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Abstract

This document is the notes of a seminar in elementary number theory on the topic of Diophan-

tine approximations. The main goal is to present two different proofs of a theorem of Hurwitz. We

will touch upon the motivations that led to the theorem and then present a proof using continued

fractions and a proof by L.R. Ford which relies on geometry [For25].

1 Introduction

Diophantine approximation deals with the approximation of real numbers by rational numbers. In

the following, we assume that α is an irrational number and p
q an irreducible fraction. Since Q is

dense in R, the quantity
∣∣∣α− p

q

∣∣∣ can be obviously small, therefore we want to estimate the distance

in terms of the denominator. The easiest example is that we can find p, q ∈ Z such that
∣∣∣α− p

q

∣∣∣ < 1
q .

In the following, we will assume that α ∈ R \Q and p
q is irreducible.

Theorem 1 (Dirichlet). Let α ∈ R \ Q. For all N ∈ N, there exists p
q ∈ Q, q ≤ N such that∣∣∣ξ − p

q

∣∣∣ < 1
qN .

Remark It suffices to prove for 0 < α < 1 since α− p
q = α− n− p−qn

q , taking n = bαc reduces the

problem to the interval (0, 1).

Proof. [Cha68] Let xn = nα − bnαc ∈ (0, 1) and divide (0, 1) into N intervals (0, 1
N ), ..., (N−1N , 1).

Then there are two possible cases:

Case 1: ∃xk ∈ (0, 1
N ). This implies 0 < kα − |kα| < 1

N . Dividing by k we get α − |kα| < 1
kN . Let

p = |kα| and q = k and we’re done.

Case 2: None of the xk’s lies in (0, 1
N ). Then by the pigeonhole principle, there exists an interval that

contains two or more xk’s, say xn and xm, n > m. Hence

|xn − xm| <
1

N
=⇒

∣∣∣∣α− bnαc − bmαcn−m

∣∣∣∣ < 1

(n−m)N

Set p = bnαc − bmαc, q = n−m.
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Theorem 2. Let α ∈ R \Q. For all N ∈ N, there exists p
q ∈ Q, q ≤ N such that

∣∣∣ξ − p
q

∣∣∣ < 1
q(N+1) .

Proof. The proof is similar to the one of theorem 1, adding x0 := 0, xN+1 := 1 so that
∑N

n=0 xn+1 −
xn = xN+1 − x0 = 1. Since there are N + 1 irrational terms, at least one term is strictly less than

1
N+1 , which allows us to conclude as in theorem 1.

Remark Theorem 1 tells us that for any irrational α, there exists an infinity of rational numbers p
q

that fulfill
∣∣∣α− p

q

∣∣∣ < 1
q2

. It is natural to ask ourselves: can we improve this bound? The following

theorem (without proof) tells us that we cannot increase the exponent of q.

Theorem 3 (Roth’s theorem [DR55]). Every irrational algebraic number α has approximation

exponent equal to 2, i.e. ∀ε > 0 the inequality∣∣∣∣pq − α
∣∣∣∣ < 1

q2+ε

is satisfied only by finitely many fractions p
q ∈ Q.

Now the question to ask is: does there exist λ > 1 such that
∣∣∣α− p

q

∣∣∣ < 1
λq2

holds for infinitely

many irrationals? If so, what would be the biggest such λ? We will prove that this is true for λ = 2.

Theorem 4. If α is irrational, there exists infinitely many irreducible fractions p
q such that

∣∣∣α− p
q

∣∣∣ <
1

2q2
.

The proof uses Farey sequences.

1.1 Farey Sequences

Definition 1.1 (Farey Sequence) Let n ≥ 1. By convention, a Farey sequence is a sequence of

fractions that starts with 0
1 and ends with 1

1 . The n-th Farey sequence is composed of all irreducible

fractions p
q such that q ≤ N , in ascending order.

Example

1. F1 =
{
0
1 ,

1
1

}
2. F2 =

{
0
1 ,

1
2 ,

1
1

}
3. F3 =

{
0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1

}
Lemma 1.1. Let a

b <
c
d be two irreducible fractions. Then a

b <
a+c
b+d <

c
d and a+c

b+d is irreducible. a+c
b+d

is called the mediant of a
b and c

d .

Theorem 5. If a
b and c

d are consecutive fractions in any row, then for all Fn that contain a+c
b+d , a+c

b+d

has the smallest denominator of any rational number between a
b and c

d and is the unique rational

number between a
b and c

d with denominator b+ d.

2



Proof. Let a
b <

x
y <

c
d be irreducible fractions.

c

d
− a

b
=
c

d
− x

y
+
x

y
− a

b
≥ 1

dy
+

1

by
=
b+ d

bdy

b+ d

bdy
≤ c

d
− a

b
=
bc− ad
bd

=
1

bd
=⇒ y ≥ b+ d

If y = b + d, then all the inequalities become equalities, thus cy − dx = bx − ay = 1 and so

x = a+ c, y = b+ d. [Uni]

Corollary. In a Farey sequence, each number is the mediant of its two neighbors.

Theorem 6. Given 0 ≤ a
b ≤

c
d ≤ 1, a

b ,
c
d are Farey neighbors in Fn for some n if and only if

bc− ad = 1.

Proof. ⇒: By induction on n. It’s obvious for F1. Suppose, then a
b ,

c
d are Farey neighbors in Fn, then

either they are still neighbors in Fn+1 or b+ d ≤ n+ 1 and a
b <

a+b
c+d <

c
d are consecutive in Fn+1. In

either case the claim is true.

⇐: Let’s consider three rationals a
b <

p
q <

c
d with bp− ap = qc− qd = 1. Then bp+ pd = qc+ aq =⇒

p(b+ d) = q(a+ c) =⇒ p
q = a+c

b+d , so they are Farey neighbors in Fa+b.

1.2 Proof of Theorem 3

Let N ≥ 1 and lt a
b < α < c

d be consecutive Farey numbers in FN . Claim: α− a
b <

1
2b2

or c
d−α <

1
2d2

,

so choose p
q to be a

b or c
d . Indeed, if not, then

α− a

b
>

1

2b2
,
c

d
− α > 1

2d2

(strict inequalities since α /∈ Q). On the one hand,

c

d
− a

b
=
bc− ad
bd

=
1

bd

by a property of the Farey sequence. On the other hand,

c

d
− a

b
>

1

2d2
− 1

2b2
=
b2 − d2

2b2d2

=⇒ 1

bd
− b2 − d2

2b2d2
= −(b− d)2

2b2d2
< 0

Contradiction. Since N ∈ N is arbitrary, we are done.
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1.3 Hurwitz’s Theorem

Now it’s time to look at the main result, which was stated and proved by Hurwitz in 1891 [Hur91].

Adolf Hurwitz was a German mathematician who worked on algebra, analysis, geometry and number

theory. We will first present his original proof that uses continued fractions, and then we will show a

geometric proof published by L.R.Ford in 1916 [For25].

Theorem 7 (Hurwitz).

i) If 0 < λ ≤
√

5, every irrational number α can be approximated by infinitely many fractions p
q such

that
∣∣∣α− p

q

∣∣∣ < 1
λq2

.

ii)
√

5 is the best bound, i.e. if λ > 5, there exist irrational numbers α such that α− p
q <

1
λq2

In order to prove this theorem, we need to introduce one more important tool: continued fractions.

Any irrational number α can be written as a continued fraction.

α = a1 +
1

a2 + 1
a3+

1
...

:= [a1; a2, a3, ...] an ∈ Z

In the following we will assume α > 0 and hence an > 0,∀n. If α < 0, it suffices to add a negative

sign or to take a1 = bαc so that the continued fraction still represents a positive irrational number.

Now since the continued fraction part is less than 1, it must be that a1 = bαc, and the rest can be

determined recursively. Let α0 = α and define

α0 = a1 +
1

α1
, a1 = bα0c, α1 ∈ R

α1 = a1 +
1

α2
, a2 = bα1c, α2 ∈ R

...

αn = an +
1

αn+1
, an+1 = bαnc, αn ∈ R

...

We can write α = [a1; a2, ..., αn],∀n ∈ N, and define

pn
qn

:= [a1; ..., an],
pn
qn

n→∞−−−→ α

pn
qn

are called convergents since they converge to α. Also notice that an > 0 by definition and

αn = [an+1; an+2, ...].

Now let us look at some useful properties.

Theorem 8. pn = anpn−1 + pn−2 p0 := 1, p1 := a1

qn = anqn−1 + qn−2 q0 := 0, q1 := 1

4
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Proof. The proof uses induction on n:

n = 1 : p1
q1

= a1
1

n = 2 : p2
q2

= a1 + 1
a2

= a2a1+1
a2

= a2p1+p0
a2q1+q0

n− 1→ n : Suppose the formula is true for any sequence [x1; ..., xn−1] with n− 1 terms

pn
qn

:= [a1; ..., an] = [ a1︸︷︷︸
ã1

; ..., an−1 +
1

an︸ ︷︷ ︸
ãn−1

]
hyp.
=

ãn−1pn−2 + pn−3
ãn−1qn−2 + qn−3

=
(anan−1 + 1)pn−2 + anpn−3
(anan−1 + 1)qn−2 + anqn−3

=
an(an−1pn−2 + pn−3 + pn−2
an(an−1qn−2 + qn−3 + qn−2

=
anpn−2 + pn−2
anqn−2 + qn−2

Theorem 9. pnqn−1 − qnpn−1 = (−1)n

Proof. Write the above relations in matrix form:(
pn qn

pn−1 qn−1

)
=

(
an 1

1 0

)(
pn−1 qn−1

pn−2 qn−2

)
= ... =

(
an 1

1 0

)n−1(
p1 q1

p0 q0

)

The determinant gives: pnqn−1 − qnpn−1 = (−1)n = (−1)n−1(p1q0 − p0q1) = (−1)n.

Remark Since the an’s are by definition strictly positive, we can easily see that (pn) and (qn) are

increasing sequences. It can be shown recursively that

qn−1
qn

=
qn−1

anqn−1 + qn−2︸ ︷︷ ︸
<1

=
1

an + qn−2

qn−1

= ... = [0; an, an−1..., a2]

We will use this equality later in the proof.

Remark Looking at [a1; a2, a3, ...], we see that for odd n, the larger an is, the larger is the whole

fraction, and for even n, the larger an is, the smaller is the whole fraction. If you don’t see why

immediately, try to write down the fraction and think first about the case where the continued

fraction is finite. This observation will be crucial in the proof.

Proof. i) Let α ∈ R \Q and [a1; a2, ...] be its continued fraction, and pn
qn

= [a1, ..., an] as before. Write

α = [a1; a2, ..., an, αn] := p̃n
q̃n

. We can apply the recursive formula to p̃n
q̃n

to get α = αnpn+pn−1

αnqn+qn−1
. Using

this formula and theorem 9, we get

α− pn
qn

=
±1

rn12n
, rn := αn +

qn−1
qn

= rn = [an+1; an+2...] + [0; an, an−1, ..., a2]

Hence to prove i), it suffices to show that rn ≥
√

5 for infinitely many n’s. There are several cases:

Case 1: an ≥ 3 for infinitely many n. Since rn = [an+1; an+2...] + [0; an, an−1, ..., a2] > an+1,

rn > 3 >
√

5 for infinitely many n’s.
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Case 2: There exists N ∈ N such that for all n ≥ N, an ∈ {1, 2}

2.a) 2 appears infinitely many times. Then there exists infinitely many n such that an+1 = 2 and

rn = [2; an+2...] + [0; an, an−1, ..., a2]. r
′
n := [2; 2, 1, 2, 1, 2, ...] + [0; 2, 1, 2, 1, ..., a2] is the minimal of all

such numbers since for odd n, the smaller an the smaller the whole sequence, and the opposite holds

for even n.

x := [0; 2, 1, 2, 1, ...] =
1

2 + 1
1+ 1

2+...

is the solution to x =
1

2 + 1
1+x

Solving this equation, we get x = −1 +
√

3. Thus rn > r′n > 2 + x = 1 +
√

3 >
√

5, and this holds for

infinitely many n’s.

2.b) 2 appears finitely many times, i.e. there exists N ∈ N such that an = 1 for all n ≥ N . So for

n ≥ N ,

rn = [1; 1, 1, ...] + [0; an = 1, 1, ..., a3, a2]

Let x = [1; 1, 1, ...], yn := [0; an = 1, 1, ..., a2].

x = 1 +
1

x
=⇒ x =

1 +
√

5

2

y := lim
n→∞

yn = [0; 1, 1, ...] = x− 1 =

√
5− 1

2

. =⇒ lim
n→∞

rn = x + y =
√

5. Note that yn alternate about y, i.e. if yn > y then yn+1 < y (same

reason as before for odd and even n’s), so there are infinitely many n’s for which rn >
√

5. To prove

ii), we will state a useful theorem without proof.

Theorem 10 (Lagrange). Let α be an irrational number and pn
qn

one of its convergents. If θ < qn
qn+qn−1

,

then any p
q ∈ Q satisfying

∣∣∣α− p
q

∣∣∣ < θ
q2

is a convergent in the development of α. In particular, since

qn is increasing, this is always the case for θ < 1
2 .

Proof. ii) Let λ >
√

5. Then 1
λ <

1
2 . By Langrange’s theorem, every rational pq such that

∣∣∣α− p
q

∣∣∣ < 1
λq2

is a convergent of the form pn
qn

. Then any irrational number whose continued fraction ends in 1, 1, ...

is a counterexample. In fact, as shown in 2.b) of the previous proof, since lim
n→∞

rn =
√

5, there

exists N ∈ N such that for all n ≥ N , rn < λ, and so
∣∣∣α− p

q

∣∣∣ = 1
rnq2n

> 1
λq2n

. Hence, the inequality∣∣∣α− p
q

∣∣∣ < 1
λq2n

is only satisfied by a finite number of fractions.

2 Geometric Proof

Now we will see another proof of Hurwitz’s theorem using a completely different approach [For25].

The idea is to represent rational numbers as circles whose radii depend on the denominator of the

fractions. This transforms the number theoretic problem into a geometric one. Now we will discuss

the exact details of the construction, and it will quickly become evident why it is going to help us

prove the theorem.
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2.1 Construction of the circles

Through each rational point x = p
q , where p, q ∈ Z and the fraction is in its lowest terms ((p, q) = 1),

we construct a circle of radius 1
2q2

tangent to the x-axis and lying in the upper half-plane. It is this

circle, which will be the geometric picture of the fraction. The integers are represented by circles of

radius 1
2 ; the fractions 1

3 ,
2
3 ,

4
3 , etc., by circles of radius 1

18 ; and so on. Every small interval of the

x-axis contains points of tangency of infinitely many of these circles.

Figure 1: Fractions transformed into circles

2.2 First findings

Lemma 2.1. The representative circles of two distinct fractions are either tangent or external to one

another.

Proof. Let p
q 6=

P
Q and (p, q) = 1 = (P,Q). Consider the distance between the centers of their

representative circles. In the figure the horizontal distance AC is
∣∣∣PQ − p

q

∣∣∣ and the vertical distance

CB is
∣∣∣ 1
2Q2 − 1

2q2

∣∣∣. We have

AB2 =

(
P

Q
− p

q

)2

+

(
1

2Q2
− 1

2q2

)2

=
(Pq −Qp)2

(Qq)2
+ (

1

2Q2
)2 − 1

2q2Q2
+ (

1

2q2
)2

=
(Pq −Qp)2 − 1

(Qq)2
+ (

1

2Q2
)2 +

1

2q2Q2
+ (

1

2q2
)2

=
(Pq −Qp)2 − 1

(Qq)2
+

(
1

2Q2
+

1

2q2

)2

=
(Pq −Qp)2 − 1

(Qq)2
+ (AD + EB)2
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We have to consider three cases:

• |Pq − pQ| > 1⇒ AB > AD + EB, and the two circles are external to one another.

• |Pq − pQ| = 1⇒ AB > AD + EB, and the two circles are tangent.

• |Pq − pQ| < 1⇒ Pq− pQ = 0 because P,Q, p, q ∈ Z. Then Pq = pQ, which is a contradiction.

2.3 Adjacent fractions

Definition 2.1 (Adjacent fractions) Two fractions p
q and P

Q are adjacent if their representative

circles are tangent. The condition for that is |Pq − pQ| = 1.

Lemma 2.2. Each fraction p
q possesses and adjacent fraction.

Proof. For p
q we have to find P

Q , such that |Pq − pQ| = 1

• Case 1 holds for |q| = 1, since p
1 has the adjacent fraction p+1

1

• Induction claim. All fractions whose denominators are less in absolute value than |q| possess

adjacent fractions.

• Induction step. Take any p
q . Pick n ∈ Z nearest to p

q . We can write

p

q
= n+

m

q
=
nq +m

q
, 0 < |m| < |q|
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|m| < |q| ⇒ q
m has adjacent fraction r

s (because of induction claim) ⇒ |sq − rm| = 1. Then the

fraction
P

Q
= n+

s

r
=
nr + s

r
, 0 < |m| < |q|

is adjacent to p
q because

|Pq − pQ| = |(nr + s)q − (nq +m)r| = |sq − rm| = 1

Lemma 2.3. If P
Q is adjacent to p

q then all fractions adjacent to p
q are

Pn
Qn

=
P + np

Q+ nq
, n ∈ Z

Corollary. Pn
Qn

and Pn+1

Qn+1
are adjacent to each other.

Proof of Corollary.

|(P + np)(Q+ (n+ 1)q)− (P + (n+ 1)p)(Q+ nq)| = |Pq − pQ| = 1.

Proof. We find quite easily that the fractions given are adjacent to p
q because

|(P + np)q − p(Q+ nq)| = |Pq − pQ| = 1.

The circles corresponding to these fractions form a ring around the circle of p
q , all tangent to the

circle of p
q and each tangent to the circles which precede and follow it in the sequence. This ring

completely surrounds the circle of p
q because

Pn
Qn

=
p

q
+

Pq − pQ
q(Q+ nq)

=
p

q
± 1

q2(Qq + n)

When n → +∞, Pn
Qn

approaches p
q from one side; When n → −∞, Pn

Qn
approaches p

q from the

other side.

It is obvious from the geometric picture that it is not possible to draw another circle lying in the

upper half-plane, touching the x-axis, and tangent to the circle of p
q , but not intersecting the circles

of the ring surrounding the circle of pq . It follows that there are no further fractions adjacent to p
q .

Lemma 2.4. Of the fractions adjacent to p
q (|q| > 1) exactly two have denominators numerically

smaller than q.

Proof. It can be easily seen geometrically that for any circle there exist two bigger tangent circles.

We also can try to find values of n, such that |Q+ nq| < |q|, equivalently
∣∣∣n+ Q

q

∣∣∣ < 1. Since

Q
q /∈ Z⇒ ∃n0, n1, such that

∣∣∣n0 + Q
q

∣∣∣ < 1 and
∣∣∣n1 + Q

q

∣∣∣ < 1 and n0 = n1 + 1.

So there are exactly two distinct n values, such that |Q+ nq| < |q| ⇒ P+np
Q+nq is adjacent to p

q and

have smaller denominators.
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2.4 Mesh triangles and curves

Definition 2.2 (Mesh triangle) A mesh triangle is a part of the upper half plane exterior to all

the circles of the system, which look like circular arc triangles

Remark Any two sides of a mesh triangle lie on circles belonging to adjacent fractions.

Definition 2.3 (Ford’s Curve) A continuous curve starting with a point A0 of the upper half-plane

which remains in the upper half plane except that its terminal point, if any, may possibly lie on the

x-axis.

Definition 2.4 (Ford’s sequence) The fractions whose circles are passed through in succession by

a Ford’s curve.

Remark A fraction is not counted twice if the Ford’s curve goes into a mesh triangle and returns

to the same circle.
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We also make the convention that if a Ford’s curve touches two circles at their point of tangency

without entering either then one or the other shall be considered as crossed by the Ford’s curve (for

example, the larger circle).

Corollary. If two fractions are in succession in the Ford’s sequence (a Ford’s curve goes through

them in succession) then the corresponding two fractions are adjacent.

2.5 Farey sequence

Let L be a Ford’s curve, which is a line y = k, parallel to the x-axis. Starting at x = 0 and stopping

at x = 1. The points of tangency with the x-axis of the circles through which L passes are arranged

in order from left to right; that is, the corresponding fractions are arranged in numerical order.

If 1
(n+1)2

< k < 1
n2 , L instersects the circles of all fractions in the interval 0 ≤ x ≤ 1 whose

denominators do not exceed n and the circles of no other fractions. These fractions arranged in

numerical order constitute what is known as a Farey sequence of order n for the interval.

Figure 2: k = 0.012, therefore, this is a Farey sequence of order 8

3 Geometric proof

3.1 Proof of k = 0.5

Proof. Let the Ford’s curve L be a vertical line which terminates at the irrational α, so we have L is

x = α. Then L intersects infinitely many circles of the system we are considering and is tangent to

none. If L cuts the circle of p
q then the distance from α to p

q is less than the radius:∣∣∣∣pq − α
∣∣∣∣ < 1

2q2

The curve L thus provides us with an infinite suite of all thos fractions satisfying the equation when

k = 1
2
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3.2 Proof of Hurwitz’s theorem

The setup is identical to the previous one: we have a Ford’s curve L, which is a vertical line terminating

at the irrational α. It is quite evident that the line L cuts across infinitely many mesh triangles.

This is true because the only vertical lines which cross a finite amount of circles are the ones

located at the rational points. The irrational ones by definition have to cross an infinite amount of

circles.

Theorem 11. Of the three fractions whose circles form the boundary of a mesh triangle which L

crosses, at least one satisfies (1).

Let p0
q0

, p1
q1

, p2
q2

be the fractions whose circles bound the mesh triangle area, where

0 < q0 ≤ q1 < q2 = q0 + q1, p2 = p0 + p1

Without loss of generality, the largest of the three circles is on the right; that is p0
q0
> p1

q1
and

q1 ≥ q0.
Let us define the point of contact between p0

q0
and p1

q1
as A. It divides the line of centers of these

circles in the ratio of their radii - 1
2q21

: 1
2q20

or q20 : q21. The abscissa of this point is

a =
q21

p1
q1

+ q20
p0
q0

q21 + q20
=
p1q1 + p0q0
q21 + q20

The abscissas of B and C (the other vertices) may be written down by an interchange of letters,

b =
p1q1 + p2q2
q21 + q22

, c =
p0q0 + p2q2
q20 + q22
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In order that L cross the mesh triangle under consideration it is necessary and sufficient that α

lie in the interval whose right end is c and whose left end is min(a,b). We find

a− p1
q1

=
q0

q1(q21 + q20)
, b− p1

q1
=

q2
q1(q21 + q22)

Now we subtract one from the other and we get

b− a =
q2

q1(q21 + q22)
− q0
q1(q21 + q20)

=
q2(q

2
1 + q20)− q0(q21 + q22)

q1(q21 + q22)(q21 + q20)

=
(q0 + q1)(q

2
1 + q20)− q0(q21 + (q0 + q1)

2)

q1(q21 + q22)(q21 + q20)

=
q21 − q1q0 − q20

(q21 + q22)(q21 + q20)

Now we can define s = q1
q0
≥ 1. To figure out whether a or b is smaller we have to find out the sign

of q21 − q1q0 − q20. This is equivalent to finding out the sign of
q21
q20
− q1

q0
− 1 = s2 − s− 1 (we divided it

by q20). Now, by factoring we get

s2 − s− 1 =

(
s+

√
5− 1

2

)(
s−
√

5 + 1

2

)

The first factor is obviously positive, so the sign is determined by the second factor. We have two

cases to consider.

Figure 3: Case I

Case I. a < b and s >
√
5+1
2 . We will show that p0

q0
satisfies the inequality with k = 1√

5
. We have∣∣∣∣α− p0

q0

∣∣∣∣ < p0
q0
− a =

p0
q0
− p1q1 + p0q0

q21 + q20
=

q1
q0(q21 + q20)

=
s

s2 + 1

1

q20
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If s
s2+1

≤ 1√
5
, then we have what we want. Therefore, we have to prove that s

s2+1
> 1√

5
is impossible.

Let
s

s2 + 1
>

1√
5
⇒ s2 −

√
5s+ 1 < 0⇒

(
s−
√

5 + 1

2

)(
s−
√

5− 1

2

)
< 0

However, that is impossible because s >
√
5+1
2 .

Figure 4: Case II

Case II. a > b and s <
√
5+1
2 . We will show that p2

q2
satisfies the inequality with k = 1√

5
. It is

clear that c is nearer p2
q2

than b is, since C is higher on the circle than B.∣∣∣∣c− p2
q2

∣∣∣∣ < ∣∣∣∣b− p2
q2

∣∣∣∣
Then ∣∣∣∣α− p2

q2

∣∣∣∣ < p2
q2
− b =

p2
q2
− p1q1 + p2q2

q21 + q22
=

q1
q2(q21 + q22)

=
s(s+ 1)

s2 + (s+ 1)2
1

q22

If s
s2+1

≤ 1√
5
, then we have what we want. Therefore, we have to prove that s

s2+1
> 1√

5
is impossible.

Let
s(s+ 1)

s2 + (s+ 1)2
>

1√
5
⇒

(
√

5− 2)s2 + (
√

5− 2)s− 1 > 0⇒

s2 + s− (
√

5 + 2) > 0⇒(
s−
√

5 + 1

2

)(
s+

√
5 + 1

2

)
< 0

However, that is impossible because s <
√
5+1
2 , therefore, the first fraction is negative and the second

is positive.
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Lemma 3.1. For α = 1+
√
5

2 there exist only a finite number of p
q ∈ Q such that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

Proof. Let 0 < h < 1h ∈ R and |θ| < h < 1∣∣∣∣∣pq −
√

5 + 1

2

∣∣∣∣∣ < h√
5q2

p

q
−
√

5 + 1

2
=

θ√
5q2

p

q
− 1

2
=

√
5

2
+

θ√
5q2

5q2((p2 − pq − q2)− θ) = θ2

p2− pq− q2 ∈ Z and p2− pq− q2 6= 0 because otherwise p
q
2− p

q − 1 = 0⇒ p
q ∈ R \Q and it also must

be positive.

p2 − pq − q2 ≥ 1

q2 =
θ2

5((p2 − pq − q2)− θ)
<

h2

5(1− h)
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[Hur91] A. Hurwitz. Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche.
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