B1. That is,

Isom(H2) = Möb(B1), Isom+(H2) = Möb+(B1).

We now have the ingredients to prove this. But we’ll only sketch the proof –
and only for the orientation-preserving case. The full proof takes a few pages.

(⊇)

Rθ is a hyperbolic isometry. With some effort, using stretch factors and the
hyperbolic length elements at z and at Kb(z), Kb is a hyperbolic isometry.

By Theorem 50.1, these generate Möb+(B1). So every element of Möb+(B1) is
a hyperbolic isometry. So

Isom+(H2) ⊇ Möb+(B1).

(⊆)

Let f be an orientation-preserving hyperbolic isometry. By setting g := Kb ◦
Rθ ◦ f for suitable isometries Rθ and Kb, we may arrange that g fixes 0, and
indeed that g fixes every point on the real segment L := x-axis ∩B1.

It follows by considering distances to points on L that for each z ∈ H2, g(z) = z
or g(z) = z̄. Since g is orientation-preserving, g(z) = z. So g = id.

So f = R−θ ◦K−b is an orientation-preserving Möbius transformation. So

Isom+(H2) ⊆ Möb+(B1).
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§52 Geodesics of H2

We now can prove Theorem 52.1, which identified the geodesics in H2. Let us
restate it.

Theorem 52.1 The geodesics of H2 are precisely the curves of the form

E ∩B1,

where E is a cline that meets ∂B1 orthogonally. They are all minimizing.

Figure 52.1: Hyperbolic geodesics (made with A. Zampa’s Geogebra applet)

Proof 1. Let α = E ∩B1, where E is a cline that meets ∂B1 orthogonally. Let
A and B be the endpoints of α, lying on B1. Let C be a point on ∂B1 distinct
from A and B such that

A,C,B

are counterclockwise around S1.

Select an orientation-preserving Möbius transformation f that takes

A,C,B → −1,−i, 1.

So f(S1) = S1. But f is a homeomorphism (bijective and continuous in both
directions). So (assuming some topology methods) either

f(B1) = B1

or
f(B1) = Ĉ \ B̄1.
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2. We claim that the fact that f preserves the ccl order of A,C,B around S1

implies that f(B1) = B1.

For if f(B1) = Ĉ \ B̄1, then (I ◦ f)(B1) = B1. But I ◦ f takes

A,B,C → −1, i, 1,

that is, it is an orientation-preserving bijection of B̄1 to B̄1 that takes ccl to cl.
This is impossible.

Therefore f(B1) = B1. So f ∈ Möb+(B1). So f is a hyperbolic isometry.

3. Now f takes α = E ∩B1 to f(E)∩B1. Then f(E) is a cline. It is orthogonal
to S1 because f preserves angles. So f(E) = R̂. So f(α) = R ∩B1.

But R ∩B1 is a minimizing geodesic. Since f is an isometry, α is a minimizing
geodesic.

2

We have the following two corollaries arising from the proof of this theorem.

Corollary 52.2 The group Isom+(H2), extended to act on S1, takes any three
counterclockwise points on S1 to any three counterclockwise points on S1.

Compare this to Theorem 45.1.

A directed geodesic is a geodesic with a direction specified along the geodesic.

Corollary 52.3 The group Isom+(H2) takes any directed geodesic in H2 to
any directed geodesic in H2, preserving the direction of the geodesic.

Compare this to Proposition 45.3.
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§53 Cross ratio formula for distance

We have a remarkable formula for hyperbolic distance in terms of the cross-ratio.

Theorem 53.1 Let z, w be distinct points in H2. Let α be the hyperbolic
geodesic through them. Let A,B be the endpoints of α on S1 in such a way
that

A, z, w,B

are in order along α. Then

dH(z, w) = log(|[B,A; z, w]|).

Effectively, this theorem generalizes Theorem 25.1, which says

dH(a, b) = log
(1− a)(1 + b)

(1 + a)(1− b) ,

for points a < b on L := R ∩B1.

Proof By Corollary 52.3, there is a hyperbolic isometry f such that

f(α) = L, f(A) = −1, f(B) = +1.

Then f(z), f(w) lie in L and are real. The order is retained and

f(z) < f(w).

So by Theorem 47.1 and Theorem 25.1,

dH(z, w) = dH(f(z), f(w))

= log

∣∣∣∣ (1− f(z))(1 + f(w))

(1 + f(z))(1− f(w))

∣∣∣∣
= log |[1,−1; f(z), f(w)]|
= log |[B,A; z, w]|,

as required.

2
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§54 Arccosh formula for distance

A disadvantage of the cross ratio formula is that is can be awkward to find the
endpoints A, B.

Here is a formula for distance in H2 that only depends on |z|, |w|, and |z − w|.

Theorem 54.1 Let z, w ∈ H2. Then

dH(z, w) = arccosh

(
1 +

2|z − w|2
(1− |z|2)(1− |w|2)

)
, z, w ∈ B1.

It generalizes (27.3), which says the same thing, but only for points in L :=
R ∩B1.

We’re now in a position to prove it, but we’ve run out of time.
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§55 Books

Last year’s script:

• T. Ilmanen, Geometrie 2020, https://metaphor.ethz.ch/x/2020/hs/
401-1511-00L/literatur/script.pdf.
The topics were different, but the older script has more about group theory.
It also has many pictures and audiovisuals.

Very accessible:

• J. R. Weeks, The Shape of Space, CRC press, 2019.
• M. Hitchman, Geometry with an Introduction to Cosmic Topology, https:
//mphitchman.com/geometry/frontmatter.html.

Classical:

• E. A. Abbott, Flatland, Dover Publications, 1884.
• D. Burger, Sphereland: A Fantasy About Curved Spaces and an Expanding
Universe, 1957.

For fractals:

• K. J. Falconer, The geometry of fractal sets, Cambridge Univ. Press, 1985,
https://www.cambridge.org/core/books/geometry-of-fractal-sets/
7ECAB3C918C66E62AB673246B2CDE6FA.

For group theory:

• D. Saracino, Abstract Algebra: A First Course, Waveland Press, 2008,
https://www.waveland.com/browse.php?t=483, pp 1-132.

• J. J. Rotman, An Introduction to the Theory of Groups, Springer, 1984,
https://www.springer.com/gp/book/9780387942858.

For linear algebra:

• K. Jänich, Lineare Algebra, Springer, 11th ed., 2010.
• G. Fischer, Lineare Algebra: Eine Einführung für Studienanfänger, 18th

ed., Springer, 2014.

For complex analysis:

• L. Ahlfors, Complex Analysis, 1979, pp 18-20, 76-88. Looking for a more
available reference.

For hyperbolic geometry:

• J. W. Anderson, Hyperbolic Geometry, Springer, 2005.
• W. P. Thurston, Three-dimensional Geometry and Topology, vol. I, Prince-

ton Univ. Press, 1997, pp. 3-42, 43-.
• B. Loustau, Hyperbolic geometry, online notes, https://arxiv.org/abs/
2003.11180, 2020.

• A. F. Beardon, The Geometry of Discrete Groups, Springer, 1983, pp.
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56-82, 126-187.

Riemannian geometry:

• J. M. Lee, Introduction to Riemannian Manifolds, 2nd ed., Springer, 2018.

Mathematical symbols:

• Liste mathematischer Symbole,
https://de.wikipedia.org/wiki/Liste_mathematischer_Symbole

Mathematical dictionaries:

• G. Eisenreich, R. Sube, Dictionary of Mathematics; Wörterbuch Mathe-
matik, Verlag Harry Deutsch, 1987.
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§56 Articles, blogs, and references

Articles:

• T. M. Apostol & M. A. Mnatsakanian, A fresh look at the method of
Archimedes, Math. Assoc. of America Monthly 111, 2004.

• J. Weeks, Non-Euclidean billiards in VR, http://archive.bridgesmathart.
org/2020/bridges2020-1.pdf.

Blogs:

•

Wikipedia:

• Conformal map projection
• Equal-area map
• Euclidean group
• Lambert cylindrical equal-area projection
• Mercator projection
• Stereographic map projection
• Stereographic projection
• Taxicab geometry
• Uniform tilings in hyperbolic plane

Names and properties of concrete groups:

• T. Dokchitser, interactive list of groups of small order, https://people.
maths.bris.ac.uk/~matyd/GroupNames/

• J. Jones, interactive calculator for groups of small order, https://hobbes.
la.asu.edu/groups/groups.html.

• X. Lee, wallpaper groups,
http://xahlee.info/Wallpaper_dir/c5_17WallpaperGroups.html
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§57 Software, visualization, and activities

Gomath exhibition (14-15 March 2022):

• https://math.ethz.ch/news-and-events/events/gomath/gomath-2022.
html

Jeff Weeks geometry apps:

• Flying in curved space (iOS, macOS, Windows)
http://www.geometrygames.org/CurvedSpaces

• Kaleidotile (iOS, macOS, Windows)
http://www.geometrygames.org/KaleidoTile

• Crystal flight (iOS, macOS)
http://www.geometrygames.org/CrystalFlight

Geogebra:

• https://www.geogebra.org/m/tHvDKWdC

Hyperrogue:

• https://roguetemple.com/z/hyper

Youtube videos:

• ZenoTheRogue
https://www.youtube.com/channel/UCfCtbgiDxwFtlqrbEralvTw
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