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Abstract

An elliptic configuration is a configuration with all its points on a cubic curve.
We investigate the existence of elliptic (3r4, 4r3)-configurations for r ≥ 5 and
show that for every k ≥ 2 there is an elliptic (9k4, 12k3)-configuration with a
rotational symmetry of order 3.

1 Terminology

A (pλ, lπ)-configuration consists of p points and l lines in the real affine plane such
that each point belongs to λ lines and each line goes through π points. If p = l and
consequently λ = π, we just write (pλ) instead of (pλ, lπ). A configuration is called
an elliptic configuration if there is a cubic curve which passes through all points of
the configuration (see also the discussion of elliptic configurations in Grünbaum [2,
p. 247 ff.]). An example of an elliptic (124, 163)-configuration is given in Grünbaum [2,
p. 249].

For a finite group G, a configuration is called G-symmetric if G is a subgroup of the
symmetry group of the configuration. Finally, an elliptic G-symmetric configuration is
a configuration which is both, elliptic and G-symmetric.

Since a line intersects a cubic curve in at most 3 different points, the maximum value
for π of an elliptic (pλ, lπ)-configuration is π = 3, and therefore, natural candidates for
elliptic configurations are (3r3)-configurations and (3r4, 4r3)-configurations for r ≥ 1
(for (124, 163)-configurations see, for example, Gropp [1] or Metelka [5]). On page 293
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of Grünbaum [2], Open Problem 4 asks to decide for which r ≥ 5 elliptic (3r4, 4r3)-
configurations exist.

Of particular interest are elliptic configurations with C3 or D3 symmetry. Here, D3

is the dihedral group of the regular triangle, and C3 its subgroup of of elements of odd
order. For G = D3 or G = C3 the number of lines of a G-symmetric configuration
must be a multiple of 3. Hence, since 3 | 4r implies 3 | r, the possible elliptic D3 or
C3-symmetric (3r4, 4r3)-configurations are (9k4, 12k3)-configurations for k ≥ 1.

After introducing a normal form of cubic curves which are D3-symmetric, we give
a construction of elliptic D3-symmetric (9k4, 12k3)-configurations for every k ≥ 2.
Finally, we show the existence of elliptic (3r4, 4r3)-configurations for some r ≥ 5. The
constructions of elliptic configurations are motivated by Schroeter’s ruler construction
of cubic curves (see [4] for some first examples of elliptic configurations).

2 A D3-symmetric normal form for cubic curves

It is well-known that every non-singular cubic curve in the real projective plane can be
transformed into Weierstrass Normal Form

y2 = x3 + ax2 + bx.

Without loss of generality, we may require that the x-coordinate of an inflection point
is 1. In this case we get (see [3, Fact 2.3])

b 6= 1 and a =
b2 − 6b− 3

4
. (1)

Now, by computing the polar conic at the point (0, 1, 0) in the projective extension of
the plane as well as the intersection points of the tangents at the inflections points, we
find the projective transformation

1 0 −2b

0
√
3(b−1)
2

0

1 0 b− 3


which transforms the affine curve y2 = x3 +ax2 + bx (with a, b as in (1)) into the curve

ΓD3 : x3 − 3xy2 − 3(b− 3)(x2 + y2) + 4b2(b− 9) = 0.

To see that the latter curve is D3-symmetric, notice first that the curve is symmetric
with respect to the x-axis. To see that the curve is also symmetric with respect
to rotations about the origin with angle 2π

3
, notice that if (x0, y0) is a point on the

curve ΓD3 , then also (
cos(2π

3
) sin(2π

3
)

− sin(2π
3

) cos(2π
3

)

)(
x0

y0

)
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is a point on ΓD3 . Figure 1 shows two D3-symmetric curves ΓD3 .

Conic sections have a natural reflection symmetry along their axes. It is quite natural
to look at cubic curves in a D3-symmetric form. In this regard, we now have:

Proposition 1. Every regular cubic curve can be brought into the D3-symmetric nor-
mal form

ΓD3 : x3 − 3xy2 − 3(b− 3)(x2 + y2) + 4b2(b− 9) = 0

with b ∈ R \ {1}.
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Figure 1: Elliptic D3-symmetric curves for b = 13 (left), and b = 8 (right).

3 Elliptic D3-symmetric (9k4, 12k3)-configurations

In order to construct an elliptic D3-symmetric (9k4, 12k3)-configuration for some k ≥ 2,
we take an arbitrary D3-symmetric elliptic curve Γ0 with neutral element O = (0, 1, 0)
and choose a point Q on Γ0 of order 9k + 3. This can be achieved by considering a
p-periodic parametrization of the curve by the Weierstrass ℘-function and taking the
point Q as the image of the parameter value pq

9k+3
for some q with (q, 9k+ 3) = 1. The

group Gk on Γ0, generated by the point Q, is isomorphic to the group Z/(9k + 3)Z.
For 1 ≤ i ≤ 9k + 3, let

Pi := i ∗Q := Q+Q+ . . .+Q︸ ︷︷ ︸
i terms

,
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where we denote the group operation on Γ0 by +. We define the following three sets
of points:

S0 := {P1, . . . , P3k}, S1 := {P3k+2, . . . , P6k+1}, S2 := {P6k+3, . . . , P9k+2}

Then each Sj (for j ∈ {0, 1, 2}) contains 3k pairwise distinct points, and since the
sets Sj are pairwise disjoint, the set S := S0 ∪ S1 ∪ S2 contains 9k pairwise distinct
points on the curve Γ0. Notice that since the points P3k+1, P6k+2 of order three, and
P9k+3 are the only points of Γ0 at infinity and neither of them belongs to S, all points
of S belong to the real affine plane. The goal is now to construct a D3-symmetric,
(9k4, 12k3)-configuration on the set of points S. Before we start with the construction,
let us introduce some notation.

• We identify the group Gk with the group Z/(9k + 3)Z, and for 1 ≤ u ≤ 9k + 3,
we identify the point Pu with u ∈ Gk (i.e., with an element in Z/(9k + 3)Z).
Similarly, we identify S with a subset of Gk.

• If three distinct points Pu, Pv, Pw are collinear (i.e., lie on a line), then the line
is denoted by [u, v, w]. Notice that by the group law of an elliptic curve, we
have that three distinct points Pu, Pv, Pw are collinear if and only if u+ v +w ≡
0 (mod 9k+ 3). In other words, each line through three different points is of the
form [u, v, w] for some pairwise distinct u, v, w ∈ Gk.

• If [u, v, w] is a line, then −[u, v, w] := [−u,−v,−w] is the inverse line of [u, v, w].
Notice that if [u, v, w] is a line in S (i.e., u, v, w ∈ S), then −[u, v, w] is a line in
S with −[u, v, w] 6= [u, v, w], namely the line mirrored at the x-axis.

• For u ∈ Gk, we define ρ(u) := u + (3k + 1). Notice that if, for example, u ∈ S0,
then ρ(u) ∈ S1 and ρ2(u) := (ρ ◦ ρ)(u) ∈ S2.

• If [u, v, w] is a line, then ρ[u, v, w] := [ρu, ρv, ρw] is the corresponding rotated line.
Notice that if [u, v, w] is a line in S, then ρ[u, v, w] and ρ2[u, v, w] are lines in S,
where [u, v, w], ρ[u, v, w], and ρ2[u, v, w] are pairwise distinct (but not necessarily
disjoint) lines.

The following fact is an immediate consequence of the preceding definitions.

Fact 2. Any (9k4, 12k3)-configuration on the point set S which contains with any line
[u, v, w] also the lines ρ[u, v, w] and ρ2[u, v, w], is an elliptic C3-symmetric (9k4, 12k3)-
configuration, where C3 is the cyclic group of order 3. If the configuration contains
in addition with any line [u, v, w] also the line −[u, v, w], then it is an elliptic D3-
symmetric configuration.

So, by Fact 2, to construct an elliptic D3-symmetric (9k4, 12k3) configuration it is
enough to find 2k lines [ui, vi, wi] such that for 1 ≤ i ≤ 2k, the lines ±[ui, vi, wi],
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±ρ[ui, vi, wi], and ±ρ2[ui, vi, wi] are pairwise distinct. Before we start constructing
such lines, we show how we construct lines in S from “pseudo-lines” in S0:

For any u, v, w ∈ S, let

u′ := u (mod 3k + 1), v′ := v (mod 3k + 1), w′ := w (mod 3k + 1) .

Then u′, v′, w′ ∈ S0 and if [u, v, w], then u′+v′+w′ ≡ 0 (mod 3k+1). If u, v, w ∈ S0 are
such that u+v+w ≡ 0 (mod 3k+1), then the triple (u, v, w) is called a pseudo-line in
S0. Notice that we do not require that the three points u, v, w of a pseudo-line (u, v, w)
are pairwise distinct.

The following lemma shall be crucial in the construction of (9k4, 12k3)-configurations.

Reduction Lemma 3. If u, v, w ∈ S0 are such that (u, v, w) is a pseudo-line, then
there are ū, v̄, w̄ ∈ S such that u = ū′, v = v̄′, w = w̄′ and [ū, v̄, w̄] is a line.

Proof. Let u, v, w ∈ S0 be such that (u, v, w) be a pseudo-line. Notice that since
u + v + w ≡ 0 (mod 3k + 1) and 3 - 3k + 1, at most two of the three points u, v, w
can be equal. Without loss of generality assume u 6= v. Then, for ū := u, v̄ := v, and
w̄ := w + (6k + 2), [ū, v̄, w̄] is a line. q.e.d.

In order to construct an elliptic C3-symmetric (9k4, 12k3)-configuration, by Reduction
Lemma 3 and by rotating the lines with ρ and ρ2, respectively, it is enough to find a set
L of 4k pseudo-lines in S0 such that each point of S0 belongs to exactly 4 pseudo-lines
in L. In order to construct an elliptic D3-symmetric (9k4, 12k3)-configuration, we have
to make sure in addition that for each pseudo-line (u, v, w) ∈ L, also (−u,−v,−w) ∈ L.

Theorem 4. For every integer k ≥ 2 there exists an elliptic D3-symmetric (9k4, 12k3)-
configuration.

In the following three sections, we shall construct elliptic (9k4, 12k3)-configurations
for k ≡ 3 (mod 4), for k ≡ 1 (mod 4), and for k even, respectively.

3.1 D3-symmetric (9k4, 12k3)-configurations for k≡3(mod 4)

Let k ≥ 3 be a positive integer with k ≡ 3 (mod 4). Furthermore, let nk := 3k+ 1 and
let

m1 :=
k + 1

2
, m2 := nk −m1 ,

and let

t2 :=


m1

2
if m1 ≡ 2 (mod 4),

nk+m1

2
otherwise,

t1 := nk − t2.
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Notice that since k ≡ 3 (mod 4), we have that k + 1 ≡ 0 (mod 4). Hence, we have
m1 ≡ 0 or 2 (mod 4) and since nk ≡ 2 (mod 4), we have either m1 ≡ 2 (mod 4) or
nk +m1 ≡ 2 (mod 4), which implies that t1 and t2 are both odd.

Let S∗0 := S0 ∪ {0} and define the following sequence of triples 〈(ai, bi, ci) : i ∈ Z〉 in
S∗0 × S∗0 × S∗0 : Let

(a0, b0, c0) := (t1, 0, t2)

and for all i ∈ Z let

(ai+1, bi+1, ci+1) := (ai − 2, bi + 1, ci + 1) .

Then, the sequence has the following properties:

(a) For all i ∈ Z, ai + bi + ci ≡ 0 (mod nk) and ai is odd. For the latter, recall that
t1 is odd and that nk is even.

(b) (at1 , bt1 , ct1) = (t2, t1, 0) (mod nk). For example, at1 = t1 − 2t1 = −t1 ≡
t2 (mod nk).

(c) For all i ∈ Z, (ai+nk
, bi+nk

, ci+nk
) = (ai, bi, ci), and for all 0 < s < nk, we have

{ai+s, bi+s, ci+s} 6= {ai, bi, ci}.

(d) In Z/nkZ, for all s ∈ Z we have

−(as, bs, cs) = −(t1 − 2s, s, t2 + s) = (−t2 + 2s,−s, t1 − s) = (at1−s, ct1−s, bt1−s).

Property (a) shows that every triple in the sequence is a pseudo-line in S∗0 . Property (c)
shows that the sequence contains exactly nk pairwise different pseudo-lines; let L∗ be
the set of these nk pseudo-lines. Property (d) shows that a pseudo-line (u, v, w) is in
L∗ if and only if the pseudo-line −(u, v, w) is in L∗.

Every even number 0 ≤ ` < nk appears in exactly 2 pseudo-lines in L∗, and every
odd number 0 < ` < nk appears in exactly 4 pseudo-lines in L∗. Now, we remove
the two pseudo-lines (t1, 0, t2) and (t2, t1, 0) from L∗, and add the two pseudo-lines
(m1, t1, t1) and (m2, t2, t2) to L∗; the resulting set of pseudo-lines is denoted L0. Notice
that (m2, t2, t2) = −(m1, t1, t1), that the two pseudo-lines (m1, t1, t1) and (m2, t2, t2)
are not in L∗, and that every pseudo-line in L0 is a pseudo-line in S0. In L0, every odd
number 0 < ` < nk appears in exactly 4 pseudo-lines in L0, and every even number
0 ≤ ` < nk, except m1 and m2, appears in exactly 2 pseudo-lines in L0, whereas m1

and m2 appear in exactly 3 pseudo-lines in L0.

In order to complete the construction of a (9k4, 12k3)-configuration, we consider the
set Tk consisting of the nk

2
− 1 even numbers 2, 4, . . . nk − 2. It remains to find k − 1

pseudo-lines in S0 with points in Tk, where every number in Tk except m1 and m2

appears in exactly 2 pseudo-lines, whereas m1 and m2 appear in exactly 1 pseudo-line.
Together with the nk = 3k + 1 pseudo-lines of L0, this gives us 4k pseudo-lines, and

6



after extending them to lines of S by Reduction Lemma 3 and by rotating them with ρ
and ρ2, we finally obtain 12k lines. For the construction of the remaining k−1 pseudo-
lines with points in Tk, we give first a “visual argument”: We write the points of Tk in
two rows, where the first row contains the numbers nk− 2 to nk−2

2
+ 1 in reverse order,

and the second row contains the numbers 2 to nk−2
2

in the natural order. Below the
numbers of these two rows, we write • and ◦ for the three points of the pseudo-lines,
where • denotes a number from the second row, and ◦ denotes a number from the
first row. The following figure gives an example of three pseudo-lines for k = 7 (i.e.,
nk = 22):

20 18 16 14 12

2 4 6 8 10

• • ◦
◦ ◦ •
•• ◦

The first pseudo-line is (2, 6, 14), the second is (20, 16, 8) = −(2, 6, 14), and the third
is (4, 4, 14), where •• means twice the same number. Notice that −(u, v, w) is obtained
from (u, v, w) by exchanging • and ◦. Now, instead of writing both pseudo-lines (u, v, w)
and −(u, v, w), we just write the one which the greater number of •’s — having in mind
that each pseudo-line (u, v, w) represents also the pseudo-line −(u, v, w). This way, we
just have to find k−1

2
pseudo-lines. The following figure illustrates the 11 pseudo-lines

for k = 23 (i.e., nk = 70), given in two parts:

68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

• ••
• ••

• ••
• ••

• ••
• ••

• • ◦
• • ◦

• • ◦
•• ◦

• • ◦

First, notice that the pseudo-lines given in the diagram are different from the pseudo-
lines constructed above. Furthermore, we see that each point, except the points 12
and 58, appears in exactly 2 pseudo-lines, whereas the points 12 and 58 appear in
exactly 1 pseudo-line. Notice that for k = 23, m1 = k+1

2
= 12 and m2 = nk−m1 = 58.
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Now, we give a more formal construction of the remaining k−1
2

pseudo-lines: Let
ñk := nk

2
. The k+1

4
pseudo-lines in the first part are(

2 + 4i, (ñk − 1)− 2i, (ñk − 1)− 2i
)

where 0 ≤ i ≤ k−3
4

.

In particular, for i = 0 we obtain (2, ñk − 1, ñk − 1), and that for i = k−3
4

we obtain
(k − 1, k + 1, k + 1) (notice that 2 + 4 · k−3

4
= k − 1 and (3k+1

2
− 1)− 2 · k−3

4
= k + 1).

Furthermore, the k−3
4

pseudo-lines in the second part are(
2 + 2i, (k − 3)− 4i,−(k − 1) + 2i)

)
where 0 ≤ i ≤ k−7

4
.

In particular, for i = 0 we obtain (2, k − 3,−(k − 1)), and that for i = k−7
4

we
obtain (k−3

2
, 4,−k+5

2
). Notice that 2 + 2 · k−7

4
= k−3

2
, (k − 3) − 4 · k−7

4
= 4, and

−(k − 1) + 2 · k−7
4

= −k+5
2

. Now, since k−3
2

+ 2 = m1 and −(k+5
2
− 2) = m2, we see

that the only numbers which appear in exactly one pseudo-line are m1 and m2.

Example. We illustrate the construction described above for the parameter k = 3.
This leads to an elliptic D3-symmetric (274, 363)-configuration. The underlying group
is Z30 on Γ0. We obtain:

• k = 3, nk = 10, m1 = 2, m2 = 8, t1 = 9, t2 = 1.

• The pseudo-lines in L∗ are

(9, 0, 1), (7, 1, 2), (5, 2, 3), (3, 3, 4), (1, 4, 5), (9, 5, 6), (7, 6, 7), (5, 7, 8), (3, 8, 9), (1, 9, 0).

• Cancel (9, 0, 1) and (1, 9, 0), and add (2, 9, 9) and (8, 1, 1). This gives us the 10
pseudo-lines of L0.

• The diagram, which yields the additional k−1
2

= 1 line consists just of the fist
part:

8 6

2 4

• ••

This gives us the lines (2, 4, 4) and (8, 6, 6).

• Together with the 10 pseudo-lines in L0, we have now 12 pseudo-lines which we
extend to proper lines in S and rotate them.

Observe that depending on how we extend the pseudo-lines to proper lines, and depend-
ing on the choice of the generator of Z30, we obtain different resulting configurations.
One version is shown in Figure 2.
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Figure 2: An elliptic D3-symmetric (274, 363)-configuration.

3.2 D3-symmetric (9k4, 12k3)-configurations for k≡1(mod 4)

Let k ≥ 3 be a positive integer with k ≡ 1 (mod 4). Furthermore, let nk := 3k+ 1 and
let m := nk

2
. Notice that since nk ≡ 0 (mod 4), m is even.

As above, Let S∗0 := S0 ∪{0} and define the following sequence of triples 〈(ai, bi, ci) :
i ∈ Z〉 in S∗0 × S∗0 × S∗0 : Let

(a0, b0, c0) := (0, nk − 1, 1) and (a1, b1, c1) := (2, nk − 1, nk − 1),

and for all i ∈ Z let

(ai+2, bi+2, ci+2) := (ai + 4, bi − 2, ci − 2) .

Then, the sequence has the following properties:

(a) For all i ∈ Z, ai + bi + ci ≡ 0 (mod nk), ai is even, and bi and ci are both odd.
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(b) (am, bm, cm) = (0,m− 1,m+ 1).

(c) For all i ∈ Z, (ai+nk
, bi+nk

, ci+nk
) = (ai, bi, ci), and for all all 0 < s < nk,

{ai+s, bi+s, ci+s} 6= {ai, bi, ci}.
(d) In Z/nkZ, for all s ∈ Z we have −(as, bs, cs) = (a−s, b−s, c−s).

Property (a) shows that every triple in the sequence is a pseudo-line in S∗0 . Property (c)
shows that the sequence contains exactly nk pairwise different pseudo-lines; let L∗ be
the set of these nk pseudo-lines. Property (d) shows that a pseudo-line (u, v, w) is in
L∗ if and only if the pseudo-line −(u, v, w) is in L∗.

Every even number 0 ≤ ` < nk appears in exactly 2 pseudo-lines in L∗, and every
odd number 0 < ` < nk appears in exactly 4 pseudo-lines in L∗. Now, we remove
the two pseudo-lines (0, nk − 1, 1) and (0,m − 1,m + 1) from L∗, and add the two
pseudo-lines (m,nk−1,m+1) and (m, 1,m−1) to L∗; the resulting set of pseudo-lines
is denoted L0. Notice that (m,nk − 1,m+ 1) = −(m, 1,m− 1), that the two pseudo-
lines (m,nk − 1,m + 1) and (m, 1,m − 1) are not in L∗, and that every pseudo-line
in L0 is a pseudo-line in S0. In L0, every odd number 0 < ` < nk appears in exactly
4 pseudo-lines in L0, and every even number 0 ≤ ` < nk, except m, appears in exactly
2 pseudo-lines in L0, whereas m appears in exactly 4 pseudo-lines in L0.

In order to complete the construction of a (9k4, 12k3)-configuration, we consider the
set Tk consisting of the nk

2
− 1 even numbers 2, 4, . . . nk − 2. It remains to find k − 1

pseudo-lines in S0 with points in Tk, where every number in Tk except m appears in
exactly 2 pseudo-lines, whereas m does not appear in any pseudo-line.

For the construction of the remaining k − 1 pseudo-lines with points in Tk, we give
again first a “visual argument”: As above, we write just the pseudo-line with the
greater number of •’s — having in mind that each pseudo-line (u, v, w) represents also
the pseudo-line −(u, v, w). This way, we just have to find k−1

2
pseudo-lines. The

following figure illustrates the 12 pseudo-lines for k = 25 (i.e., nk = 76), given in two
parts:

74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
38

• ••
• ••

• ••
• ••

• ••
• ••

• • ◦
• • ◦

• • ◦
• • ◦

• • ◦
• • ◦
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First, notice that the pseudo-lines given in the diagram are different to the pseudo-
lines constructed above. Furthermore, we see that each point, except the point 38,
appears in exactly 2 pseudo-lines, whereas the point 38 does not appear in a pseudo-
line. Notice that for k = 25, m = 38.

Now, we give a more formal construction of the remaining k−1
2

pseudo-lines: The
k−1
4

pseudo-lines in the first part are(
4 + 4i, (m− 2)− 2i, (m− 2)− 2i

)
where 0 ≤ i ≤ k−5

4
.

In particular, for i = 0 we obtain (4,m − 2,m − 2), and that for i = k−5
4

we obtain
(k − 1, k + 1, k + 1) (recall that m = 3k+1

2
). Furthermore, the k−1

4
pseudo-lines in the

second part are(
2 + 2i, (k − 3)− 4i,−(k − 1) + 2i)

)
where 0 ≤ i ≤ k−5

4
.

In particular, for i = 0 we obtain (2, k − 3,−(k − 1)), and that for i = k−5
4

we obtain
(k−1

2
, 2,−k+3

2
). Notice that the only number which does not appear in a pseudo-line is

m, as required.

Example. We illustrate this construction for the parameter k = 5. This leads to an
elliptic D3-symmetric (454, 603)-configuration. The construction gives the following:

• k = 5, nk = 16, m = 8.

• The pseudo-lines in L∗ are:

(0, 15, 1), (2, 15, 15), (4, 13, 15), (6, 13, 13), (8, 11, 13), (10, 11, 11), (12, 9, 11),

(14, 9, 9), (0, 7, 9), (2, 7, 7), (4, 5, 7), (6, 5, 5), (8, 3, 5), (10, 3, 3), (12, 1, 3), (14, 1, 1)

• Cancel (0, 15, 1) and (0, 7, 9), and add (8, 15, 9) and (8, 1, 7). This gives us the 16
pseudo-lines of L0.

• The diagram, which gives us additional k−1
2

= 2 lines consists of just two lines,
one line in each part:

14 12 10

2 4 6
8

• ••
•• ◦

This gives us the k − 1 = 4 lines (4, 6, 6), (12, 10, 10), (2, 2, 12), (14, 14, 4).

• Together with the 16 pseudo-lines in L0, we have now 20 pseudo-lines which we
extend to proper lines in S and rotate them.

Again, depending on how we extend the pseudo-lines to proper lines, and depending
on the choice of the generator of Z48, we obtain different resulting configurations. One
version is shown in Figure 3.

11



1

2

3

13

14

15

16

17

18

19

29

30

31

32

33

34

35

45

46

47

Figure 3: An elliptic D3-symmetric (454, 603)-configuration. For this figure we
have chosen the generator 1 in Z48.

3.3 D3-symmetric (9k4, 12k3)-configurations for k even

Let k ≥ 2 be an even integer and let nk := 3k + 1. Notice that nk is odd.

As above, Let S∗0 := S0 ∪{0} and define the following sequence of triples 〈(ai, bi, ci) :
i ∈ Z〉 in S∗0 × S∗0 × S∗0 : Let (a0, b0, c0) := (0, 0, 0) and for all i ∈ Z let

(ai+1, bi+1, ci+1) := (ai − 2, bi + 1, ci + 1) .

Then, the sequence has the following properties:

(a) For all i ∈ Z, ai + bi + ci ≡ 0 (mod nk), and bi = ci.

12



(b) For t := 3k
2

we have (at, bt, ct) = (1, t, t).

(c) For all i ∈ Z, (ai+nk
, bi+nk

, ci+nk
) = (ai, bi, ci), and for all all 0 < s < nk,

{ai+s, bi+s, ci+s} 6= {ai, bi, ci}.

(c) In Z/nkZ, for t := 3k
2

and for all s ∈ Z we have

−(at+s, bs, cs) = (at−s+1, bt−s+1, ct−s+1).

Property (a) shows that every triple in the sequence is a pseudo-line in S∗0 . Property (c)
shows that the sequence contains exactly nk pairwise different pseudo-lines, including
the pseudo-line (0, 0, 0). Now, we remove the pseudo-line (0, 0, 0) and let L0 be the set
of the remaining 3k pseudo-lines. Property (d) shows that a pseudo-line (u, v, w) is in
L0 if and only if the pseudo-line −(u, v, w) is in L0. Furthermore, notice that every
number 0 < ` < nk appears in exactly 3 pseudo-lines in L0.

For the construction of the remaining k pseudo-lines in S0, we will again visualise the
argument. As above, we write just the pseudo-line with the greater number of •’s —
having in mind that each pseudo-line (u, v, w) represents also the pseudo-line−(u, v, w).
This way, we just have to find k

2
pseudo-lines. In order to show the structure of the

construction, we omit the least point of a pseudo-line and write the number of the
least point as an index to the the other two points of the pseudo-line. For example, for
k = 4 (i.e., nk = 13) and the pseudo-line (1, 3, 9) we shall write:

12 11 10 9 8 7

1 2 3 4 5 6

•1 ◦1
instead of

12 11 10 9 8 7

1 2 3 4 5 6

• • ◦

This way, we can write different pseudo-lines in the same row without ambiguity. For
example, for k = 8 (i.e., nk = 25) the following diagram represents the three pseudo-
lines (1, 7, 17), (2, 9, 14), and (4, 6, 15):

24 23 22 21 20 19 18 17 16 15 14 13

1 2 3 4 5 6 7 8 9 10 11 12

•4 •1 ◦1 •2 ◦4 ◦2

We first consider the cases when k = 2, 4, 6, 8, 10, 12, 14, 16, 18, and then we consider
the cases when k ≥ 22, where we shall consider the four cases k ≡ 0, 2, 4, 6 (mod 8)
separately.

The following diagrams show the k
2

pseudo-lines for k = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
(where we do not write the points which appear as indices):
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5 4

2 3

•1 ◦1
k = 2

10 9 8 7

3 4 5 6

•1 ◦1 •2 •2
k = 4

15 14 13 12 11 10

4 5 6 7 8 9

•1 ◦1 •2 •3 ◦2 •3
k = 6

20 19 18 17 16 15 14 13

5 6 7 8 9 10 11 12

•4 •2 ◦2 ◦4
•3 ◦3 •1 ◦1

k = 8

25 24 23 22 21 20 19 18 17 16

6 7 8 9 10 11 12 13 14 15

•4 ◦4 •2 ◦2
•1 ◦1 •5 •3 ◦5 ◦3

k = 10

30 29 28 27 26 25 24 23 22 21 20 19

7 8 9 10 11 12 13 14 15 16 17 18

•6 •4 •2 ◦2 ◦4 ◦6
•3 •1 ◦1 ◦3 •5 •5

k = 12

35 34 33 32 31 30 29 28 27 26 25 24 23 22

8 9 10 11 12 13 14 15 16 17 18 19 20 21

•6 •4 •2 ◦2 ◦4 ◦6
•7 •5 •1 ◦1 ◦7 •3 ◦5 •3

k = 14

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

•8 •6 •4 •2 ◦2 ◦4 ◦6 ◦8
•7 •3 •5 ◦7 ◦3 •1 ◦1 ◦5

k = 16
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45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

•8 •6 •4 •2 ◦2 ◦4 ◦6 ◦8
•9 •3 •7 •5 ◦3 ◦9 •1 ◦1 ◦5 ◦7

k = 18

50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

•10 •8 •6 •4 •2 ◦2 ◦4 ◦6 ◦8 ◦10
•9 •5 •3 •7 ◦9 ◦3 ◦5 •1 ◦1 •7

k = 20

Notice that in the diagrams above, in the case when k ≡ 4, 6 (mod 8), there is always
a single pseudo-line which contains just points from the second row. In fact, this will
always be the case. Another feature of the diagrams above is that all the numbers
1, . . . , k

2
appear as indices — also this will always be the case.

As mentioned above, for k ≥ 20 we shall consider the four cases k ≡ 0, 2, 4, 6 (mod 8)
separately. However, the structure of the pseudo-lines consisting only of even numbers
is always the same. This structure is illustrated by the following diagram in which
we omit the first row, since it can be easily computed from the second row. In the
diagram, u denotes the largest even number which is less than or equal to k

2
(i.e., u is

either k
2

or k
2
− 1), M := k+u+2

2
, and N := k

2
+ 1:

. . . N N + 1 . . . M − 2 M − 1 M M + 1 M + 2 . . . N + u− 1 N + u . . .

•2 ◦2
•4 ◦4

. . . . . .

•u−2 ◦u−2

•u ◦u

We shall call these u
2

pseudo-lines the even block. Notice that the structure of the even
block already appears for k = 14, 16, 18.

In order to complete the proof of Theorem 4, we have to construct the remaining
k
2
− u

2
pseudo-lines which consist only of odd numbers, the so-called odd block. The

following four diagrams show the structure of these odd blocks for k ≥ 22.
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Example. We consider the case k = 2 which yields an ellipticD3-symmetric (184, 243)-
configuration. Figure 4 shows one realization of the resulting configurations.
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13
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15

16

17

18

19

20

Figure 4: An elliptic D3-symmetric (184, 243)-configuration.

4 On elliptic (3r4, 4r3)-configurations

In order to obtain an elliptic D3-symmetric (9k4, 12k3)-configuration, it was sufficient
to construct 4k pseudo-lines in the 3k-element set S0. Thus, if all the pseudo-lines we
constructed were proper lines, then we would have an elliptic (3k4, 4k3)-configuration —
but this is in general not the case.

However, there is a simple algorithm which gives us elliptic (3r4, 4r3)-configurations
for infinitely many values of r. The algorithm is given in the proof of the following

Proposition 5. For every prime p > 7, there is an elliptic ((p − 1)3)-configuration
and for every prime p > 7 with 3r = p− 1 (for some r), there is an elliptic (3r4, 4r3)-
configuration.
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Proof. Let p > 7 be a prime, let Γ0 be an elliptic curve, and let P be a point on Γ0 of
order p − 1. Furthermore, let Fp be the Galois field of order p. Similar as above, we
shall construct the elliptic configurations in Fp \ {0}.

First recall that for any prime p, the multiplicative group Fp is cyclic, i.e., there
exists a generator g ∈ Fp such that ord(g) = p − 1. Before we start the construction,
let us prove the following

Claim. If p > 7 is a prime, then the multiplicative group of Fp has a generator g such
that g 6≡ −2, p−1

2
(mod p).

Proof of Claim. If Fp has a generator g such that g 6≡ −2, p−1
2

, then we are done.

Now, assume that g = p−1
2

is a generator. Then, for any n with 1 < n < p − 1
and (n, p − 1) = 1, gn is also a generator. So, if we find two distinct n,m with
1 < n,m < p − 1 and (n, p − 1) = 1 = (m, p − 1), then g, gn, and gm are pairwise
distinct generators and we have found a generator which satisfies the conditions in the
Claim. It remains to show that for every prime p > 7 there are distinct n,m with
1 < n,m < p− 1 such that (n, p− 1) = 1 = (m, p− 1), which is is obviously the case.

Let now p > 7 be a prime and let g be a generator of the multiplicative group of Fp
with g 6≡ −2, p−1

2
(mod p) and let

L0 :=
{ (
gn, gn+1,−(gn + gn+1)

)
: 0 ≤ n < p− 1

}
.

Then L0 is a set of p− 1 lines in Fp \ {0}. To see this, notice that by the properties of
g, for all n we have gn 6= gn+1 and that −(gn + gn+1) ∈ {gn, gn+1} would imply that
g ≡ p−1

2
(mod p) or g ≡ −2 (mod p).

Now, with the p − 1 lines in Fp \ {0} and the point P on Γ0 of order p − 1, we can
easily construct a ((p− 1)3)-configuration with all its points on Γ0.

Let us now assume that in addition to p > 7 we have that p − 1 = 3r for some
r ≥ 4, and let again g be a generator of the multiplicative group of Fp with g 6≡
−2, p−1

2
(mod p). Let x := gr and let y := 1 + x + x2. Then, since x3 = 1, we have

x(1 + x + x2) = x, which implies that x ≡ 0 (mod p) or 1 + x + x2 ≡ 0 (mod p).
Since the former is impossible (recall that g is a generator of the multiplicative group
of Fp), we have that 1 + x + x2 ≡ 0 (mod p), and since 1, x, x2 are pairwise distinct,
this implies that (1 + x+ x2) is a line in Fp. Consequently,

L1 :=
{
a ·
(
1, x, x2)

)
: a ∈ Fp \ {0}

}
is an r-element set of lines in Fp which is disjoint from L0. To see this, notice that no
element of L0 is of the form a ·(1, x, x2)) for some a ∈ Fp\{0} and for all a, b ∈ Fp\{0},
if {a, ax, ax2} ∩ {b, bx, bx2} 6= ∅ then {a, ax, ax2} = {b, bx, bx2}. Thus, L0 ∪ L1 is a
4r-element set of lines in Fp \ {0} and together with the point P on Γ0 of order p− 1,
we can easily construct a (3r4, 4r3)-configuration with all its points on Γ0. q.e.d.
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Examples. We illustrate the construction of the previous proof for the cases r = 6,
i.e., we deal with the prime p = 3r + 1 = 19. The set L0 contains the lines

(1, 3, 15), (1, 4, 14), (1, 5, 13), (2, 6, 11), (2, 7, 10), (2, 8, 9),

(3, 4, 12), (3, 7, 9), (4, 16, 18), (5, 6, 8), (5, 15, 18), (6, 14, 18),

(7, 15, 16), (8, 13, 17), (9, 12, 17), (10, 11, 17), (10, 12, 16), (11, 13, 14).

The set L1 adds the lines

(1, 7, 11), (2, 3, 14), (4, 6, 9), (5, 16, 17), (8, 12, 18), (10, 13, 15).

The resulting elliptic D1-symmetric (184, 243)-configuration is shown in Figure 5 (com-
pare to Figure 4). Here, we have chosen the generator 1 in the multiplicative group of
F19.

1

2

3
4

5

6

13

14
15

16

17

18 7

8

9

10

11

12

Figure 5: The solid and the dashed lines form an elliptic D1-symmetric (184, 243)-
configuration derived from Z/19Z. The solid lines in the set L0 alone are an elliptic
D1-symmetric (183)-configuration.

We also add the case k = 10, i.e., the prime p = 3r + 1 = 31. We omit the list of
points and refer directly to Figure 6.
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Figure 6: The solid and the dashed lines form an elliptic D1-symmetric (304, 403)-
configuration derived from Z/31Z, the solid lines alone are an elliptic D1-
symmetric (303)-configuration. Observe that a (304, 403)-configuration cannot be
realized by the methods from Section 3.

5 Elliptic configurations resulting from groups

of the form Z/2Z× Z/rZ

We conclude this paper by presenting some (3r4, 4r3)-configurations which are derived
from groups of the form Z/2Z×Z/rZ by similar methods. In Figure 7 we realize the
group Z/2Z × Z/8Z on an elliptic curve consisting of two components. There are 15
real points and the point O at infinity (0, 1, 0). Using all real points the result is an
elliptic D1-symmetric (154, 203)-configuration. Notice that such a configuration cannot
be constructed by the methods presented in Section 3 and Section 4.
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(0, 1)(0, 2)

(0, 4)

(0, 7)(0, 6)

(0, 3)

(0, 5)

(1, 0) (1, 4)

(1, 6)
(1, 7)

(1, 1)
(1, 2)

(1, 3)

(1, 5)

Figure 7: Elliptic D1-symmetric (154, 203)-configuration derived from Z/2Z ×
Z/8Z

Figure 8 shows an elliptic D3-symmetric (184, 243)-configuration derived from the
group Z/2Z × Z/12Z. The group on the elliptic curve has 21 real points and 3
points at infinity. Using only 18 of the real points it is possible to realize a (184, 243)-
configuration sitting on two components of the elliptic curve. Recall that we had
a (184, 243)-configuration on a one component curve in Figure 4 and another one in
Figure 5.

For Figure 9 we started with the group Z/2Z × Z/11Z with 21 real points and
one point at inifinity. Here, an elliptic D1-symmetric (214, 283)-configuration results.
Such a configuration cannot be constructed by the methods presented in Section 3 and
Section 4.

Our last example starts with the group Z/2Z×Z/13Z with 25 real points on the curve
and one point at infinity. Omitting the real point corresponding to the group element
(1, 0) of order 2, we have 24 real points which carry an elliptic D1-symmetric (244, 323)-
configuration, as shown in Figure 10. Such a configuration cannot be constructed by
the methods presented in Section 3 and Section 4.
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(1, 6)

(0, 1)

(0, 2)

(0, 3)

(0, 5)

(0, 6)

(0, 7)

(0, 9)

(0, 10)

(0, 11)

(1, 0)

(1, 10)

(1, 2)

Figure 8: Elliptic D3-symmetric (184, 243)-configuration derived from Z/2Z ×
Z/12Z

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(0, 6)

(0, 7)

(0, 8)

(0, 9)

(0, 10)

(1, 0)

(1, 6)

(1, 7)

Figure 9: Elliptic D1-symmetric (214, 283)-configuration derived from Z/2Z ×
Z/11Z
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(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(0, 8)

(0, 7)

(0, 6)

(0, 9)

(0, 10)

(0, 11)

(0, 12)

(1, 0)

(1, 8)

(1, 5)

Figure 10: Elliptic D1-symmetric (244, 323)-configuration derived from Z/2Z ×
Z/13Z
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