
Chapter 7

How to Make Two Balls from One

Rests, which are so convenient to the composer and singer, arose for two reasons: necessity
and the desire for ornamentation. As for necessity, it would be impossible to sing an entire
composition without pausing, for it would cause fatigue that might well prevent a singer
from finishing. Rests were adopted also for the sake of ornament. With them parts could
enter one after another in fugue or consequence, procedures that give a composition an
artful and pleasing effect.

GIOSEFFO ZARLINO

Le Istitutioni Harmoniche, 1558

For two reasons we shall give the reader a rest: one reason is that the reader deserves
a pause to reflect on the Axiom of Choice; the other reason is that we would like to
show Robinson’s beautiful construction—relying on AC—of how to make two balls
from one by dividing the ball into only five parts.

Equidecomposability

Two geometrical figures A and A′ (i.e., two sets of points lying on the straight
line R, on the plane R2, or in the three-dimensional space R3) are said to be con-
gruent, denoted A ∼= A′, if A can be obtained from A′ by translation and/or rota-
tion, but we shall exclude reflections. Two geometrical figures A and A′ are said to
be equidecomposable, denoted A ' A′, if there is a positive integer n and parti-
tions A = A1 ∪̇ . . . ∪̇ An and A′ = A′1 ∪̇ . . . ∪̇ A′n such that for all 1 ≤ i ≤ n:
Ai ∼= A′i. To indicate that A and A′ are equidecomposable using at most n pieces
we shall write A 'n A′.

Below we shall present two somewhat paradoxical decompositions of the 2-di-
mensional unit sphere S2 as well as of the 3-dimensional solid unit ball B1:
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178 7 How to Make Two Balls from One

Firstly we show that the unit sphere S2 can be partitioned into four parts, say S2 =
A ∪̇B ∪̇C ∪̇F , such that F is countable, A ∼= B ∼= C, and A ∼= B ∪̇C. This result
is known as Hausdorff’s Paradox, even though it is just a paradoxical partition of
the sphere S2 rather than a paradox.

Secondly we show how to make two balls from one, in fact we show that B1 '5

B1∪̇B1. This result is due to Robinson and is optimal with respect to the number
of pieces needed, i.e., B1 6'4 B1∪̇B1. We would like to mention that about two
decades earlier, Banach and Tarski already showed that a unit ball and two unit balls
are equidecomposable; however, their construction requires many more than five
pieces.

Both decompositions, Hausdorff’s partition of the sphere as well as Robinson’s de-
composition of the ball, rely on the Axiom of Choice. Moreover, it can be shown
that in the absence of the Axiom of Choice neither decomposition is provable— but
this is beyond the scope of this book (see RELATED RESULT 1). However, before
we start the constructions, let us briefly discuss the measure-theoretical background
of these somewhat paradoxical partitions, in particular of the decomposition of the
ball: Firstly, why does Robinson’s decomposition of the ball seem paradoxical? Of
course, it is because the volume is not preserved; but what are volumes? One could
consider the notion of volume as a function µ which assigns to each set X ⊆ R3

a non-negative real number, called the volume of A. We require that the function µ
has the following basic properties:

• µ(∅) = 0 and µ(B1) > 0 (e.g., µ(B1) = 1),

• µ(X ∪ Y ) = µ(X) + µ(Y ) whenever X and Y are disjoint, and

• µ(X) = µ(Y ) whenever X and Y are congruent.

Now, by the fact that a unit ball and two unit balls are equidecomposable, and im-
plicitly by Hausdorff’s result (see below), we see that there is no such measure on
R3, i.e., µ is not defined for all subsets of R3. Roughly speaking, there are some
dust-like subsets of R3 (like the sets we shall construct) to which we cannot as-
sign a volume. Having this in mind, Robinson’s decomposition loses its paradoxical
character—but certainly not its beauty.

Hausdorff’s Paradox

Before we show how to make two balls from one, we will present Hausdorff’s parti-
tion of the sphere. The itinerary is as follows: Firstly we define an infinite subgroup
H of SO(3), where SO(3) is the so-called special orthogonal group consisting of
all rotations inR3 leaving the origin fixed. Even though the group H is infinite, it is
generated by just two elements. Since H is a subgroup of SO(3), there is a natural
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action of H on the unit sphere S2 which induces an equivalence relation on S2 by
x ∼ y ⇐⇒ ∃g ∈ H(g(x) = y) (i.e., x ∼ y iff y belongs to the orbit of x). Then
we choose from each equivalence class a representative—this is where the Axiom of
Choice comes in—and use the set of representatives to define Hausdorff’s partition
of the sphere.

We begin the construction by defining the group H . For this, consider the following
two elements of SO(3), which will be the generators of H:

ϕ =

−1 0 0
0 −1 0
0 0 1

 , ψ =
1

4

 −2 −
√

6
√

6√
6 1 3

−
√

6 3 1

 .

The linear mapping ϕ is the rotation through π about the axis (0, 0, 1), and ψ is the
rotation through 2π/3 about the axis (0, 1, 1). Thus, ϕ2 = ψ3 = ι where ι denotes
the identity. We leave it as an exercise to the reader to show by induction on n that
for all integers n ≥ 1 and for all εk = ±1 (where 1 ≤ k ≤ n) we have

(
ϕψεn · · ·ϕψε1

)
=

1

2n+1

 a1 a2
√

6 a3
√

6

b1
√

6 b2 b3
b′1
√

6 b′2 b′3


where all numbers a1, a2, . . . , b′3 are integers with

• a1 ≡ 2 mod 4,

• a2, a3, b1, . . . , b
′
3 are odd, and

• b1 ≡ b′1, b2 ≡ b′2, b3 ≡ b′3 mod 4.

Hence, we conclude that for all n ≥ 1: (ϕψεn · · ·ϕψε1) /∈ {ι, ϕ}. Consequently,
for all n ≥ 1, for all εk = ±1 (where 1 ≤ k ≤ n), and for ε0 ∈ {0, 1} and
εn+1 ∈ {0,±1}, we get:

ψεn+1 ·
(
ϕψεn · · ·ϕψε1

)
· ϕε0 6= ι. (∗)

In other words, the only relations between ϕ and ψ are ϕ2 = ψ3 = ι. Let H be
the group of linear transformations—in fact rotations—of R3 generated by the two
rotations ϕ and ψ. Then H is a subgroup of SO(3) and every element of H is a
rotation which corresponds, by (∗), to a unique reduced “word” of the form

ψεn+1ϕψεn · · ·ϕψε1ϕε0

where n ≥ 0, εk = ±1 (for all 1 ≤ k ≤ n), ε0 ∈ {0, 1}, and εn+1 ∈ {0,±1}.
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We now consider the so-called Cayley graph of H: The Cayley graph of H is a
graph with vertex set H , where for ρ1, ρ2 ∈ H there is a directed edge from ρ1 to
ρ2 if either ρ2 = ϕρ1 or ρ2 = ψρ1. In the former case, the edge is labelled ϕ, in the

latter case it is labelled ψ, e.g., ψϕ
ϕ−→ ϕψϕ or ψ2ϕ

ψ−→ ϕ.

To each vertex of the Cayley graph of Hwe assign a label, which is either ¶, ·,
or ¸. The labelling is done according to the following rules:

• The identity ι gets the label ¶.

• If ρ ∈ H is labelled · or ¸ and σ = ϕρ, then σ is labelled ¶.

• If ρ ∈ H is labelled ¶ and σ = ϕρ, then σ is labelled either · or ¸.

• If ρ ∈ H is labelled ¶ (or ·, or ¸) and σ = ψρ, then σ is labelled · (or ¸, or
¶, respectively).

These rules are illustrated by the following figures and diagrams:

The lightface label ® indicates that if ρ is a reduced word in H , labelled ¶, of the
form ψερ′ for ε = ±1, then ϕρ is always labelled · (not ®). The following figure
shows part of the labelled Cayley graph of H:
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The groupH acts on the 2-dimensional unit sphere S2 and we define the equivalence
relation “∼” on S2 via x ∼ y iff there is a ρ ∈ H such that ρ(x) = y. The
equivalence classes of “∼” are usually called H-orbits, and the H-orbit containing
x ∈ S2 is written [x] .̃ Let F ⊆ S2 be the set of all fixed points (i.e., the set of
all y ∈ S2 such that there is a ρ ∈ H \ {ι} with ρ(y) = y). Since H is countable
and every rotation ρ ∈ H has two fixed points, F is countable. We notice first that
any point equivalent to a fixed point is a fixed point (i.e., for every x ∈ S2 \ F
we have [x]˜ ⊆ S2 \ F ). Indeed, if ρ(y) = y for some ρ ∈ H and y ∈ S2, then
σρσ−1(σ(y)) = σ(y); that is, if y is fixed for ρ, then σ(y) is fixed for σρσ−1. Thus,
a class of equivalent points consists either entirely of fixed points, or entirely of
non-fixed points.

By the Axiom of Choice there is a choice function f for F = {[x]˜ : x ∈ S2 \ F}
and let M = {f([x]˜) : x ∈ S2 \ F}.

Now we define labels for all non-fixed points (i.e., points in S2 \ F ) as follows:
Firstly, every element in M is labelled ¶. Secondly, if x ∈ S2 \ F , then there is a
unique rotation ρ ∈ H such that ρ(y) = x, where {y} = M ∩ [x] .̃ We define the
label of the point x by the label of ρ in the labelled Cayley graph of H . This induces
a partition of S2 \ F into the following three parts:

A = {x ∈ S2 \ F : x is labelled ¶},
B = {x ∈ S2 \ F : x is labelled ·},
C = {x ∈ S2 \ F : x is labelled ¸}.

Thus, S2 = A ∪̇B ∪̇C ∪̇F and by the labelling of the vertices of the Cayley graph
of H we get

B = ψ[A], C = ψ−1[A], B ∪̇ C = ϕ[A].

Hence, we get A ∼= B, A ∼= C, and A ∼= B ∪̇ C. We leave it as an exercise to the
reader to show that this implies (S2 \ F ) '4 (S2 \ F ) ∪̇ (S2 \ F ).

For each point x ∈ S2 let lx be the line joining the origin (i.e., the centre of the
sphere) with x, and for S ⊆ S2 define S̄ :=

⋃
{lx : x ∈ S}. Then the sets Ā, B̄,

and C̄, cannot be Lebesgue measurable (otherwise we would have 0 < µ(B̄) =
µ(C̄) = µ(B̄ ∪ C̄), a contradiction). In fact, Hausdorff’s decomposition shows that
there is no non-vanishing measure on S2 which is defined for all subsets of S2 such
that congruent sets have the same measure.


