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1 Lindemann-Weierstrauss theorem

Theorem (Lindemann-Weierstrauss): Let α1, ..., αn be distinct algebraic num-
bers. Then

β1e
α1 + ...+ βne

αn = 0

for algebraic β1, ..., βn if and only if βj = 0 for every 1 ≤ j ≤ n, in other words
eα1 , ..., eαn are linearly independent over Q.

Proof : We are going to do a proof by contradiction. So let’s assume, there
exist β1, ..., βn algebraic not equal 0, such that

β1e
α1 + ...+ βne

αn = 0

To make the proof easier, we are going to do two simplifications. But first, we
need to introduce some definitions:

Definition 1: Given a separable extension K ′ of K, a Galois closure E
is the smallest Galois extension such that E ⊃ K ′ ⊃ K.

Remark: E | Q is a Galois extension if an only if Q is the fixed field of
Gal(E | Q)

Definition 2: Let α be an algebraic element over a field K. The conju-
gate elements of α are the roots of the minimal polynomial over of α.

Now, we are ready to have a look at the two simplifications:

Claim 1: We can choose all the βj to be (rational) integers.

Proof : The goal is to construct a new expression with coefficients in Z, such
that the new coefficients all equal 0 if an only if the initial coefficients are all 0.
We define F=Q(β1, ..., βn) and let E be the Galois closure of F . Set G :=
Gal(E | Q).
Consider ∏

σ∈G
(σ(β1)eα1 + ...+ σ(βn)eαn)
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This expression still equals 0, since it contains the initial equation. By expand-
ing the expression, each coefficient is symmetric in a set of Galois conjugates
and therefore fixed by G. Given that E is a Galois extension, the fixed field
are exactly the rational numbers and thus the coefficients are rational. Finally,
we can multiply the expression by a common multiple of all the denominators.
By looking at terms of the form eαieαi ...eαi for 1 ≤ i ≤ n, we note that the
coefficient in front only involves βi and images of βi under σs. Since every σ
sends 0 to itself, we can conclude that our initial β has to be 0.

Claim 2: We may assume that α1, ..., αn form a complete set of Galois conju-
gates, even more that our expression is of the form

β1e
α1,1+β1e

α1,2+...+β1e
α1,m1 +β2e

α2,1+...+β2e
α2,m2 +...+βne

αn,1+...+βne
αn,mn

where αi,1...αi,mi form a complete set of Galois conjugates for 1 ≤ i ≤ n.

Proof : Since all the α’s are algebraic, there exists a polynomial having α1, ...αn
as roots. Denote by αn+1, ..., αN the remaining roots of the polynomial and we
define βn+1 = ... = βN = 0. Then, we consider the product∏

σ∈SN

(β1e
ασ(1) + ...+ βNe

ασ(N))

By expanding the product, we get a sum of terms of the form

eh1α1+...+hNαN

where h1 + ... + hN = N !. The set of all such exponents form a complete
set of Galois conjugates, since we made sure of this by putting all possible
combinations of all possible conjugates. We note that∏

σ∈SN

(β1e
ασ(1) + ...+ βNe

ασ(N)) =
∏
σ∈SN

(β1e
αθ(σ(1)) + ...+ βNe

αθ(σ(N)))

for θ ∈ SN . Therefore, the terms eh1α1+...+hNαN and eh1σ(α1)+...+hNσ(αN ) for
σ ∈ SN have the same coefficient in front and hence we can conclude that the
expression is of the desired form.The only way that all the coefficients of this
expanded form are zero is if the original coefficients were all zero. To see this,
we can consider from each factor the non-zero term with the largest exponent in
the lexicographical order on C. Since all the α′is are distinct, there is only one
term with this largest exponent and it has a non-zero coefficient by construction
which is a string of β′is. Furthermore, each βi occurs in this product since our
product was over all elements of SN . To make this more understandable, we
are doing an example:

We define α1 =
√

2 and α2 =
√

3. In this example, it will be the term ek
√
2+l
√
3

for some k and l with coefficient βa1β
b
2 for some a, b > 0. For example the term

β1e
√
2 + β2e

√
3 will contribute β2e

√
3 or β1e

√
2 + β2e

−
√
2 will contribute β1e

√
2

2



to get the term βa1β
b
2e
k
√
2+l
√
3.

In this proof, we want to work with algebraic integers, but the α1, ..., αn are a
priori any algebraic number.

Definition 3: α is an algebraic integer if its minimal monic polynomial
over Q is in Z[x].

Remark 1: The set of algebraic integers is closed under addition and mul-
tiplication.

Remark 2: The only algebraic integers in Q are the integers.

Remark 3: If α is an algebraic number and l is the leading coefficient in its
minimal polynomial (with coprime integer coefficients), then lα is an algebraic
integer.

Now, we are ready to continue with the main part of the proof.

First, we need to define the integral:

I(u, f) =

∫ u

0

eu−tf(t) dt = eu
∑
l≥0

f (l)(0)−
∑
l≥0

f (l)(u)

where f is a polynomial. Thus, I(u, f) is a finite sum.

Then, for every 1≤ j≤n we define:

fj(x) =
Anp(x− α1)p...(x− αn)p

(x− αj)

where A is a large integer such that Aα1, ..., Aαn are algebraic integers. The
remark implies that fj(x) has algebraic integer coefficients, since the coefficients
of the expanded version only contain sums and products of the Aαi’s.

Define now

Jj =

n∑
k=1

βkI(αk, fj)

Our goal is now to find conflicting upper and lower bounds for |J1...Jn|, which
would contradict our assumption. Therefore, we are going to proceed in two
steps.

In the first step, we are going to show that each Jj is an algebraic integer
divisible by (p − 1)! but not by p!. In the second step, we want to show that
J1...Jn ∈ Z.

3



Claim 3: Each Jj is an algebraic integer divisible by (p− 1)! but not by p!.

Proof : By setting I(αk, fj) into Jj , we get:

n∑
k=1

βk(eαk
∑
l≥0

f
(l)
j (0)−

∑
l≥0

f
(l)
j (αk)) = −

n∑
k=1

βk
∑
l≥0

f
(l)
j (αk)

where the second equality follows from the fact that
∑n
k=1 βke

αk = 0

Now, we are going to compute the derivatives of fj . We distinguish between
the case where j 6=k and j=k:

If j 6= k:

f
(l)
j (αk) =

{
0 l ≤ p− 1
≡ 0(modp!) l ≥ p .

If j = k:

f
(l)
j (αk) =

 0 l ≤ p− 2
Anp(p− 1)!

∏n
i=1(αk − αi)p l = p− 1

≡ 0(modp!) l ≥ p

From this computation follows that each Jj is an algebraic integer divisible by
(p− 1)!, but not by p!.

Claim 4: J1...Jn ∈ Z

Proof : Using the simplification from Claim 2, we get:

Jj = −
n∑
k=1

βk

mk∑
t=1

∑
l≥0

f
(l)
j (αk,t)

By construction, the two interior sums are symmetric in the αk,t’s, where the
αk,t’s are a complete set of Galois conjugates. Therefore, they are fixed by the
Galois Group and hence contained in the rational numbers. Since every Jj is
an algebraic integer, we can conclude Jj ∈ Z for 1 ≤ j ≤ n. Hence, the product
J1...Jn is a rational integer.

Finally, we can say that J1...Jn is divisible by ((p− 1)!)n but not by p!. Hence,
we obtain:

|J1...Jn| ≥ ((p− 1)!)n

On the other hand, we have that:

|I(αk, fj)| ≤ |αk|e|αk|gj(|αk|)

where gj is the polynomial obtained from fj by replacing each coefficient with
its absolute value. Thus, we obtain:

|Ji| ≤
n∑
k=1

|αkβk|eαkgj(|αk|) ≤ cpi
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, where ci is an integer independent of p. Finally, we get:

|J1...Jn| ≤ Cp

where C =
∏n
k=1 ck So, we have obtained two conflicting lower bounds, since

the factorial grows faster then the exponential.

2 Application of Lindemann-Weierstrauss theo-
rem:

Claim: π is transcendental.

Proof : In this proof, we are going to use the Lindemann-Weierstrauss the-
orem. So let’s assume that π is an algebraic number. Since the algebraic
numbers form a field, they are closed under multiplication. Therefore, πi is also
algebraic. Then, we get:

eπi + e0 = −1 + 1 = 0

But this an contradiction to the linear independence of eπi and e0. So, π is
transcendental.

3 Irrationality of en

Claim: For every n ∈N, en is irrational

Proof : Let f ∈ Z[x]. We define:

I(u, f) =

∫ u

0

eu−tf(t) dt = eu
∑
j≥0

f (j)(0)−
∑
j≥0

f (j)(u)

Since f is a polynomial, I(u,f) is a finite sum. We are going to do a proof
by contradiction.
So, let’s assume that en is rational. The goal is to find conflicting upper and
lower bounds. For the upper bound, we find:

|I(n, f)| ≤ en max
x∈[0,n]

|f(x)| · n

, which grows like Cdegf in f
In the next step, we try to find a conflicting lower bound.For that, we define:

f(x) := xp−1(x− n)p
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where p is a large prime number.
Now, we compute the j’th derivative of f, evaluated at 0 and at n:

f (j)(0) =

 0 j ≤ p− 2
(p− 1)!(−n)p j = p− 1
≡ 0(modp!) j ≥ p

and

f (j)(n) =

{
0 j ≤ p− 1
≡ 0(modp!) j ≥ p

We assume that p is large compared to n and the denominator of en. Then,
I(n, f) is divisible by (p− 1)!, but not by p!. This implies that:

|I(n, f)| ≥ (p− 1)!

which is a contradiction since a factorial grows faster then a polynomial.

So, en is irrational.
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