Serie 3

GRUPPENOPERATIONEN

- **21**. Zeige: Gilt $N \subseteq Z(G) \subseteq G$ und ist G/N zyklisch, so ist G abelsch.
- **22**. Sei G eine Gruppe und H eine Untergruppe.
 - (a) Zeige, dass die Abbildung $G \times G/H \to G/H$, $(g, g'H) \mapsto gg'H$ eine Gruppenoperation definiert.
 - (b) Zeige, dass diese Operation transitiv ist. Das bedeutet, dass die Operation nur eine Bahn besitzt.
 - (c) Bestimme ihre Stabilisatoren.
- 23. Die multiplikative Gruppe \mathbb{R}^* der reellen Zahlen operiere auf \mathbb{R}^2 durch

$$g \circ (a, b) = \left(ga, \frac{b}{g}\right),$$

wobei $g \in \mathbb{R}^*$ und $(a, b) \in \mathbb{R}^2$.

Bestimme die Bahnen und Stabilisatoren dieser Operation.

24. Sei $G \times M \to M$ eine Operation einer Gruppe G auf einer Menge M und sei f eine Auswahlfunktion auf der Menge der Bahnen M/G, d.h. $f: M/G \to M$ und für jedes $N \in M/G$ ist $f(N) \in N$.

Zeige, dass gilt

$$|M| = \sum_{N \in M/G} [G : \operatorname{St}_G(f(N))].$$

25. Sei $G \times M \to M$, $(g, x) \mapsto g \circ x$ eine Operation einer Gruppe G auf einer Menge M und sei $\mathcal{F}(M)$ die Menge aller Funktionen $f \colon M \to \mathbb{R}$.

Zeige, dass die Abbildung

$$\begin{array}{cccc} G \times \mathcal{F}(M) & \to & \mathcal{F}(M) \\ (g\,,\,f) & \mapsto & g \ast f & \mathrm{mit} \ (g \ast f)(x) := f(g^{-1} \circ x) \end{array}$$

eine Gruppenoperation ist und bestimme ihre Fixpunkte.

- . Wir mischen drei identische Kartendecks mit je 36 paarweise verschiedenen Karten. Wie viele verschiedene Kombinationen von drei Karten können daraus gebildet werden?
- 27. Wir betrachten eine geschlossene Perlenkette mit 13 Perlen. Wir wollen die Perlen mit 4 Farben einfärben. Wie viele Kombinationen von Färbungen gibt es? Wie viele Kombinationen gibt es, falls wir nur 12 Perlen färben wollen?