Serie 0

GRUPPENAXIOME

0. Sei \circ eine assoziative binäre Operation auf einer nichtleeren Menge S, d.h. für alle x,y,z in S gilt

$$x \circ (y \circ z) = (x \circ y) \circ z.$$

Zeige, dass für alle $a, b, c, d \in S$ gilt

$$(a \circ b) \circ (c \circ d) = (a \circ (b \circ c)) \circ d.$$

1. Sei $A = \{1, 2, 3, 4, 6, 12\}$ und sei

$$\star: A \times A \to A$$
$$(a,b) \mapsto \operatorname{ggT}(a,b),$$

wobei ggT(a, b) den grössten gemeinsamen Teiler von a und b bezeichnet.

- (a) Zeige, dass die Operation * kommutativ und assoziativ ist.
- (b) Zeige, dass (A, \star) ein Neutralelement hat.
- (c) Zeige, dass (A, \star) keine Gruppe ist.

Bemerkung: Solche Strukturen werden kommutative Monoide genannt.

- 2. Sei \circ eine assoziative binäre Operation auf einer nichtleeren Menge G. Angenommen, es existiert ein eindeutiges links-neutrales Element $e \in G$ und jedes Element in G besitzt ein rechts-Inverses. Zeige, dass dann (G, \circ) eine Gruppe ist.
- 3. Sei $\mathbb{Q}^* := \mathbb{Q} \setminus \{0\}$ und sei die binäre Operation auf \mathbb{Q}^* , welche wie folgt definiert ist:

$$\bullet: \mathbb{Q}^* \times \mathbb{Q}^* \to \mathbb{Q}^*$$
$$(p,q) \mapsto 2pq.$$

Zeige, dass (\mathbb{Q}^*, \bullet) eine abelsche Gruppe ist.

4. Sei (ℚ × ℚ)* := ℚ × ℚ\{(0,0)} und sei • die binäre Operation auf (ℚ × ℚ)*, welche wie folgt definiert ist:

$$(p_1,q_1) \bullet (p_2,q_2) := (p_1p_2 - q_1q_2, p_1q_2 + q_1p_2).$$

Zeige, dass $((\mathbb{Q} \times \mathbb{Q})^*, \bullet)$ eine abelsche Gruppe ist.

5. Sei (G, \circ) eine Gruppe mit Neutralelement e.

Zeige: Gilt für jedes $a \in G$, $a \circ a = e$, so ist G abelsch.

- **6**. (a) Zeige: Jede Gruppe mit genau vier Elementen ist abelsch.
 - (b) Finde zwei verschiedene (*d.h.* nicht isomorphe) Gruppen mit jeweils genau vier Elementen.