Serie 2

UNTERGRUPPEN, NEBENKLASSEN, NORMALTEILER

- **14.** Seien m=12 und n=21 und sei g ein Erzeuger der zyklischen Gruppe C_{mn} . Weiter sei $x:=g^{120}$.
 - (a) Zeige: ord(x) = n.
 - (b) Finde mehrere Elemente $y, z \in C_{mn}$ mit

$$C_{mn} \neq \langle z \rangle$$
, $C_{mn} = \langle y \rangle$ und $z^m = y^m = x$.

15. Sei G eine Gruppe und $H \leq G$. Definiere folgende Relation auf G:

$$g \sim g' \Leftrightarrow g'^{-1}g \in H$$
.

- (a) Zeige, dass diese Relation eine Äquivalenzrelation ist.
- (b) Zeige, dass die Äquivalenzklassen genau die Linksnebenklassen von H sind.
- (c) Nimm an, die Vorschrift $[g] \circ [g'] := [gg']$ definiere eine wohldefinierte binäre Operation auf G/H. Zeige, dass H ein Normalteiler von G ist. (Bemerkung: In der Vorlesung wurde die Umkehrung dieser Aussage gezeigt.)
- **16**. Sei G eine Gruppe, $a \in G$ und $Z_G(a)$ der Zentralisator von a in G. Zeige:
 - (a) Es gilt $\langle a \rangle \leqslant Z_G(a)$.
 - (b) Für jede Untergruppe $H \leq G$ gilt $Z_H(a) = Z_G(a) \cap H$.
- 17. Sei G eine Gruppe und seien U, V nichtleere Teilmengen von G. Wir definieren

$$UV := \{uv \mid u \in U, v \in V\}$$

$$U^{-1} := \{u^{-1} \mid u \in U\}.$$

- (a) Zeige, dass die folgenden Aussagen äquivalent sind:
 - i. U ist eine Untergruppe von G.
 - ii. $UU \subseteq U$ und $U^{-1} \subseteq U$.
 - iii. $UU^{-1} \subseteq U$.
- (b) Falls U und V Untergruppen von G sind, dann ist UV genau dann eine Untergruppe von G, wenn UV = VU gilt.
- (c) Ist U endlich, dann ist U bereits dann eine Untergruppe, wenn $UU \subseteq U$ gilt.

- 18. Sei $\mathbb{U}:=\{z\in\mathbb{C}:|z|=1\}\subseteq\mathbb{C}.$
 - (a) Zeige, dass $\mathbb U$ ein Normalteiler von $(\mathbb C^*,\cdot)$ ist.
 - (b) Beschreibe die Menge \mathbb{C}^*/\mathbb{U} .
 - (c) Finde eine Gruppe, die isomorph zur Faktorgruppe \mathbb{C}^*/\mathbb{U} ist.
- 19. Finde alle Untergruppen von D_4 sowie alle Inklusionen zwischen diesen. Gib an, in welchen Fällen es sich um einen Normalteiler handelt und bestimme die entsprechende Faktorgruppe.
- **20**. Sei T die Symmetriegruppe des regulären Tetraeders.
 - (a) Bestimme |T|.
 - (b) Zeige, dass T nicht abelsch ist.
 - (c) Bestimme alle Untergruppen von T.
 - (d) Welche Untergruppen von T sind nichttriviale Normalteiler?